
Learning Latent Representations of Music to Generate
Interactive Musical Palettes

Adam Roberts
Google Brain

Mountain View, USA
adarob@google.com

Jesse Engel
Google Brain

Mountain View, USA
jesseengel@google.com

Sageev Oore∗
Dalhousie University

& Vector Institute
Canada

sageev@vectorinstitute.ai

Douglas Eck
Google Brain

Mountain View, USA
deck@google.com

ABSTRACT
Advances in machine learning have the potential to radically
reshape interactions between humans and computers. Deep
learning makes it possible to discover powerful representa-
tions that are capable of capturing the latent structure of high-
dimensional data such as music. By creating interactive la-
tent space “palettes” of musical sequences and timbres, we
demonstrate interfaces for musical creation made possible
by machine learning. We introduce an interface to the intu-
itive, low-dimensional control spaces for high-dimensional
note sequences, allowing users to explore a compositional
space of melodies or drum beats in a simple 2-D grid. Fur-
thermore, users can define 1-D trajectories in the 2-D space
for autonomous, continuous morphing during improvisation.
Similarly for timbre, our interface to a learned latent space
of audio provides an intuitive and smooth search space for
morphing between the timbres of different instruments. We
remove technical and computational barriers by embedding
pre-trained networks into a browser-based GPU-accelerated
framework, making the systems accessible to a wide range of
users while maintaining potential for creative flexibility and
personalization.
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learning

INTRODUCTION
Music, when treated as data, is often represented in high-
dimensional spaces. Digital music formats such as CD-quality
Pulse-code modulation (PCM), for example, records audible
vibrations as a discrete sequence of 44.1 thousand 16-bit inte-
gers per second [11]; audio can then be modelled by treating
each sample as a unique dimension and capturing correla-
tions between them. Alternately, musical compositions can be
communicated as a score; in one heavily constrained version
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of this, for example, we could represent sequences of mono-
phonic 16th notes of equal intensity with approximately 7 bits
for each note, or 112 per bar. That is far fewer dimensions than
audio, but even there, exploring all possible variations of a
score by flipping one bit at a time quickly becomes intractable,
and further, would result in a large proportion of melodies
being so musically unconventional that they would easily be
perceived as being incoherent.

While the high dimensionality affords an exponential num-
ber of possibilities, only some of these possibilities are likely
for real music, which could be seen as residing on a lower-
dimensional manifold within the space. Machine learning
techniques can learn the shape of such low-dimensional mani-
folds from data, and be used to gain better understanding of
and to explore large datasets [22]. They can also be used to
build creative tools within the realm of “Artificial Intelligence
Augmentation” (AIA) [7]. Learning the reduction directly
from the data allows us to avoid heuristics and hand-tuned
features, along with the biases and preconceptions about the
data that would normally accompany those.

Autoencoders and variational autoencoders [13] are models
designed to learn efficient, low-dimensional representations
capable of reproducing their high-dimensional inputs. The
hope is that in order to effectively utilize the “latent space”,
they will learn a mapping that is “effective”. What do we mean
by this, or rather, what might be some desirable characteristics
for such a mapping? First we might wish for smoothness: for
example, if two points are near each other in latent space, then
we would like for their corresponding points in the output
space to also be near one another. In the constrained case of
monophonic melodies mentioned above, this would mean that
we would like for the two monophonic sequences to be per-
ceptually similar. Second, while the original high-dimensional
space allows for very unlikely points, we would like the latent
space to correspond primarily to the likely ones: that is, if we
map from a sampled point in the latent space to the original
space, we would like the resulting point to be “feasible”, i.e.
not one of those unconventionally incoherent sequences that



we described earlier. If we can satisfy these two requirements,
then that would allow interpolation in the latent space to corre-
spond to a meaningful interpolation in the original space. For
example, if A and B are score representations of two mono-
phonic melodies, and f (A) and f (B) are their corresponding
latent representations, then as we sample N +1 points along
the line between the latent points f (A) and f (B):

ci = αi f (A)+(1−αi) f (B)

where αi = i/N and i runs from 0 . . .N, then Ci = f−1(ci)
should always be a feasible (i.e. statistically “likely”) melody,
and also Ci should be perceptually fairly similar to Ci+1. That
is, the smoothness of the latent space with respect to the
outputs makes it possible to define projections of the out-
put space onto 1-D line segments and 2-D rectangles [14, 7].
Tracing along such low-dimensional manifolds, we can thus
morph from one melody to another in an interesting way. Low-
dimensional representations thus potentially afford interesting
visualizations and natural interactions.

