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Abstract. Many water boiler manufacturers are not able to detect the
occurrence of failures in the machines they produce before they can pose
inconvenience and sometimes danger for costumers and workers. More-
over, the number of boilers that have to be monitored, are many times in
the range of the thousands or even millions, proportionaly to the num-
ber of costumers a company possesses. The detection of these failures
in real time, would provide a significant improvement to the perception
that consumers have of a certain company, since, if these failures occur,
maintenance services can be deployed almost as soon as a failure hap-
pens. In this paper, an application prototype capable of monitoring and
preventing failures in domestic water boilers, on the fly, is presented.
This application evaluates measurements which are performed by sen-
sors within the boilers, and identifies the ones that greatly differ from
those received previously, as new data arrives, detecting tendencies which
might illustrate the occurrence of a failure. The incremental local outlier
factor is used with an approach based on the interquatile range measure
to detect the outlier factors that should be analysed.

Keywords: Incremental Local Outlier Factor, Resilient Distributed Dataset,
Outlier Detection

1 Introduction and Background

One of the major problems faced by manufacturers of domestic equipment and
components of any kind, is the lack of ways to detect the occurrence of failures
in these machines before they can pose an inconvenience and sometimes danger
for costumers and workers. Specifically, the detection of these instances in real
time, would provide a significant improvement to the perception that a consumer
has of a certain company, since, if these failures occur, maintenance services can
be deployed almost as soon as a failure happens. Ideally, by using predictive
techniques, the detection of these issues before they happen by analyzing the



metrics that define the behavior of a certain component, becomes a desirable
goal. Another issue faced by many companies, especially the ones that provide
products for a household, is the fact that the number of machines that have to
be monitored, are many times in the range of the thousands or even millions.
This poses a problem, since the amount of data that has to be analyzed can be
in the order of several Gigabyte, and needs to be processed in mere seconds.

In the specific case of domestic and industrial water boilers, as well as other
heating equipment, the nature of these failures has to do with disruptions in
the operation of these machines, in both a domestic and industrial context.
In order to overcome this monitoring problem, sensors can be installed within
water boilers, in order to record data related to several parameters and how
they change over time. The main objective for this paper, therefore, was the
development of an analytical backend application, capable of processing streams
of data from measurements from boiler sensors, in real time, detecting outliers
within them, which signify the occurrence of failures in a water boiler in different
contexts. After this detection has been achieved, an analysis on the components
responsible for that failure has to be done, ideally also in real time, so that this
information can be passed on to maintenance services, so they act to solve these
issues. It should also be able to deal with significant amounts of data in a short
amount of time from different equipment/boilers.

After this introduction, a list of different implemented approaches related
to outlier detection in boilers is mentioned in section 2. Section 3 presents the
proposed application for outlier detection in data streams by analyzing its in-
dividual constituent parts, as well as an overview of an offline phase to assert
the relevance of the different parameters. Finally, the results for this application
performance are analyzed in section 4, first regarding the used methodology for
outlier detection in data streams, then the overall advantages of using the pro-
posed module for data processing, and finally the results of the offline phase and
the knowledge added to the application derived from it. In section 5, conclusions
taken from these results are presented, as well as suggestions for future work.

2 Related work

A considerable amount of work has been done on the topic of fault detection in
several types of boilers. In [1–3], different cases of boiler faults and data mining
techniques for their detection are presented. The biggest limitation for these
cases however, is that none of these deal with outlier detection in data streams,
or data sequences that arrive continuously and have to be analyzed in a real
time manner. All of these approaches take time to assemble data, analyze it in
order to create training datasets and only then construct a model capable of
classifying or clustering boiler measurements. Therefore, even if the data has
a temporal component, it is not analyzed in an on the fly manner. The work
presented in [4] shows an interesting and relevant difference. It deals with the
detection of fouling problems that lead to boiler pluggage, which in turn causes
unscheduled shutdowns, for which a temporal data analysis is necessary. This



is a situation where the order of the data is relevant for the detection of the
failure. However, once again, this classification is done in a static context after
retrieving the necessary measurements.

