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ABSTRACT 
We propose a system that detects the scene, where a 
specific speaker is speaking in the video, and displays the 
site as a heat map in the video's timeline. This system 
enables users to skip to the timeline they want to hear by 
detecting scenes in a drama, talk show, or discussion TV 
program, where a specific speaker is speaking. To detect a 
specific speaker's utterance, we develop a deep neural 
network (DNN) to extract only a specific speaker from the 
original sound source. We also implement the detection 
algorithm based on the output of the proposed DNN and the 
interface for displaying the detection result. We conduct 
two experiments on the proposed system. One is to confirm 
how much the amplitude of the other sounds can be 
suppressed and how much that of the specific person's 
utterance does not be suppressed by the proposed DNN. 
The second experiment is to confirm how accurately the 
proposed system can detect the utterance scene of a specific 
person. 

Author Keywords 
Scene detection; timeline; video; sound source separation; 
deep learning. 

ACM Classification Keywords 
H5.1. Information interfaces and presentation (e.g., HCI): 
Multimedia Information Systems; H5.2. Information 
interfaces and presentation (e.g., HCI): User Interface 

INTRODUCTION 
The demand for video streaming services, such as YouTube, 
Netflix, and Amazon Prime, is increasing as well as the 
amount of video contents on the Web. In this situation, in 
which too many videos have already been uploaded on the 
Web, the importance of supporting users to browse videos 
efficiently has also increased. 

One method for efficient video browsing is fast-forwarding. 
Several researchers developed a content-aware fast-
forwarding technique that dynamically changes playback 
speeds depending on the importance given to each video 
frame. This technique is enabled using key clips [1, 2], a 
skimming model [3], and the viewing histories of other 
people [4]. Direct manipulation techniques enable users to 
manipulate object positions in video frames to seek for 

specific video timelines [5, 6, 7, 8]. Video streaming 
services, such as YouTube, Netflix, and Amazon Prime, 
show a tiny picture of the video in relation to where the 
playhead is at in the timeline. 

Several studies on video navigations have used audio 
information. Conventional methods [9] using audio 
information summarize and classify videos based on silence, 
speech, and music. CinemaGazer [10] is an audio-based 
technique, which fast-forwards scenes without speech. This 
technique can only distinguish whether or not the scene 
includes speech, and cannot distinguish who speaks. As 
described, some studies supported video browsing using a 
sound class, but fewer audio-based methods have been used 
to seek specific video timelines than image or metadata-
based methods. 

We propose a system that detects the scene, where a 
specific speaker is speaking in the video, and displays the 
site as a heat map in the video's timeline, as shown in 
Figure 1. This system enables users to skip to the timeline 
they want to hear by detecting scenes in a drama, talk show, 
or discussion TV program, where a specific speaker is 
speaking. To detect a specific speaker's utterance, we 
develop a deep neural network (DNN) to extract only a 
specific speaker from the original sound source. Leveraging 
this sound source separation DNN, the system operates as 
follows: first, the system's DNN extracts the utterance of a 
specific person from the audio file of the target video and 
diminishes other sounds. As a result of DNN filtering, the 
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Figure 1. Proposed interface. The red marks in the timeline 
describes the utterance scenes of a specific person. The 
threshold bar can change the threshold of the scene detection 
algorithm. 



amplitude of the scene, in which the target person is 
speaking, does not become very small, while that of the 
other scenes becomes small. The system then calculates the 
difference between the amplitude of the original sound 
waveform and that of the filtered sound waveform. The 
system judges that scenes with the larger difference than a 
threshold are where the target person does not speak and 
those with the smaller difference are where the target 
person utters. The scenes, where the target person speaks, 
are displayed on the video timeline as a heat map based on 
the judgment result. 

We conduct two experiments on the proposed system. One 
is to confirm how much the amplitude of the other sounds 
can be suppressed and how much that of the specific 
person's utterance does not be suppressed by the sound 
source separation DNN extracting only the specific person's 
utterance. The second experiment is to confirm how 
accurately the system can detect the utterance scene of a 
specific person.  

Our contributions are summarized as follows. 

l We propose a novel system that automatically detects 
the utterance scene of a specific person. We also 
confirm how accurately the system can detect the 
utterance scene of a specific person. 

l We develop a sound source separation DNN that can 
extract only a specific person's utterance, and propose 
how to create a training dataset for the DNN. Many 
studies successfully tackled monaural sound source 
separation. However, these prior studies only 
confirmed the effects for separation between 
distinguished classes such as “speech and noise”, or 
between multi-speakers. These studies did not clarify 
whether only a specific speaker can be separated 
when both diverse and various sounds are mixed in 
the sound source. We confirm how much the 
amplitude of the other sounds can be suppressed and 
how much that of the specific person's utterance does 
not be suppressed by the proposed DNN. 