In this paper, we present two interfaces based on the principle
of musical latent spaces:

• A musical sequence explorer for 2-bar melody loops and
drum beats, using the latent space of MusicVAE [20].

• An instrument timbre explorer, using the audio-based latent
space of instrument samples generated by NSynth [8].

The former is implemented using deeplearn.js [21] for GPU-
accelerated inference in the browser, enabling dynamic explo-
ration with no additional installation or setup required. It can
output both audio and MIDI. The latter is implemented as a
Max For Live device with pre-synthesized samples, providing
access to a massive number of timbres from within Ableton
Live, a widely-used, professional-grade production tool.

RELATED WORK
There is a fair amount of prior work on the concept of “musical
morphing” in the space of both audio and compositions. In the
audio realm, techniques such as cross-synthesis use heuristics
or machine learning to mix hand-designed features of instru-
ment timbres [12]. For compositions, heuristics and models
based on music theory are used to morph between existing
pieces [5, 9].

MMorph [19] is described as a real-time tool that allows users
to morph between up to four MIDI compositions by mixing
different elements of each piece (such as rhythm, pitch, dy-
namics, timbre, harmony). Via a SmallTalk GUI, a user could
specify which elements of each MIDI file to morph with check-
boxes and drag a control around a 2-D space to determine the
relative amounts contributed by each of the four pieces in
real-time. The user could also choose from several different
morphing methods such as “interpolation” and “weighting”,
although no description of these methods is provided.

Hamanaka et al. [9] introduce a simple copy-and-paste inter-
face for both interpolating between and extrapolating beyond
pairs of melodies by reducing the melodies to a low-dimension
representations based on music theory.

Figure 1. Diagram of an autoencoder/VAE. Input (in this case an au-
dio waveform) is mapped through an encoder function to a compressed
latent vector z. Transformations, such as interpolation, can then be ap-
plied to the vector. The resulting latent vector is then fed through a
decoder function to produce the output audio.
Closely related to our melodic interpolation is work by Bretan
et al. [4, 3]. The authors first extract a bag-of-features from
monophonic musical phrases, and then use an autoencoder to
construct a latent space. By selecting nearest-neighbors from
the training set in latent space, the autoencoder can interpolate
naturally between any two given 2-bar monophonic musical
phrases, such that the gradual progression can be heard in both
the harmonic and rhythmic elements [4].They subsequently
extend this to learn small perturbations in the latent space
to allow variety of real-time call-and-response interactions
for polyphonic musical phrases [3]. However, the approach
is somewhat less scalable and generalizable, as it can only
recombine elements from the training data and the nearest-
neighbor selection scales poorly as the size of the training set
grows.

The Hyperviolin [12] is a physical, violin-like instrument that
makes use of cross-synthesis to produce timbres mixing be-
tween various instruments such as a flute or choral vocals. The
developers demonstrated multiple methods of controlling the
relative weights of the high-level timbral features via “sen-
sor shoes”. The performer could control some constrained
aspects of the timbre within a preset space in real-time with
movements of her foot and could move between different pre-
sets throughout a piece by making larger physical movements
along a path.

The Morph Table [6] uses a 3-D interface with physical cubes
allowing multiple users to control the musical output of the
system by morphing in both audio and compositional spaces.
Movements of each cube in one dimension are associated
with compositional morphing using techniques such as key-
modulation, linear interpolation of note features (pitch, onset,
duration, etc.) or “cross-fading” between subsections. In a
second dimension, standard audio effects are are adjusted.
Movements in a third dimension–accessed by rotating the
cubes to expose different faces–changes the morphing end-
points between six different presets.

Existing examples of AIA interfaces using latent spaces in-
clude examples for generating faces [14], fonts [7], and generic
images such as shoes and landscapes [23].

