
Requirements-Driven Supervision of
Socio-Technical Systems

Davide Dell’Anna

Utrecht University, Department of Information and Computing Sciences,
Utrecht, The Netherlands

d.dellanna@uu.nl

Abstract. Modern software systems are characterized by ever-changing
goals and requirements. Such systems operate in an environment that is
dynamic, open, partly known, unpredictable. New goals arise and others
are dropped, due to changes in stakeholders’ needs and priorities, gov-
ernment regulations, technology. Despite this dynamism, systems should
meet their goals and comply with the evolving requirements. While sev-
eral self-adaptation mechanisms have been proposed in the literature,
they cannot be fully applied for socio-technical systems that involve au-
tonomous (thus, non-controllable) components. This project aims at de-
signing and developing a runtime requirements supervision framework
that monitors the execution of socio-technical systems, evaluates their
behavior against the overall goals and intervenes by deciding how to
revise requirements when adaptation is not possible.

Keywords: requirements evolution, self-adaptation, autonomous soft-
ware, socio-technical systems

1 Introduction

Traditional software supports the conduction of business processes within stable
operational environments, where the behavior of the system is mostly predictable
and changes are local. Modern software systems, instead, are being built to oper-
ate complex socio-technical systems (STSs) in increasingly dynamic settings [22].
STSs are an emerging paradigm of systems where many different, and possibly
autonomous, components (both social ones, like people and organizations, and
technical ones, like software) can interact, cohexist and change independently
and unpredictably. For example, software for self-driving cars shall work under
changing traffic and weather conditions, in unknown roads, with changing traf-
fic regulations, and with new vehicle types. At the same time it shall constantly
deal with passengers, pedestrians, other drivers, bicycles, etc.

Moreover, software requirements themselves are in constant motion [13, 27]:
new functional requirements arise while others are dropped, the desired quality
requirements vary, and the relative priority of the requirements evolves.

Copyright 2018 for this paper by its authors. Copying permitted for private and
academic purposes.



Despite this dynamism, software is expected to perform optimally and com-
ply with the evolving requirements, or at least minimize the deviations. In highly
dynamic environments, existing offline and runtime verification approaches [6,20]
cannot be applied to ensure the fulfillment of the continuously evolving require-
ments of STSs. For runtime verification techniques, halting the system in case
of non-compliance with the requirements is not an option [5, 19].

In many cases, furthermore, it is infeasible for a system designer to antic-
ipate all the possible states that the STS and its operating environment can
reach during execution [24], and to define adequate requirements for each of
them. A static requirements model may often result at runtime inadequate to
guarantee the overall system goals in various contexts [3, 18]. Runtime revision
(incl. approximation) of requirements is therefore one of the key factors to build
a versatile system capable of ensuring the stakeholders goals. Temporarily re-
laxing a strict requirement in previously unpredicted operating conditions may
guarantee the stability of the system without the need of an adaptation of its
components. Likewise, learning under which conditions requirements are more
useful and supporting their autonomous evolution may increase the knowledge
of the requirements engineers and improve the quality of their future work.

In this PhD project we propose a runtime requirements supervision frame-
work that continuously monitors the execution of STSs, evaluates their behavior
against the overall goals, and, when necessary, intervenes by deciding which re-
quirements can be ignored, weakened or strengthened.

The paper is organized as follows. Section 2 describes the research problem.
Section 3 presents the proposed solution, together with an illustrative example.
Section 4 gives an overview of related work. Section 5 discusses the applied
research methods. Section 6 concludes the paper with a progress report.

2 Problem

Consider the requirements problem K,S ` R (the specification S, given some
assumptions K about the environment, satisfies the requirements R) formulated
by Zave et al. [26]. The unpredictable and dynamic nature of STSs makes the
design-time domain knowledge incomplete. To overcome this limitation, the Self-
Adaptive Systems research field proposed, in the past years, solutions in terms
of automated adaptation of S in response to changes in K [12]. The proposed
solutions assume that it is possible at runtime to revise S into an S′ such that
K ′, S′ ` R (where K ′ is the new domain knowledge acquired after deployment).
Sometimes, however, such type of adaptation is not possible or desirable. For
instance, when humans participate in the system, it is not always possible to
directly control their behavior.

Problem statement. How to guarantee the achievement of goals of stake-
holders of a STS, when the design-time domain knowledge is incomplete, and no
new specification can be determined at runtime to satisfy the requirements?

As a solution to this problem, in this project we propose an automated run-
time requirements revision method to perform adaptation at requirements level.



The main research question that is addressed is the following:

MRQ. How to design and develop a runtime requirements revision method for
STSs operating in highly dynamic and weakly controllable environments?

This question includes several sub-questions:

SRQ 1. What is an expressive, tractable and non-rigid language for specifying
functional and quality requirements for software systems?

SRQ 2. What are efficient runtime monitoring mechanisms for checking com-
pliance with the requirements represented according to SRQ 1 ?