Due to this lack of cases for real time outlier detection in boilers, a more
general approach was taken, analyzing outlier detection in data streams for data
from different contexts, as presented in [5, 6]. From the analysis of the available
approaches that were implemented for data stream analysis, it can be seen that
there is a much greater variety of supervised learning approaches. For this par-
ticular case, the domain of the boiler measurements, unsupervised technique is
required since no labeled data is available. Such cases are presented in [7, 8], the
last of which will be later discussed.

3 Proposed Methodology

In this section, an overview of the entire application is provided. Figure 1 ilus-
trates the different phases within the application.

Fig. 1. High level application architecture

3.1 Data Stream Processing

The dataset used to test this application consisted on a collection of measure-
ments received by the sensors within a domestic water boiler, collected over a
period of 24 hours, and in which the parameters were controlled at will, in order
to simulate different types of real world situations, namely equipment faults.
Each observation was provided in JavaScript Object Notation (JSON) format,
and it contained four kinds of attributes:

– Numerical: these are continuous, quantitative values supplied by the water
boiler sensors, which indicate physical measurements, for example the water
temperature within the boiler at a specific point in time;



– Categorical: these on the other hand, are attributes that have qualitative
values, and indicate the state of water boiler components, work modes that
the boiler might have (for example if at a certain point in time, the boiler
is being used to heat water from a shower, or if it is being used for central
heating) and also general descriptive information about the characteristics
of the boiler, operation time, as well as many other parameters;

– Timestamp: a especially important attribute since messages did not arrive
at fixed time intervals;

– Boiler ID: an identifier of the water boiler the present observation belongs
to. For this project only one water boiler was available, so the ID was unique.

Another interesting characteristic of these data points is that each JSON mes-
sage is only sent if some measurement value changes showing only the changed
attributes. If, for example, the flame which warms up the water within the boiler
was turned off at time t0, and then turned on at time t10, in the messages from
[t1, t9], the attribute relative to the state of this flame would not show up in the
messages.

Because the domain of these boiler measurements is only known by a small
group of people, and the water boiler measurements arrive in a data stream
like fashion, it is not possible to present a throughout list of all specific at-
tributes within these categories. Since each message only shows measurements
that change, or that are different from previous ones, there is always a chance
that a new attribute might show up.

The continuous reception of JSON messages was simulated with a server that
send JSON messages at specified time intervals via a local TCP/IP connection,
to a single port. That is, a socket connection was created in the local machine,
in order to send the data. It is important to notice that, in order to preserve
simplicity, JSON messages were not sent according to their timestamps, as that
would require additional calculations for the exact times that were not partic-
ularly relevant for this project. The time interval for these messages could be
constant and controlled by the user, or randomized, depending on what tests
had to be performed.

The algorithm chosen to perform the failure detection procedure in the de-
scribed boiler data was the Incremental Local Outlier Factor (LOF) [8]. Its main
idea is to assign to each data record a degree of being an outlier, by computing
the local density for each data point. This degree is called the local outlier factor
(LOF) of a data record. Data records (points) with a high LOF have local den-
sities smaller than their neighborhood and typically represent stronger outliers,
unlike data points belonging to uniform clusters that usually tend to have lower
LOF values.

The proposed incremental LOF algorithm computes LOF values for each
data record inserted in a sliding window with a fixed size and constantly updated
values, and instantly determines whether the inserted data record is an outlier.
Specifically, it specifies two different situations:

(i) If LOF (q) < 1, then q is an inliner
(ii) If LOF (q) � 1, then q is an outlier



As the reader may deduce, the cases when LOF values are equal or just
slightly bigger than 1 cannot be accurately labeled by relying solely on the
incremental LOF, since it only provides a clear binary distinction for the cases
above. The solution for this problem is addressed later on.

Despite this algorithm provides a simple yet effective way to detect outliers
from dynamic data, it does present some flaws which need to be addressed. The
first challenge is faced when using this algorithm with the provided data. Since
each JSON message has both numeric and categorical attributes, the Euclidean
Distance alone does not work because it does not deal with categorical attributes.
Instead, the Overlap Distance Measure [14] is able to deal with categorical at-
tributes. It is defined by the following equation:

Overlap distance =

{
1 if xk = yk
0 otherwise

(1)

Since in a distance measure as different the values are as larger the distance
is, the distance measure had to be changed for this particular application: if the
values are the same, 0 is given as a distance measurement, otherwise 1 is given.
For a measurement with both numeric and categorical attributes, the Euclidean
and the Overlap distances, respectively, are computed and added together [14].