METHODS
Both of the interfaces introduced in this paper employ autoen-
coders, unsupervised machine learning models each composed
of three parts: an encoder, a latent vector, and a decoder (Fig-
ure 1). The latent vector, z, is an intermediate representation
of the data examples, x, but is either of lower dimension or is



regularized to produce an information bottleneck. In the case
of variational autoencoders (VAE), z is regularized to encour-
age the model to learn low-entropy latent representations of
x close to a standard multivariate Gaussian distribution. The
encoder is a neural network that produces z from the input x
and the decoder is a separate neural network that attempts to
reconstruct x from z. Gradient-based optimization is then used
to reduce the reconstruction loss (the difference between the
encoded input and decoded output) and KL divergence from
the Gaussian prior (if applicable) [13].

The purpose of the bottleneck is that it forces the model to
distill the information content of the data to lower-entropy rep-
resentations. In the process, it discovers and encodes the most
important features that differentiate data examples. The model
becomes specialized to produce examples like those from the
training distribution, making it difficult for the decoder to
produce “unrealistic” outputs that are improbable under the
distribution p(x). However, when trained properly it is general
enough to be able to reconstruct and generate examples that
are from the same distribution as p(x) but do not appear in the
train set. The resulting latent space is therefore optimized for
various forms of exploration including interpolation within the
latent space, which can “morph” between values in the output
space, producing realistic intermediate outputs that combine
features of the endpoints to varying degrees.

MusicVAE
MusicVAE is a VAE for musical sequences, such as drum beats
and melodies. It uses LSTM [10] recurrent neural networks
as its encoder and decoder. For our purposes, we focus on
models learned from either 2-bar drum beats or 2-bar melody
loops. Training sets were obtained by scraping the web for
MIDI files and extracting all unique 2-bar sequences of the
two types, resulting in 28 million melodies and 3.8 million
drum beats.

To produce good reconstructions (and interpolations), we train
a VAE with a trade-off parameter that assigns a lower weight
to the KL divergence, thus allowing the system to pass enough
information through the bottleneck to be able to reproduce
nearly any realistic input sequence in our dataset. However,
models trained in this way on noisy datasets such as ours often
do not produce realistic examples when sampling random
points from the Gaussian prior. To produce better random
samples, we train VAEs with the trade-off parameter set to a
value that encourages a better KL divergence at the expense
of reconstruction quality.

NSynth
With NSynth, we are able to learn latent spaces not just of
musical sequences, but of audio waveforms themselves. Like
the MusicVAE, NSynth is an autoencoder architecture (though
not variational) that can learn to encode and decode sequences
from a compressed latent space. Since the model must learn
to most efficiently use the lower-entropy representation to
represent waveforms, it learns salient acoustic features among
the training data. However, the model architecture differs
significantly from MusicVAE as it must capture correlations
over thousands of quantized waveform timesteps [8].

Figure 2. The MusicVAE Sequencer. On the left is an editable sequencer
for modifying the corner melodies or rhythms, along with several con-
trols including a toggle between melody and drum modes and a drop-
down selector for MIDI output. On the right is the 2-D interpolation
palette where each interior square contains a sequence generated by de-
coding an interpolated point from the latent space between the corner
sequences. The interface is shown in “Draw” mode, where the the white
puck will follow along the user-drawn 1-D curve (in this case shaped like
an “M”), morphing the sequence in real-time as it moves through the
latent space.

We train the NSynth model on the NSynth dataset, a collection
of ~300,000 individual 4-second notes recorded from ~1,000
separate instruments and synthesizers [8]. By choosing to train
on individual pitched notes, the model can then be used as a
“neural synthesizer” to playback notes when receiving an input
MIDI signal.

Since the model learns an expressive code for raw audio, it
can be used to interpolate in this space and discover new
instrument timbres that exist between pre-existing instruments.
However, while the latent space is of much lower dimension
than the original audio, there is no prior to sample from as was
the case for MusicVAE. Therefore, there is no trivial way to
randomly sample novel musical notes from the distribution,
and we are limited to exploring subspaces anchored on known
notes.

INTERFACES

MusicVAE Sequencer
The MusicVAE Sequencer (Figure 2) is an interface to the la-
tent spaces of 2-bar drum loops and monophonic melodies, as
described above. Users can toggle between these two spaces
and define the four corner sequences of a 2-D, 11x11 grid by
randomly sampling from the latent space (using the low-KL
model), selecting from a predefined list, or inputting them
manually into the sequencer at the resolution of 16th notes.
Once the corner sequences are set, they are passed through
the encoder of the VAE to determine their latent vectors. The
latent vectors are then mixed using bi-linear interpolation in
the 11×11 space, and the resulting values are decoded into se-
quences (from the high-KL model). With our implementation
of the model architecture in deeplearn.js using weights learned
via the original TensorFlow [2] model, the encoding, inter-
polation, and decoding can all be executed with sub-second
latency on a typical consumer laptop.