RELATED WORK 

Browsing Support for Videos 
Various techniques to support users in browsing videos are 
well studied. Fast-forwarding techniques, such as those in 
[11, 12], are useful in helping users watch videos in a 
reduced time. Several researchers also developed a content-
aware fast-forwarding technique that dynamically changes 
playback speeds depending on the importance given to each 
video frame. Higuchi et al. [1] proposed a video fast-
forwarding interface that helps users find important events 
from lengthy first-person videos continuously recorded with 
wearable cameras. The proposal of Pongnumkul et al. [2] 
makes it easy to find the scene change when sliding the 
video seek bar. Cheng et al. [3]  proposed a video system to 
learn the user's favorite scene for fast-forwarding. Kim et 
al.’s method [4] shows the importance scene based on the 

viewing histories of other people. CinemaGazer [10] is an 
audio-based technique that fast-forwards scenes without 
speech.  

Several techniques for indicating potential information in 
the video were also studied. These included spatio-temporal 
volume [13], positional information [14], and video 
synopsis [15, 16, 17]. Meanwhile, direct manipulation 
techniques enable users to manipulate object positions in 
video frames to seek for specific video timelines [5, 6, 7, 8]. 
Video lens allows users to interactively explore large 
collections of baseball videos and related metadata [18]. 
On-demand video streaming services, such as YouTube, 
Netflix, and Amazon Prime, show a tiny picture of the 
video in relation to where the playhead is at in the timeline. 

Unlike the previous studies, ours focuses on providing an 
efficient method of allowing users to skip to the scenes, 
where a specific person that the user is searching for, is 
speaking.  

Monaural Source Separation 
Monaural sound source separation studies are closely 
related to the proposed method. We introduce these 
methods here and show their difference from the proposed 
method. 

Wiener filtering is a classical method used for separating a 
specific sound source from a source waveform [19]. The 
Wiener filtering method heuristically determines 
parameters; hence, the parameters cannot be optimized for 
various sound sources [20]. 

In recent years, many studies attempted to separate 
monaural sound sources using deep learning. Previous deep 
network approaches [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 
31] to separation showed promising performances in 
scenarios with sources belonging to a distinct signal class, 
such as “speech and noise” and “vocal and accompaniment.” 
in addition, many researches attempted to separate multi-
speakers using DNN [22, 32, 33, 34, 35, 36, 37]. These 
studies performed well in the speaker-dependent separation 
of two or three speakers. Deep clustering [29, 38, 39, 40] is 
a deep learning framework that can be used for a speaker-
independent separation of two or more speakers, with no 
special constraint on vocabulary and grammar. 

In spite of the advantages, these prior studies confirmed 
only the effects for separation between distinguished 
classes or between multi-speakers. The function required in 
the proposed approach is to isolate only the speech of a 
specific person from the sound source, including various 
noise and multiple speakers. 

Speaker Recognition & Audio Event Detection 
The speaker recognition technique seems effective in 
detecting the utterance section of a specific speaker. These 
techniques using phonemes [41, 42] perform well. However, 
speaker recognition methods are weak against noise. In 
addition, the shorter the input speech duration, the lesser the 



speaker recognition precision. Ranjan et al. [43] reported 
that the equal error rate (false negative rate equals the false 
positive rate) becomes close to 40% when the input 
duration is 3 s. As described, this is not suitable for 
detecting the utterance scene of a specific speaker in videos 
because speaker recognition is vulnerable to noise and tiny 
duration input. 

Jansen et al. [44] proposed the method for detecting 
recurring audio events in YouTube videos using a small 
portion of the manually annotated audio data set [45]. 
However, this method cannot distinguish who speaks while 
can distinguish between categories of sound, such as human 
voice and whistle. 