Another major limitation for the incremental LOF algorithm is the fact that
outliers cannot usually be well evaluated if LOF values are very close to 1,
because there is a certain degree of subjectiveness depending on the window
values that are presented. For example, a 1.2 value might be an outlier in a
certain window, but it might not be one in a different window. In order to
address this limitation, the notions of boxplot and interquartile range were used,
as defined in [10].

The interquartile range (IQR), is the difference between the values of the
third (Q3) and first (Q1) quartiles and it can be used to detect outliers [10].
This is done by multiplying this value by one and a half, and considering every
data point from the data set that is either bigger than Q3 +1.5×IQR or smaller
than Q1−1.5×IQR. Since in the incremental LOF algorithm outliers only exist
for high values, the unique condition that must be verified is

Q3 + 1.5 × IQR (2)

Armed with these conclusions, labeling data points based on their LOF values
becomes trivial:

1. The LOF values within a given window W are sorted, and the median (Q2)
is determined;

2. Q1 and Q3 are determined as the 25% percentile and 75% percentile values
in the window, respectively;

3. The IQR can then be calculated by Q3 −Q1;

4. Data points are then labeled as outliers, if their LOF values are bigger then
Q3 + 1.5 × IQR



In order to apply this algorithm in a distributed scenario, in which measure-
ments from a large number of boilers need to be processed at the same time,
a suitable data processing engine has to be used. Spark is a fast and general-
purpose cluster computing system for large-scale data processing, and was chosen
to process the measurements from water boilers. It provides high-level APIs in
Java, Scala, Python and R, and an optimized engine that supports general exe-
cution graphs [11]. The main abstraction which allows for distributed computing
of large datasets is a structure called Resilient Distributed Dataset (RDD). By
itself, Spark can only process static data and thus a specialized module to deal
with data streams had to be used for this particular case. Spark Streaming is
a micro-batching streaming module, which differs from traditional continuous
processing of streams by its use of Discretized Streams. In simple terms, one can
define a D-Stream as a collection of RDDs, in which each RDD possesses the
data received by the application during a fixed batch time interval [12].

3.2 Data Storage and visualization

Once the processed data points are properly labeled, in order to make them
more interpretable for the user, they were stored in a MySQL Database, so
that a visual representation of all data points can be provided in a near real
time fashion (Figure 2). This way, outliers are more intuitive and observable
for front-end users. Using the Node.js library provided by JavaScript server side
applications, a server was created, with the intent of extracting the data points
from the referred MySQL database. The extracted messages and respective labels
are then requested to the Node.js server by a client, in order to graphically
represent the data in our browser, at a specified local host port. The library
used to achieve a real time graphical representation was D3.js.

Fig. 2. Real time Visualization Example



3.3 Offline Learning

Because the knowledge of the domain was scarce, there was no information about
which specific attributes were responsible for the results of the incremental LOF
algorithm.

This offline learning phase uses the knowledge gained from the outlier detec-
tion phase, in order to determine which attributes are more significant in the
labeling of the data points.

The Classification And Regression Tree (CART) algorithm [13] was chosen to
determine which attributes were more significant for outlier labeling. However,
one of the issues in training a decision tree classification model is the fact that it
can be a lengthy process depending on the number of variables that need to be
considered. This problem was mostly solved by using the Apache Spark MLlib,
a library which uses the Spark engine to perform computations and a set of
machine learning algorithms in parallel, thus reducing the model computation
time to a few seconds.

4 Analysis of incremental LOF values

As shown in Table 1, the values of the incremental LOF algorithm can change
greatly depending on the parameters. The left and central cases analyze the same
10 LOF values, for different parameters, and the last case compares the first 10
data points in 3 consecutive windows. Looking at both the left and central cases,
it becomes apparent that it tends to be a stabilization of the LOF values as the
parameter values increase. In the case of N, the larger the window size, the more
faithfully statistics can be derived for the whole data stream, and thus differences
between data points become less significant, unless there is a great discrepancy
between the measured attributes. When the k nearest neighbor is increased, the
resulting LOFs do not follow a clear tendency.