Now that the palette is filled, the user can drag the white “puck”
around to hear the drum beat or melody loop in each square



Figure 3. The NSynth Instrument alongside other Ableton devices that
it can be used in conjunction with to synthesize incoming MIDI events.

of the grid. When the puck moves to a new square, the se-
quencer immediately updates but the play-head does not reset
to the beginning, allowing the music to morph immediately
but smoothly. The sound is played via the browser using preset
audio samples with Tone.js [15] and can optionally be output
as MIDI events via Web MIDI [1] to be further manipulated
and synthesized externally.

The corner sequences can be changed at any time by the same
methods mentioned above or by dragging one of the interior
squares to a corner of the grid, which will set it as the new
corner and cause the interior points to be updated.

If using the sequencer as a composition tool, the user can
record the MIDI or audio externally, or she can right click on
any square to download a MIDI file containing that particular
sequence to use as a part of an arrangement.

In the case of improvisation or live performance, the user
may also use the “draw” tool to define a 1-D curve within the
palette, which the puck will then move through at a rate the
user controls. As the puck moves into each new square, the
playback sequence is updated, just as if the user had moved
the puck there by hand. In this manner, a performer can
set up paths in both the drum and melody palettes that will
continuously evolve at potentially different rates, introducing
musically interesting phasing effects.

NSynth Instrument
The NSynth model is extremely computationally expensive
(~30 minutes of GPU synthesis to generate four seconds of
audio) and therefore presented a distinct challenge in creating
an interactive experience for interpolating within the latent
space in real-time on a laptop. Rather than generating sounds
on demand, we curated a set of original sounds ahead of time
and synthesized all of their interpolated latent representations.
To produce even finer-grained resolution during playback, tran-
sitions are smoothed out by additionally mixing the audio in
real-time from the nearest neighbor sounds on the grid. This is
a straightforward case of trading off computation for memory.

We created a playable instrument integrated into Ableton Live
as a Max For Live device (Figure 3). We positioned real
instrument timbres at the corners of a square grid, allowing
the user to mix between all four using the latent space as a
palette. We created further “multigrid” modes, tiling many
four-instrument grids side by side. This results in an 7x7 grid
of 4x4 grids, enabling a user to explore up to 64 different
instruments by dragging across a single x-y pad. Given an x-y
point, the device finds the nearest four interpolated samples
and plays them back with volume proportional to the their
x-y distance from the point. Users can choose from 5 pre-
generated grids and 3 multigrids or produce their own using
the TensorFlow code released with the NSynth model [16].

Incoming MIDI notes are played back in the appropriate tim-
bre based on the position on the palette. Additional controls
include the ability to adjust where each sample the playback
should start, the playback speed, and settings for an Attack
Decay Sustain Release (ADSR) envelope. Furthermore, the
NSynth Instrument can be combined with other Live devices
to add additional effects such as an arpeggiator.

Finally, users are able to map all of these settings to an external
MIDI controller for ease of use in a studio or live setting.

EXPLORING THE INTERFACE
Interfaces provide mappings from the user’s actions to the
output space. In the case of the MusicVAE sequencer, the input
space consists of four user-defined basis points (the corners)
combined with a 2-D control surface (the palette), and the
output space consists of note or drum sequences. Generally,
choosing the mapping is a crucial element of designing a
user interface, with numerous trade-offs at play, and where
the goals often include carefully and deliberately shaping the
user’s cognitive model of the system [17]. In our case, the
mapping is learned with a VAE, and therefore this raises the
question of how the user will understand and interact with
it: from the user’s perspective, how does this mapping work?
[18] describes some of the steps that a user may take when
learning continuous mappings for complex controls over high-
dimensional output spaces; we follow some of those basic
approaches to explore the MusicVAE Sequencer interface. In
particular, we show how to start isolating and exaggerating
aspects of the mapping.

