
Towards a Theory about Continuous

Requirements Engineering for Information Systems

Bert de Brock

University of Groningen, Faculty of Economics and Business

PO Box 800, 9700 AV Groningen, The Netherlands
E.O.de.Brock@rug.nl

Abstract. The problem we address in this paper is the question how to come from

initial user wishes to a running system in a straightforward, transparent, modular,

and agile manner. In particular, we want to develop a sound underlying theory

that grounds engineering approaches that tackle this broad problem (the complete

development path for functional requirements, from initial user wishes up to a

running system). We develop a theory that crosses the boundaries of several

(sub)disciplines, e.g., requirements engineering, machine theory, and (database)

systems development.

Keywords: user story, use case, system sequence diagram, information machine,

implementation, ANSI-SPARC three-level architecture, development path,

incremental, continuous, requirements engineering, information system

Overview

Section 1 recalls the background notions user story (US), use case (UC) and system

sequence diagram (SSD). Section 2 introduces the notion of an information machine

(IM): An IM can receive an input and will then produce an output and might change its

state. Section 3 depicts a transparent development path for functional requirements,

from USs via UCs and SSDs to an IM. Section 4 discusses some aspects of incremental

requirements engineering for information systems and then Section 5 treats

continuous requirements engineering for information systems.

An information machine is a blueprint, and can have many different

implementations, as Section 6 points out. That section also shows the relation with the

fundamental ANSI-SPARC three-level architecture, but now extended from

databases to information machines in general: USs, UCs and SSDs belong to the

external level, an IM belongs to the conceptual level, and implementations of an IM

belong to the internal level.

1 User Stories, Use Cases and System Sequence Diagrams

We first recall some background notions (but in the words as we want to look at them).

Informally speaking, a user story (US) is a ‘wish’ of a (future) user which the

system should be able to fulfil (see [1] for instance), e.g., the wish ‘Remove a student

with a given student number’ of a university employee.

Copyright © 2018 for this paper by its authors. Copying permitted for private and

academic purposes.

A use case (UC) is a text in natural language that describes the steps of a typical

usage of the system (see [2] for instance). For the user story ‘Remove a student with a

given student number’ the use case could be as follows:

1. A university employee (the ‘user’) asks the system to remove a student with a

given number

2. The system removes the student info (if the student was known to the system)

3. The system informs the employee that the system did it (or that the student

number was unknown)

Initially, use cases can be produced by (future) users of the system, domain experts

or (other) staff members, or officials from the organization for which the system has to

be built. Initially written use cases might need to be improved (sharpened/enhanced/

detailed/completed) in order to clarify what the system should do exactly (and when).

E.g., our sample use case could more clearly distinguish between the two cases whether

or not the student was known to the system. A (business) analyst might help to produce

sharpened versions of initially written use cases.

A system sequence diagram (SSD) of a use case is a ‘diagram’ that depicts the

interaction between the primary actor (user), the system, and its supporting actors (if

any), including the messages between them (see Chapter 10 of [3] for instance). An

SSD is a kind of stylised UC that makes the prospective inputs, state changes, and

outputs more explicit. Although SSDs can be drawn in much fancier ways (e.g., see [3-

4]), we will only draw their bare essence. For example, for (the refined version of) the

use case just given, the (stylized) SSD could look as follows:

o User → System: RemoveStudent(<number>);

o if the student number is known to the system

 then System → System: remove the student info;

 System → User: “Done”

 else System → User: “Unknown student number”

We distinguish 3 types of basic interaction steps (each present in the example above):

User → System: Elucidates the inputs the system can expect (input step)

System → User: Elucidates the outputs the system should produce (output step)

System → System: Elucidates the transitions the system should make (transition step)

2 Formal Modelling: Information Machines

For our next development step, we need the notion of an information machine (IM):

An information machine is a 5-tuple (I, O, S, G, T) consisting of:

o a set I (of inputs)

o a set O (of outputs)

o a set S (of states)

o a function G: S x I → O, mapping state-input pairs to the corresponding output

o a function T: S x I → S, mapping state-input pairs to the corresponding next state

The notation f: X → Y used above, indicates that f is a function with X as its domain

and its range being a subset of Y. The notion of information machine is equivalent to

https://en.wikipedia.org/wiki/Finite_set

the notion of data machine in [5]. It is a – not necessarily finite – Mealy machine without

a special start state (see [6]).

G is called the output function of the IM and T the transition function of the IM.

We could equivalently have chosen for one (combined) function: F: I → (S → S x O)

In that case, each input leads to a function assigning a ‘new’ state and an output to an

‘old’ state.