IMPLEMENTATION 
The proposed system detects the scene, where a specific 
speaker is speaking in the video, and displays the site as a 
heat map in the video's timeline. Figure 2 shows the 
system’s process. The system first loads the sound of the 
target video once. Leveraging a DNN, the system then 
extracts only the specific speaker from the original sound 
source and diminishes the other sounds. In the sound 
waveform filtered by the DNN, the amplitude of the scene, 
where the target person is speaking, does not become too 
small, while that of the other scenes becomes small. The 
system calculates the difference between the amplitude 
value of the original sound waveform and that of the 
filtered sound waveform. The system then judges that 
scenes with the larger difference than a threshold are where 

the target person does not speak and those with the smaller 
difference are where the target person utters. The scenes, 
where the target person speaks, are displayed on the video 
timeline as a heat map based on the judgment result. The 
following subsections describe the implementation of the 
proposed sound source separation DNN, the detection and 
the interface. 

Sound Source Separation between a Specific Speaker 
and Other Sounds  
We propose a DNN to detect the utterance of a specific 
person and separate this utterance from the other sounds. 
The difference of this DNN from the previous sound source 
separation methods is that the relationship between the 
separated sound sources is different as shown in Table 1. 
Many previous studies tackled the separation with different 
classes of sound sources, such as “sound and noise” and a 
fixed number of sound sources, such as “two or three 
speakers.” 

However, we assumed that the DNN models of the previous 
studies could be applied to our task if we change the 
training data. Therefore, we surveyed previous studies, and 
found that Rethage's method [31] was appropriate because 
it used a convolutional-based neural network, which 
allowed for parallel computation. Many previous methods 
[22, 23, 24, 25] employed recurrent neural networks 

 
Figure 2. Proposed system’s process. The system operates as follows: first, the system extracts the audio waveform from the target 
video. The system's DNN extracts the utterance of a specific person from the audio file of the target video and diminishes other 
sounds. The system calculates the difference between the amplitude of the original sound waveform and that of the filtered sound 
waveform. The system judges that scenes with a difference larger than a threshold are where the target person does not speak and 
those with a smaller difference are where the target person utters. The scene, where the target person speaks, is displayed on the 
video timeline as a heat map based on the judgment result. 

 
Figure 3. Diagrams showing the computational structure 
of typical CNN and LSTM architectures. Red signifies 
convolutions or matrix multiplications. The computation 
of LSTMs at each timestep is dependent on the results 
from the previous timestep. This why it is difficult to 
implement LSTMs using parallel processing. 

 Class 
based 

Speaker 
separation Proposed 

 Relationship 
between 

separated 
sound sources 

Speech-
noise 

Speaker-
speaker 

Specific 
speaker-others, 
including noise 

and other 
speakers 

Table 1. Difference between the previous sound source 
separation and the proposed methods. 

 



(RNNs), including long short-term memory (LSTM) 
networks, for source separation. As shown in Figure 3, the 
limitation of RNNs is that it is difficult for them to perform 
parallel computations because the computations at each 
timestep depend on the results from the previous timestep. 
Many videos on the web are several hours long; thus, the 
lack of parallel computations causes a significant problem 
of the processing time being linearly proportional to the 
video length. Furthermore, as the authors of deep clustering 
[38] reported, the most serious problem is that the LSTM 
performs poorly in the sound source separation of speakers, 
who are not in the training data.  

To realize the proposed DNN, we devised a training dataset. 
As input data, we created the sound mixtures by merging 
the target speaker with the various environmental noises 
and the other speakers. We set clean speech of the target 
speaker as the ideal output value. By training the dataset, 
the proposed DNN was able to extract the speech of the 
target speaker and mute other sounds.  

We implemented Rethage's DNN model as written in their 
article. Figure 4 shows the visualization of the 
implementation. The model is trained to extract a specific 
speaker by inputting and outputting the waveform data as-is. 
Their approach incorporated some techniques used in 
WaveNet [46], such as gated unit, skip connections, and 
residual blocks. The DNN model features 30 residual 
blocks. The dilation factor in each layer increases in the 
range 1, 2, ..., 256, 512 by powers of 2. This pattern is 
repeated thrice (three stacks). Prior to the first dilated 
convolution, the one-channel input is linearly projected to 
128 channels by a standard 3 × 1 convolution to comply 
with the number of filters in each residual layer. The skip 
connections are 1 × 1 convolutions, which also feature 128 
filters. A rectified linear unit (ReLU) is applied after 

summing all skip connections. The final two 3 × 1 
convolutional layers are not dilated; contain 2048 and 256 
filters, respectively; and are separated by a ReLU. The 
output layer linearly projects the feature map into a single-
channel temporal signal using a 1 × 1 filter.  