One example of exaggeration is that we set three of the basis
points (bottom-left, top-left, and top-right) to all be empty, and
set the bottom-right to be entirely full (i.e. every percussion
instrument playing at every 16th note). In that case, our inter-
polation lets us check what the system does as it goes from
completely sparse (silence) to completely dense, as shown in
Figure 4.

As we interpolate from empty to full, we notice that the system
tends to start by populating the sequencer with percussion
hits on the actual beats, then on the 8th notes, and then on
the 16th notes, i.e. it progresses from more likely to less
likely beats. It also progresses from sparser beat sequences
to denser ones. This satisfies the requirements outlined in the
introduction as follows: (1) smoothness is preserved, in that
each sample along the interpolated latent path corresponds to
beat sequences that are similar to (i.e. a little more or less
dense than) those corresponding to its adjacent samples, and
(2) by first adding beats on quarter notes, then 8th notes, etc,
this suggests that the system is maintaining feasible (i.e. more
likely) outputs1.

Figure 5 shows another simple experiment in which we try
isolating the location (phase) of the beat in the bar. We see that

1For example, one could imagine a sequence that goes from sparse
to dense, but in which the new percussion hits are added by simply
choosing random cells in the grid from a uniform distribution over
the grid. This could still be a smooth mapping, but it would have the
problem that the intermediate beat sequences, during interpolation,
would generally be very unlikely.



Figure 4. Interpolating between empty and full. The dark grid on the left represents the piano roll of the percussion, and the multi-coloured square grid
on the right (the palette) represents the (2-dimensional) latent space. The white puck represents a point in the latent space, and the piano roll shows that
point’s corresponding percussion sequence. For all six sub-figures here, the 4 corners of the latent space grid are fixed: the bottom-right corner has all
drum hits enabled, and the other three corners are empty. For example, in sub-figure at (Row 2, Col 1), the puck is just next to the bottom-right corner,
and indeed, the corresponding piano roll shows a very dense sequence of percussion hits. Conversely, in (Row 1, Col 2), the puck is approximately near
the centre, and we see a much sparser pattern. As the puck is moved from an empty corner toward the bottom-right, drum hits are added first on
quarter notes, then eighth notes, and finally 16th notes, until the sequencer eventually fills as it nears the corner. The final two images on the second
row (Row 2, Col 2) and (Row 2, Col 3) illustrate the expected symmetry with respect to the diagonal for this configuration (i.e. the percussion rolls are
essentially identical for these two points on either side of the (top-left, bottom-right) diagonal.

rather than interpolating the phase (which would gradually
shift the offset), there is a tendency to superpose the two rhyth-
mic figures. This, too, is a reasonable rhythmic approach. We
note that doing so in melody space would not necessarily be as
natural of a choice (and in fact the system would not have that
option since the melodies are constrained to be monophonic).
While there is usually a lot more sophistication occurring in
the interpolations aside from superposition, these results for
simple cases have a natural interpretation for the user, provid-
ing landmarks on which to ground their understanding and
cognitive models of the system.

In Figure 6, we explore interpolation in melody space by
providing several different scales as the four basis points. As
we move from top-left to top-right, we notice that at each step
the output sequence is similar to the previous step, but that
the combination of these smooth steps ultimately results in a
very large change. Interestingly, at around a third of the way
across, the output sequence includes some descending notes,
even though both scales ascend. This shows that the system
will sometimes move away from the basis points during the
interpolation.

Finally, we note that some parameters, such as the number of
grid points, were chosen in order to make the system func-
tional, with the focus on learning an effective latent space
mapping, but in future, these are design elements that would
be worthwhile exploring more systematically and with user
testing.

AVAILABILITY
Supplementary resources including opensource code are avail-
able for both NSynth and MusicVAE interfaces in correspond-
ing sub-directories of Magenta’s demo github repository2.

CONCLUSION
This work demonstrates the use of machine learning as the
basis for creative musical tools. Machine learning is often seen
as a method for outsourcing mundane discriminative tasks, re-
sulting in the desire for rigid systems that perform their duties
2https://github.com/tensorflow/magenta-demos/

with high accuracy. While it is likely that such systems could
be used to produce satisfying music for listeners, our work
indicates directions for how we might use machine learning—
specifically latent-space representations— to create UI map-
pings that we hope will eventually provide music creators with
new and interesting creativity-supporting tools.
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