SRQ 3. What are adequate runtime intervention mechanisms to revise the re-
quirements of a STS based on learning from execution data?

SRQ 4. How to evaluate the effectiveness of the proposal on existing systems?

3 Proposed Solution

Fig. 1 sketches the main components of the runtime supervision framework that
we propose. At design time Stakeholders, together with Requirements En-
gineers, create a Requirements model, based on the Goals and the val-
ues of the stakeholders. The Target system is built according to the require-
ments model and it is instrumented in order to monitor the satisfaction of
the elicited requirements. At runtime the Monitoring component collects in-
formation about three main elements: (i) the satisfaction or violation of the
instrumented requirements, (ii) the operating contexts in which they are evalu-
ated (e.g. the hour of the day, etc.), (iii) the satisfaction of the overall system’s
goals.

Notice that we make a key distinction between the requirements and the
goals of the system. Requirements closely reflect and guide the way the target
system is built and they can be directly evaluated by monitoring the execution
of the system. Goals instead represent the rationale behind the development of
a software system, they are not always computable (e.g., user satisfaction) and
their evaluation may be obtained from the stakeholders in a discontinuous way.

Design Time Run Time

Reqs
model

- Target systemAnalysis & Revision Instrument 
new reqs

Monitoring
(computable 

and not)

New reqsGoals

Goals 
evaluation

Knowledge
Base

(Learning)

Build

Update model

Update

Used by

Used by

Create

Stakeholders

Reqs Engineers

Fig. 1. The proposed requirements supervision framework.



In our framework, data collected by the monitoring component is stored into
a Knowledge Base and used to Learn the correlation between the elements
(i), (ii) and (iii) above described. The Analysis & Revision component makes
use of the information learnt in order to decide if and how to revise the cur-
rently active requirements. A revision of the requirements is triggered when the
currently active requirements are not able to guarantee the achievement of the
goals of the system. Revision is automatically performed, in order to re-align the
requirements with the system’s objectives.

The novel elements of our framework are the following:

– Accurate requirement models can be obtained only at runtime and through
learning. Requirements keep evolving and the relationships between them
change, thereby making learning approaches a necessity.

– Requirements revision, including requirement approximation, instead of sys-
tem adaptation. While early studies on requirements relaxation exist [1,24],
no concrete algorithms exist that support it.

3.1 Illustration: Narrowing Road

Consider a narrowing road with cars coming from two directions: north and
south. The Goal of the municipality (one of the Stakeholders) is “at any time,
there should be less than n cars in queue in either direction”. The requirement
elicitation phase produces a Requirements model defining different possi-
ble requirements to be satisfied. Under the assumption that most of the traffic
comes from north, a requirement “when two cars are at the opposite ends of the
road, the car from north shall move first” is selected. The target system is built
and instrumented with sensors (e.g., smart cameras) and actuators (e.g., traffic
lights).

At runtime, the data produced by the Monitoring component is stored
into the Knowledge Base, where the relationship between the satisfaction of
the requirement and the achievement of the overall goal of the municipality is
learned under different conditions (traffic intensity, day/night, etc.).

Suppose that one month after deployment, due to a change in the road regu-
lations of the city, an unexpected (at design time) traffic load coming from south
is registered between 5 and 6 p.m.. The Analysis & Revision component shows
that in such a time interval, the requirement is typically satisfied. However it
also points out that whenever it is satisfied, the overall goal is hardly achieved.
A revision of the requirement is triggered and the existing requirement is refined
in two sub-requirements: an alternative requirement “cars from south shall move
first” is selected for the critical time interval, while the initial requirement is left
active for the rest of the day. The system is then adapted and instrumented to
monitor the new requirements and the control loop starts over.

4 Related Work

In order to make possible requirements evolution at runtime, monitoring require-
ments satisfaction is essential. The notion of requirements at runtime emerged



in the past years in requirements engineering literature: specification of soft-
ware has been extended with annotation for monitoring (e.g. Tropos [9], goal
models [10,15], etc.). Adopting these techniques, requirements can be kept alive
after deployment and can be integrated in the software to be monitored and an-
alyzed [21]. Some authors [14, 23] propose frameworks for run-time monitoring
and diagnosis of non-functional requirements and to detect changes that require
adaptation. We use runtime monitoring to collect data about the behavior of a
STS and about requirements satisfaction in different operating contexts.

Early studies on relaxation of requirements of a software system are pre-
sented by Whittle et al. [24]. The authors present a requirements language for
self-adaptive systems (RELAX) that allows to specify relaxed versions of a re-
quirement during the requirement elicitation phase.

Ali et al. [3] show that causes for requirements evolution include design time
assumptions invalidated at runtime. They also discuss the importance of keeping
track of the relationship between context and requirements at runtime [2].

The majority of the existing approaches to self-adaptation at requirements
level mainly focus on non-functional requirements [4, 7] and on techniques to
guarantee compliance with requirements by adapting the system.