Table 1. Columns 1-3 present different LOF values for different K values and N=500;
Columns 4-6 present different LOF values for different N values and K=10; columns
7-9 present LOF values for consecutive time intervals, N=500 and K=10.

K; N=500 K=10; N N=500; K=10

K=5 K=8 K=11 N=100 N=500 N=1000 T0 T1 T2

1.440 1.313 1.293 1.132 1.287 1.395 1.287 1.168 0.891
1.244 1.037 1.077 1.059 1.055 0.965 1.055 1.006 0.907
1.103 0.902 0.916 0.962 0.886 0.769 0.886 0.969 0.907
1.041 0.854 0.887 0.961 0.860 0.763 0.860 0.969 0.902
1.046 0.855 0.887 0.950 0.860 0.747 0.860 0.966 0.972
1.150 0.920 0.887 0.950 0.923 0.787 0.923 1.016 0.962
1.259 1.071 0.943 0.931 0.993 0.809 0.993 1.011 0.903
1.228 1.010 0.938 0.915 0.975 0.819 0.975 0.973 0.877
1.102 0.891 0.948 0.929 0.909 0.855 0.909 0.955 0.877
1.049 0.858 0.929 1.004 0.881 0.829 0.881 0.956 0.915



4.1 Outlier Classification Results

As discussed in section 3, LOF values are classified by using the Interquartile
Range concept for each sliding window of values. Figure 3 illustrates a series of
boxplots for different windows created using the Minitab Sofware, one with only
normal values, and another with both normal and outlier values. The window
size N is of 500 and the nearest neighbor k value is of 10.

Fig. 3. Boxplot for LOF values with and without outliers.

Observing Figure 3 it is possible to notice the subjective nature of LOF
values from time instance to time instance. Each boxplot contains the value of
the median for each of the different windows, as well as the extreme values of the
box, i.e., the values of the first and third quartiles. Table 2 presents the values
of these three statistics, as well as their interquartile ranges for three different
box plots.

Table 2. Statistics for different boxplots

First Quartile Median Third Quartile Interquartile Range Labeling Limit

0.904 1.003 1.147 0.243 1.512
0.967 1.034 1.139 0.172 1.397
0.898 0.991 1.126 0.228 1.467

By knowing these parameters, it becomes quite simple to establish a labeling
value limit by using Equation 2. The LOF values at T0 are shown in Table 3.



Table 3. Sample of classification for 6 LOF values

Measurement Index 121 122 123 124 125 126
LOF Values 0.8451 0.8456 0.8448 0.8997 1.0726 1.6405
Outlier Label 0 0 0 0 0 1

4.2 Apache Spark Streaming Performance

Having presented the results from the used outlier detection algorithm in a data
stream, it is now time to look at how the Spark Streaming module behaved,
when it comes to implementing the incremental LOF algorithm, by analyzing
its processing time for multiple cases.

Table 4. Sparks Performance for Different incremental LOF parameters

Case Average Processing Time Average Scheduling Delay

N=50;K=5 116 ms 0 ms
N=500;K=11 > 800 ms > 1min

By looking at these results, it is clear that data processing for algorithms of
lower complexity works better in the Spark Streaming Module. In the case where
N=50 and K=5, the average scheduling delay in the processing of boiler mea-
surements, that is, the time each message needs to wait before it gets processed,
is pretty much zero. This means that the chosen batch interval of 1 second was
sufficient to handle the algorithm computations. In the case where N=500 and
K=11 though, as shown in Table 4, it becomes evident that data processing is
not viable, due to the fact that the processing time of each JSON message is
much larger than the batch interval.

Specifically the processing time for N=500 and K=11 is exactly two times
bigger than that of the defined batch interval. This of course causes an increasing
scheduling delay because JSON messages arrive faster than the time that Spark
Streaming takes to process them.