Detection  

After the voice of a specific speaker is extracted by the 
sound source separation DNN, the algorithm for detecting 
the utterance scene of the speaker operates as follows: the 
algorithm segments the original and the filtered sound 
waveforms into certain window size, as shown in Figure 5. 
Then this algorithm calculates the difference between the 
amplitude value of both segments. This calculation aims to 
obtain the amplitude ratio of the original and filtered 
waveforms. The amplitude difference is obtained by the 
following equation:  

𝑑𝑖𝑓𝑓	 𝑑𝐵 = 	20𝑙𝑜𝑔,-
𝐴/01	(34565789)
𝐴/01	(;59<=4=>)

 

 
Figure 5. Visualization of segmenting the original and the 
filtered sound waveform into certain window size. 

 
Figure 4. Left: Schematic diagram of the sound source separation DNN model. The waveform data is used as-is for input and 
output without using the features of the frequency domain. Right: Implementation details of the sound source separation DNN. 



where 𝐴/01	(34565789)  represents root mean square of the 
amplitude of the original waveform segment and 
𝐴/01	(;59<=4=>)  represents root mean square of that of the 
filtered waveform segment. The difference value (dB) 
indicates how much the amplitude of the original sound is 
attenuated after that is filtered by the proposed DNN. A 
small difference value means that the amplitude of the 
original sound is not much attenuated and a large difference 
value means that the amplitude is greatly attenuated. 
Leveraging the proposed DNN, the amplitude in the scenes, 
in which the target person is speaking, does not become 
very small (the difference is small), while that in the other 
scenes becomes small (the difference is large) as shown in 
Figure 6. Therefore, the algorithm can judge that the scenes 
with the larger difference than a threshold are where the 
target person does not speak, while those with the smaller 
difference are where the target person utters. After the 
judgement, the window shifts to the next segments. The 
abovementioned operation is repeated until the window 

reaches the end of each waveform. 

The default value of the threshold is determined based on 
the average amplitude ratio of the original and filtered 
waveforms. This default value will be clarified by 
Experiment 1, which is described later.  

Interface 
After the speaking scenes of specific speakers are clarified, 
these scenes are displayed on the timeline as a heat map. 

 
Figure 8. The figures visualize how the judgment for detecting the utterance scenes of the specific speaker changes when the 
threshold changes. These line graphs are the same as in Figure 6. When the threshold becomes lower, the number of scenes 
judged to be where the target person speaks, is decreased. When the threshold becomes higher, the number of scenes judged to be 
where the target speaks, is increased. 

 
Figure 6. The line graph is plotted with the difference between the amplitude of the original sound waveform and that of the 
filtered sound waveform as the vertical axis, and time as the horizontal axis. The pale red marks represent actual utterance scenes 
of a specific person. The graph suggests that the amplitude difference in the utterance scenes of a specific person is smaller than 
that in the other scenes. 

 

 
Figure 7. Left: The amount of red marks is decreased by 
lowering the bar. Right: The amount of red marks is 
increased by raising the bar. 

 



The red marks on the heat map represent the detected 
scenes. The user can jump to the scene uttered by the 
specific speaker by clicking the red mark position. 

In addition, the user can change the threshold of the 
detection algorithm by operating the bar on the right side of 
the interface. Figure 7 shows the difference in the 
appearance of the heat map by operating the bar. Figure 8 
shows how the judgment for detecting the utterance scenes 
of the specific speaker changes when the threshold changes. 
The amount of red marks in the timeline is decreased by 
lowering the bar because the threshold becomes lower. 
Only the scenes with a higher probability as the utterances 
of the specific speaker can be displayed. The amount of red 
marks is increased by raising the bar because the threshold 
becomes higher. The scenes with a low probability as a 
specific speaker's utterance may be included in the heat 
map, but this prevents the user from missing the scene of 
the speaker's utterance.  

EXPERIMENT 1 
This experiment is to confirm how much the amplitude of 
the other sounds can be suppressed and how much that of 
the specific person's utterance does not be suppressed by 
the sound source separation DNN extracting only the 
specific person's utterance. The ideal result is that the target 
speaker’ utterance does not become very small but the other 
sounds become smaller. If the result is as described above, 
it can be said that the proposed DNN extracts only the 
utterance of the target speaker. 

We let the sound source separation DNN model learn with 
the following setup. Then, we calculated how much of the 
decibel (dB) of the other sounds could be suppressed using 
the test dataset. 