If the system also communicates with supporting actors, say other systems, then we

still distinguish three types of basic interaction steps, but with (primary) ‘User’

generalized to ‘Actor’, where an actor can be any other system. Expressed in terms of

an information machine:

Actor → System: Elucidates the minimally needed set I of inputs of the IM

System → Actor: Elucidates the minimally needed set O of outputs and

 the output function G of the IM

System → System: Elucidates the minimally needed set S of states and

 the transition function T of the IM

For instance, our earlier ‘Remove student’ example would lead to inputs of the form

RemoveStudent(<number>) and to the outputs “Unknown student number” and

”Done”. Suppose that each state s S contains as a component a student table STUD

with an attribute NUMBER, then the condition that a student number n is known to the

system translates to n { t(NUMBER) │ t s(STUD) }.

When n { t(NUMBER) │ t s(STUD) } and the input i = RemoveStudent(n),

then the output G(s, i) will be “Done” and the student table in the new state T(s, i) will

be { t s(STUD) │ t(NUMBER) n}. In the other cases output G(s, i) will be

“Unknown student number” and the new state T(s, i) will be s, i.e. stay the same.

3 From User Stories via Use Cases and SSDs to an IM

Starting from the USs and the UCs via their corresponding SSDs we can define an IM.

In a general scheme (where the arrows indicate what is input for what):

US1 US2 USn

↓ ↓ ↓

UC1 UC2 UCn

↓ ↓ ↓

SSD1 SSD2 SSDn

↘ ↓ ↙

User stories: Short texts in natural language, each describing a

‘wish’ of a (future) user which the system should be able to fulfil

Use cases: Texts (several sentences) in natural language, each UC

describing for one US the steps in a typical usage of the system

System sequence diagrams: Diagrams, each depicting for 1 UC

the interaction between user, system and its supporting actors,

and the messages between them

Information Machine: Formal/Conceptual model of the system,

including the messages between the system and its environment

Fig. 1. The relation between user stories, use cases, system sequence diagrams and an IM

Information Machine

4 Incremental Requirements Engineering for Information Systems

Information machines in practice are really sophisticated, i.e., supporting a lot of use

cases, resulting in very large input sets, output sets, state sets, and with complicated

output functions and transition functions. Moreover, in practice such machines are often

under continuous development (‘under construction’), just as a city for instance.

Instead of defining and developing such a sophisticated machine in one go (‘big

bang’), including ‘all’ functionality that is needed – as might be suggested in Section 3

– since a few decades such machines are often defined and developed incrementally,

i.e., starting with a simple, small version and extending/adapting it in several small steps

into larger, more sophisticated versions.

Figure 2 indicates how an initial version of an IM might develop into newer

versions. Note that, e.g. due to changing requirements, existing US/UC/SSD-triples

might be adapted. (The “ + “ in US1+ etc. indicate adaptions of earlier versions.) So, we

see the addition of new US/UC/SSD-triples but also the adaption of earlier versions.

User Stories

Use Cases

SSDs

Information

Machines

US1 US2

↓ ↓

UC1 UC2

↓ ↓

SSD1 SSD2

↘ ↙

 IMv1 →

⁞

⁞

⁞

⁞

⁞

⁞

⁞

→

US3

↓

UC3

↓

SSD3

↓

IMv2

⁞

⁞

⁞

⁞

⁞

⁞

⁞

→

US1+ US3+

↓ ↓

UC1+ UC3+

↓ ↓

SSD1+ SSD3+

↘ ↙

→ IMv3 →

⁞

⁞

⁞

⁞

⁞

⁞

⁞

→

US4

↓

UC4

↓

SSD4

↓

IMv4

Fig. 2. Example of how an initial version of an IM might develop into newer versions

Figure 2 already indicates some structure in ‘incremental requirements engineering’:

Via 1 or 2 USs, UCs and their corresponding SSDs (and the previous IM-version) we

can define an initial (resp. next) version of the IM.

In Figure 3 each of the four basic functions known in the literature as CRUD

(Create, Read, Update and Delete), a well-known acronym originating from [7], is

illustrated by a user story.

Name Alternatively used names Some sample user stories

Create Register, Add, Enter Register a new student with a given name, address, (etc.)