The reason why the data processing time takes this long for bigger values
of the N and k parameters, is mainly because of the sequential nature of the
incremental LOF algorithm. Since all the operations depend on themselves, one
operation cannot be completed without concluding the previous one, which de-
feats the paradigm of data parallelization that Spark uses. Even though a lot of
partitions might be formed, they cannot be executed in parallel effectively, be-
cause one specific operation can create a bottleneck, and because all operations
have to be done in sequence, the processing time is completely dependent on
that bottleneck.

As can be seen in Table 5, in the case in which the input is kept at 1 record
per second, the number of partitions within each RDD is not that significant.
Because of this fact, having more cores available for data processing is irrelevant,
since there are not enough partitions to divide among the nodes, resulting in



Table 5. Sparks Performance for Different Input Volumes

Case Average Processing Time Average Scheduling Delay

1 Message 1 core: 107 ms 1 core: 0 ms
Per second 3 cores: 110 ms 3 cores: 0 ms

5000 Messages 1 core: 370 ms 1 core: 0 ms
Per second 3 cores: 283 ms 3 cores: 0 ms

a very similar performance. This situation changes when the input number is
increased, namely, data processing becomes significantly faster when all cores
from the local machine are used with a difference of about 90 ms when there are
5000 input messages.

It is important to notice that because Spark was deployed in local mode, the
advantages of data parallelization are smaller than executing it in a distributed
environment with multiple JVMs and nodes.

Another relevant aspect to take into account is that, because only measure-
ments from a single water boiler were provided, the parallelization by source
suggested in section 3 and the possible benefits it would have for the processing
speed were impossible to test in this use case.

4.3 Decision Tree Classifier Analysis

As discussed in section 3, a key interest for this application, would be to deter-
mine what are the most significant attributes from each measurement, that lead
to their classification as being outlier or normal. In order to accomplish this, a
Classification And Regression Tree was built as shown in Figure 4 and Table 6.

Fig. 4. Sample of the obtained Decision Tree Classifier for the boiler data

Some interesting and meaningful variables were deemed relevant, like the
primary temperature in the water boiler. Ultimately, the results of this decision
tree model can only be evaluated accurately if one possesses labeled measure-
ments in order to test the model predictive capacity. Unfortunately, there were
no labeled measurements available to do it.



Table 6. Relevant attributes for data classification

Attribute Index Attribute Meaning

7 Boiler power in Watts
8 Primary water boiler temperature
9 Primary water boiler default temperature
50 Operation time for water heating
52 Hot water heating start number
54 Hot water outside temperature
61 Pump operation mode

5 Conclusions and Future Work

The goal of this paper was to develop a backend application capable of detecting
outliers in data stream measurements from sensors of multiple water boilers.

Regarding the use of the incremental LOF algorithm, the overall result was
fairly reasonable, considering that there was no labeled data available. The de-
veloped prototype is able to detect both single and collective outliers in a time
interval of one second, if the window size and k neighbors is not too high. The
subjectiveness of the original incremental LOF values was solved by continuously
determining statistics based in boxplots for each window of values, for each new
measurement that arrived.

Apache Spark and Spark Streaming provide an easy, compact syntax to per-
form map reduce operations. An analysis was conducted on the effects of the
applications level of parallelism, which showed the potential for future work in
a distributed computation environment. Because there were only measurements
from one water boiler, parallelization by data source was not achieved, but nev-
ertheless data was divided into partitions successfully, proving that it is possible
to implement this in future projects.

The offline phase was also a very relevant step for understanding the domain
of the measurements, and provide insights on which parameters from the sensor
measurements were more relevant for outlier classification.

The proposed algorithm was too complex to process measurements from wa-
ter boilers, not being fast enough when the number of samples and nearest
neighbors in the incremental LOF algorithm is large. This is due to the sequen-
tial nature of incremental LOF. To adapt it to parallel processing is a promising
research line.

Another challenge is to use labeled test datasets to evaluate the performance
of this work. Approaches for outlier detection using supervised learning should
also be tested.

Regarding the Apache Spark engine and the Spark Streaming module, since
all tests were performed in local mode, the data processing speed was reasonable.
However, Spark could be deployed in a distributed computation scenario with
multiple nodes (JVMs) and even more cores.

The offline phase could be done online using the Very Fast Decision Tree
algorithm instead of the CART algorithm that was used in this work.
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