Setup 

dataset 
We created a training dataset of sound mixtures using 
noises from the Diverse Environments Multichannel 
Acoustic Noise Database (DEMAND) [47], and utterances 
from TIMIT corpus [48] and CMU ARCTIC corpus [49]. 
Figure 9 describes the visualization of creating the training 
dataset. The target speaker of the detection was supplied by 
the CMU ARCTIC corpus. The subset of the CMU corpus 
we used features two native English speakers, including a 
man (ID: RMS) and a woman (ID: SLT). Note that it is 
common in speech research such as voice conversion that 
the target speakers are two. We randomly chose 593 
sentences, which corresponds to 30 minutes, from each 
speaker for the training samples.  
We mixed the training samples of each target speaker with 
the noise sounds provided by DEMAND. The subset of 
DEMAND that we used provided recordings in 17 different 
environmental conditions, such as in a park, a bus, or a cafe. 
Ten background noises were synthetically mixed with the 
target speech for training, while seven background noises 

were used for testing. All training samples of each target 
speaker (593 sentences) were synthetically mixed with each 
ten noises type at each of the following single-to-noise 
ratios (SNRs): 0, 5, 10, and 15 dB. Note that the smaller the 
dB value, the bigger the noise value relative to the speech.  
We also mixed the training samples of each target speaker 
with different speakers from the TIMIT corpus, which 
features 24 English speakers, including the following 
various dialects: New England, Northern, North Midland, 
South Midland, Southern, New York City, Western, and 
Army Brat. We synthetically mixed the all training samples 
of each target speaker with a TIMIT speaker at each SNRs 
(0, 5, 10, and 15dB). Additionally, we created new corpus 
of two-speaker mixtures using utterances from the TIMIT 
corpus. The mixtures were mixed with all training samples 
of each target speaker at each SNRs. As a result, the 
number of all training data per target speaker was 28464 
sentences. 

Learning  
We let the sound source separation DNN learn with the 

 
Figure 9. Visualization of creating training dataset. 593 
sentences * 12 types of other sounds *4 type SNRs = 28464 
sentences. 

 
Figure 10: Let the DNN learn to output clean target speech 
from the target speech with various sound including noises 
and other persons’ voice. 



above training dataset at 16 kHz, as shown in Figure 10. 
The loss function we used was the same as Rethage's [31]. 
The learning condition was as follows: a learning rate was 
0.001, a batch size was 60, an early stopping epoch was 4 
and the GPU we used was NVIDIA TITAN X Pascal. 

Test 
We randomly chose 100 sentences from the target speaker, 
which does not include the training dataset, for test samples. 
The test samples were synthetically mixed at each of the 
following SNRs: -10, 0 and 10dB, with the seven test-noise 
types from the DEMAND, one speaker, and two speaker 
mixtures from the TIMIT corpus. Furthermore, we used the 
noise only and target speaker only source, as the test dataset. 
We inputted 100 files of each source type (noise only, 
sound mixtures at -10, 0, 10 dB, and target only) into each 
learned DNN and calculated the average amplitude 
difference between the output waveform and the input 
waveform.  

Result  
Table 2 shows the results. What the average difference is 
larger means that the input speeches were suppressed more. 
The result demonstrates the amplitude of target speech does 
not become very small, while that of the other sounds 
becomes small. In addition, the result suggests that since 
the DNN decreases the amplitude of input waveform by 
about 20 dB at the maximum and about 0 dB at the 
minimum, it is appropriate to set the threshold during that 

interval.  

EXPERIMENT 2 
This experiment is to confirm how accurately the proposed 
system can detect the utterance scene of a specific person. 
We let the system perform the task of detecting the target 
speech included in the 10 minutes’ sound. 

Setup  
 The 10 minutes’ sound was created by connecting 
DEMAND and TIMIT corpus which not in the training 
dataset. We chose the target speech randomly at 100 
sentences and superimposed on that 10 minutes’ sound. The 
SNRs of the target speech to 10 minutes’ sound was chosen 
randomly from 0, 5, 10 and 15 dB. We used the sound 
source separation DNN learned in Experiment 1. The 

 
True condition 

Actual utterance scene of a 
specific person 

Not utterance scene of a 
specific person 

Predicted 
condition 

System predicts “utterance scene of 
a specific person” True Positive False Positive 

System predicts “not utterance scene 
of a specific person” False negative True negative 

Table 3. Contingency table of true positive, false positive, false negative and true negative. 

 
Figure 11. Visualization of predicting whether or not the 
scenes include the target speaker’s utterance. The system 
performs prediction for each segment of the waveforms. 