Read Retrieve, View, Show, Search Retrieve the info of all students with a grade average > 9

Update Change, Modify, Edit, Alter Change the name of a student with a given student number

Delete Remove, Destroy, Deactivate Remove a student with a given student number

Fig. 3. The well-known CRUD-functions illustrated by user stories

We now treat incremental development of functional requirements for an information

system more generally. Figure 2 can be generalized easily: Via a few USs, UCs and

their corresponding SSDs (and the previous version of the IM) one can define an initial

(resp. next) version of the IM:

User Stories

Use Cases

SSDs

Information

Machines

US … US

↓ … ↓

UC … UC

↓ … ↓

SSD … SSD

↘ … ↙

 IMv1 →

⁞

⁞

⁞

⁞

⁞

⁞

→

US … US

↓ … ↓

UC … UC

↓ … ↓

SSD … SSD

↘ … ↙

→ IMv2 →

⁞

⁞

⁞

⁞

⁞

⁞

→

US … US

↓ … ↓

UC … UC

↓ … ↓

SSD … SSD

↘ … ↙

→ IMv3 →

⁞

⁞

⁞

⁞

⁞

⁞

→

…

Fig. 4. How an IM can incrementally develop into newer versions

5 Continuous Requirements Engineering for Information Systems

Now we are heading towards continuous development of functional requirements. We

note that such an incremental development of functional requirements can go on

‘forever’. In a sense, such a development process is cyclic and can even be (almost)

continuous during the lifecycle of an information system. We use the word continuous

here when individual (or ‘discrete’) versions can hardly (or not) be distinguished

anymore. Since we concentrate on development of functional requirements only, we are

not talking about continuous delivery or continuous deployment, for example, but about

continuous requirements engineering; see for instance [8] for those distinctions.

So, all in all, Figure 5 might be more appropriate:

US . . . US

↓ . . . ↓

UC . . . UC

↓ . . . ↓

SSD . . . SSD

↘ . . . ↙

 <

Fig. 5. How an IM can continuously develop into newer versions (‘forever’)

One cycle might contain only a few USs, UCs and their corresponding SSDs, or maybe

even only one US, UC and SSD. Or, maybe even less than one full UC: In a more agile

development process of functional requirements a simple ‘core’ scenario (or ‘main

success scenario’) of a - maybe yet unclear - ‘full’ UC might be delivered first, followed

by ‘fuller’ versions in subsequent cycles (see [3]). So, existing US/UC/SSD-triples

might be adapted as well. Short cycles especially hold in case of daily/nightly builds

(see [9]) and continuous integration (see [10]).

6 Realizations/Implementations of an Information Machine

Information machines can be considered as blueprints. An IM can have many different

realizations/ implementations. For instance, an information machine can be realized by

IM

a human servant (say a clerk), by an ‘SQL servant’ (i.e., a computer with SQL software),

or by a ‘Java servant’ (i.e., a computer with Java software):

information machine

↙ or ↓ or ↘

human Java SQL

servant servant servant

Fig. 6. Different kinds of realizations of an information machine

If we combine Figure 6 with the previous ones then we obtain the fundamental ANSI-

SPARC three-level architecture, see e.g. [11], but now extended from databases to

information machines in general:

US US

↓ ↓

UC UC

↓ ↓

SSD SSD

↘ ↙

↙ or ↓ or ↘

 human Java SQL

servant servant servant

External

Level

Conceptual

Level

Internal

Level

Fig. 7. Relation with the ANSI-SPARC three-level architecture

Relational SQL-based systems, for instance, are very suitable for incremental

development, and since long they are used in this way. For a realization of user stories

by means of an SQL-system for instance, we can use (stored) procedures. E.g., for our

sample user story ‘Remove a student with a given student number’ we can look back at

the corresponding SSD in Section 1 and the details worked out in the last paragraph of

the section on information machines (Section 2). In a naturally way this will lead to the

SQL-procedure below. (Parameter names are preceded by an “@” in SQL.)

 CREATE PROCEDURE RemoveStudent @n INTEGER,

 @output VARCHAR OUTPUT AS

 IF @n IN (SELECT NUMBER FROM STUD)

 THEN DELETE FROM STUD t WHERE t.NUMBER = @n;

 SELECT @output = “Done”

 ELSE SELECT @output = “Unknown student number”

We are inclined to call the realization/implementation of an information machine an

information system: According to the literature an information system has a Boundary,

Users, Processors, Storage, Inputs, Outputs and Communication networks (see [12]).

information machine

The USs, UCs, SSDs, and the IM already shed light on the Boundary, Users, Inputs,

and Outputs of the system under development. During continuous (and incremental)

development of the functional requirements, these components will grow continuously.

Retrospection
We addressed the question how to come from initial user wishes to a running system in

a straightforward, transparent, modular, and agile manner. In particular, we started to

develop a sound underlying theory that grounds engineering approaches that tackle this

broad problem (the complete development path for functional requirements from initial

user wishes up to a running system). The theory we developed crosses the boundaries

of several (sub)disciplines, e.g., requirements engineering, machine theory, and

(database) systems development. We couldn’t trace such an underlying theory that

covers this broad problem completely (the whole development path for functional

requirements, from initial user wishes up to a running system).

We placed the notions user story, use case, and system sequence diagram in line,

and we linked the SSDs directly to the notion of an information machine: The set of

SSDs of an application actually determine the inputs, the outputs, and the output

function of the IM. By means of an example we showed how a user story directly leads

to a set of inputs for an IM and, when the IM is implemented in SQL for instance, how

such an input set in turn directly corresponds to a (stored) procedure. It indicates the

modularity of the resulting system when developed in this way.

All in all, we started to develop a theory on Continuous requirements engineering

for information systems, grounding some engineering approaches and crossing the

boundaries of several (sub)disciplines, e.g., requirements engineering, machine theory,

(database) systems development.

After discussing some aspects of incremental requirements engineering for ISs, we

treated continuous requirements engineering for ISs. We also pointed out that an IM

is a blueprint, and can have completely different implementations. We depicted a

straightforward, transparent, and agile development path for functional requirements,

from USs via UCs and SSDs to an IM, and then to an actual realization.

We depicted the relation with the fundamental ANSI-SPARC three-level

architecture, but extended from databases to information machines in general: USs,

UCs and SSDs belong to the external level, an IM belongs to the conceptual level, and

implementations of an IM belong to the internal level.

Future Work
We want to extend our theory with additional, extended, and/or more complicated

issues, such as sequences of inputs and corresponding outputs, complete induction for

IMs (as a means to prove state properties of IMs), additional guidelines for developing

use case texts, UC patterns, more complicated UCs and SSDs, further notions and

terminology related to IMs, generalization and formalization of the CRUD-functions,

dynamic constraints (i.e., constraints on state transitions), and interacting systems.

Acknowledgements. We thank the reviewers for their critical questions, which clearly

helped to sharpen the paper.

References

1. G.G. Lucassen: Understanding User Stories. PhD thesis, Utrecht University (2017)

2. I. Jacobson et al: Use Case 2.0: The Guide to Succeeding with Use Cases. Ivar Jacobson Int.

 (2011) or https://en.wikipedia.org/wiki/Use_case

3. C. Larman: Applying UML and patterns. Addison Wesley Professional (2004)

4. https://en.wikipedia.org/wiki/System_sequence_diagram

5. F.T.A.M. Pieper: Data machines and interfaces. PhD thesis, TU Eindhoven (1989)

6. G.H. Mealy: A Method for Synthesizing Sequential Circuits. Bell System Technical Journal,

 1045–1079 (1955) or https://en.wikipedia.org/wiki/Mealy_machine

7. J. Martin: Managing the Data-base Environment. Prentice Hall (1983)

 or https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

8. P. Forbrig: Does Continuous Requirements Engineering need Continuous Software Engineering?

 REFSQ Workshops 2017, CEUR Workshop Proceedings 1796 (2017)

9. https://en.wikipedia.org/wiki/Daily_build

10. G. Booch: Object-oriented analysis and design with applications. Addison Wesley (1998)

 or https://en.wikipedia.org/wiki/Continuous_integration

11. ANSI/X3/SPARC Study Group on DBMS: Interim Report. ACM SIGMOD bulletin, vol. 7.2

 (1975) or https://en.wikipedia.org/wiki/ANSI-SPARC_Architecture

12. L. Jessup and J. Valacich: Information Systems Today. Pearson (2008)

 or https://en.wikipedia.org/wiki/Information_system

All links were last accessed on 2018/02/16

file:///C:/Users/Bert/Downloads/Lucassen%20(4).pdf
https://www.ivarjacobson.com/publications/white-papers/use-case-ebook
https://en.wikipedia.org/wiki/Use_case
https://aanimesh.files.wordpress.com/2013/09/applying-uml-and-patterns-3rd.pdf
https://en.wikipedia.org/wiki/System_sequence_diagram
https://pure.tue.nl/ws/files/2488162/305250.pdf
https://ia802705.us.archive.org/12/items/bstj34-5-1045/bstj34-5-1045.pdf
https://en.wikipedia.org/wiki/Mealy_machine
https://books.google.nl/books?id=ymy4AAAAIAAJ&pg=PA381&redir_esc=y
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://ceur-ws.org/Vol-1796/cre-paper-7.pdf
https://en.wikipedia.org/wiki/Daily_build
http://www.cvauni.edu.vn/imgupload_dinhkem/file/pttkht/object-oriented-analysis-and-design-with-applications-2nd-edition.pdf
https://en.wikipedia.org/wiki/Continuous_integration
https://dl.acm.org/citation.cfm?id=984332&picked=prox&CFID=848160609&CFTOKEN=92815368
https://en.wikipedia.org/wiki/ANSI-SPARC_Architecture
https://www.pearson.com/us/higher-education/product/Jessup-Information-Systems-Today-Managing-in-the-Digital-World-3rd-Edition/9780132335065.html
https://en.wikipedia.org/wiki/Information_system