 

 Input source type 

Noise only -10 dB 0 dB 10dB Target only 

Average amplitude 
difference (dB) 

ID: RMS 19.77 dB 8.75 dB 3.12 dB 0.64 dB 0.25 dB 

ID: SLT 22.99 dB 11.06 dB 3.20 dB 0.84 dB 0.45 dB 

Table 2. Results of calculating the average difference between the output waveform and the input waveform. Top row represents 
the input source type: noise only, mixtures at -10dB, 0dB, 10dB, and target speech only. What the average amplitude difference is 
larger means that the input speeches were suppressed more. The result shows that the smaller the amplitude of the target speech 
included in the input source is, the larger the average amplitude difference becomes, and demonstrates the amplitude of target 
speech does not become very small while that of the other sounds becomes small. 

 



window size of the detection was 0.1 s and the window’s 
step length was also 0.1 s. We changed the threshold every 
5 dB (-5, 0, 5, 10, 15, 20 dB) for confirming whether the 
result changes.  

We used the following four events for test: True positive 
(TP), False Positive (FP), False Negative (FN), and True 
Negative (TN). Table 3 shows the definition of each event. 
Based on the four events, the following ratios were 
calculated: the accuracy and the precision. Accuracy and 
precision are formulated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 % = 𝑇𝑃 + 𝑇𝑁 	/	(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 % = 𝑇𝑃	/	(𝑇𝑃 + 𝐹𝑃) 

The system performs prediction for each segment of the 
waveforms as shown in Figure 11. When the middle of the 
segment is included in the actual utterance timing of a 
specific person, the true condition is “Actual utterance 
scene of a specific person” as shown in Figure 12.  

Result 
Table 4 shows the results. The result shows that the 
accuracy is 83% and the precision is 92% in the best case. 
The accuracy is higher when the threshold is around 10 to 
15 dB and the precision is higher when the threshold is 
around 0 to 5 dB for each target speaker.  

FUTURE WORK 

User study 
In this paper, we did the basic performance evaluation of 
the proposed system and did not do user study. We need to 
perform a user study and verify that the users can find the 
scenes they want to hear accurately and quickly.  

We will need to refine the interface based on the user study. 
One alternative interface is to display the utterance scenes 
of a specific person as a graph in a video timeline. We will 
confirm how usability changes by changing the interface. 

Improving accuracy 
We need to explore a special DNN structure for extracting a 

 
Threshold 

-5dB 0dB 5dB 10dB 15dB 20dB 

Accuracy 
ID: RMS 48% 59% 73% 79% 78% 72% 

ID: SLT 58% 67% 79% 83% 81% 74% 

Precision 
ID: RMS 83% 88% 89% 85% 78% 69% 

ID: SLT 88% 92% 91% 85% 81% 74% 

Table 4. Result of the accuracy and precision for each target speaker 

 
Figure 12. Upper: Case where the middle of the segment is included in the actual utterance timing of specific person. Lower: Case 
where the middle of the segment is not included in that timing. The green line represents the middle of the segment. The pale red 
marks represent actual utterance scenes of a specific person. When the middle of the segment is included in the actual utterance 
timing of a specific person, the true condition is “Actual utterance scene of a specific person”. 



specific speaker more accurately. If we find this new 
structure, we could make the system improve the accuracy 
of the Experiment 2 task.  

CONCLUSION 
We propose a system that detects scenes, where a specific 
person speaks in the video, and displays them in the 
timeline. This system enables users to skip to the timeline 
they want to hear by detecting scenes in a drama, talk show, 
or discussion TV program, where a specific speaker is 
speaking. 

We conducted two experiments on the proposed system. 
One was to confirm how much the amplitude of the other 
sounds can be suppressed and how much that of the specific 
person's utterance does not be suppressed by the sound 
source separation DNN extracting only the specific person's 
utterance. The result showed that the smaller the amplitude 
of the target speech included in the input source was, the 
larger the average amplitude difference between the input 
and output waveform became. That is, we got the result as 
expected. 
The second experiment was to confirm how accurately the 
system can detect the utterance scene of a specific person. 
The result showed that the accuracy was 83% and the 
precision was 92% in the best case. 

This system can be applied to voice services, like Podcast, 
Spotify, and SoundCloud. With the advent of smart 
speakers, such as Amazon Echo and Google home, audio 
contents are likely to increase along with the importance of 
searching timelines based on audio content. 
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