Bencomo et al. [8] employ Dynamic Decision Networks to suggest a revision
of the priorities associated to non-functional requirements based on a degree of
uncertainty of events in the environment.

Dalpiaz et al. [11] introduce an architecture for adaptive STSs, able to switch
between different requirements configuration when needed.

Knauss et al. [16] discuss the mining of optimal contexts for contextual re-
quirements, and propose a revision of their contextual condition of applicability.
In this project we propose revision concerning all attributes that characterize
requirements, including the way they are refined into sub-requirements.

5 Research Methods

The research methods we follow are based on the design science research method-
ology [25]. The first step is the investigation of the most common and critic sce-
narios, in order to identify the main stakeholders and goals. We make use of two
major case studies of STSs. The former concerns a workflow analyzing immigra-
tion applications, where laws and regulations keep changing and relaxations of
requirements are necessary when the number of pending applications exceeds the
processing capacity. The latter concerns traffic regulation for smart cities, where
different autonomous vehicles coexist and interact to achieve their own tasks in
a shared environment, and revision of the requirements is necessary to achieve
goals of the overall city, such as avoiding road congestions or ensuring safety
of pedestrians. After surverying the existing applicable state-of-art solutions in
literaure, major existing problems or limitations is identified for the problem
context. An artifact, the runtime supervision framework, is therefore designed
in order to overcome the existing gap, by studying the relationship between the
proposed solution and the context of the problem. Both theoretical analysis and



the described case studies are used to validate the designed artifact and to trigger
changes in areas that require improvements, guided by the research questions.
The framework is evaluated with the help of real-scale case studies.

6 Progress

Two main application scenarios (immigration applications and traffic regula-
tion) of interest for both research and industry have been identified and used
to determine the main research problems to face. The proposed framework is
now being designed. We are currently focusing on the two main contributions
of the project: (i) learning a requirements model whose underlying assumptions
are validated by data and where the requirements satisfaction is coherent with
the achievement of the goals, and (ii) requirements revision.

We are using different simulated scenarios for smart traffic regulation based
on the SUMO simulator [17] to generate data to analyze. Bayesian Networks are
currently employed to store and learn information about satisfaction of require-
ments and their relationship with the stakeholders’ goals in different operating
context. We formalized an initial proposal of procedure for the diagnosis and the
usage of the acquired knowledge for the suggestion of a revision of requirements.
The defined suggestion mechanism partly answers SRQ 3. We are working on
the definition of an opportune language to express requirements for STSs (SRQ
1), in order to answer SRQ 2 and to complete the SRQ 3 with the automatic
generation of new requirements based on the suggested revision.

Acknowledgments. I would like to thank my supervisors Dr. F. Dalpiaz and
Dr. M.M. Dastani for their support and advice.

References

1. Alechina, N., Dastani, M., Logan, B.: Norm approximation for imperfect monitors.
In: Proc. of AAMAS, 2014. pp. 117–124 (2014)

2. Ali, R., Dalpiaz, F., Giorgini, P.: Reasoning with contextual requirements: Detect-
ing inconsistency and conflicts. Information & Software Technology 55(1), 35–57
(2013)

3. Ali, R., Dalpiaz, F., Giorgini, P., Souza, V.E.S.: Requirements evolution: From
assumptions to reality. In: Proc. of EMMSAD, 2011. pp. 372–382 (2011)

4. Almeida, A., Bencomo, N., Batista, T.V., Cavalcante, E., Dantas, F.: Dynamic
decision-making based on NFR for managing software variability and configuration
selection. In: Proc. of SAC, 2015. pp. 1376–1382 (2015)

5. Basin, D.A., Jugé, V., Klaedtke, F., Zalinescu, E.: Enforceable security policies
revisited. ACM Trans. Inf. Syst. Secur. 16(1), 3:1–3:26 (2013)

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

7. Bencomo, N.: Quantun: Quantification of uncertainty for the reassessment of re-
quirements. In: Proc. of RE, 2015. pp. 236–240 (2015)



8. Bencomo, N., Belaggoun, A., Issarny, V.: Dynamic decision networks for decision-
making in self-adaptive systems: a case study. In: Proc. of SEAMS, 2013. pp.
113–122 (2013)

9. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

10. Dalpiaz, F., Borgida, A., Horkoff, J., Mylopoulos, J.: Runtime goal models:
Keynote. In: Proc. of RCIS, 2013. pp. 1–11 (2013)

11. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Adaptive socio-technical systems: a
requirements-based approach. Requir. Eng. 18(1), 1–24 (2013)

12. De Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M.,
Schmerl, B., Tamura, G., Villegas, N.M., Vogel, T., et al.: Software engineering
for self-adaptive systems: A second research roadmap. In: Software Engineering
for Self-Adaptive Systems II, pp. 1–32. Springer (2013)

13. Ernst, N.A., Borgida, A., Jureta, I., Mylopoulos, J.: An overview of requirements
evolution. In: Evolving Software Systems, pp. 3–32 (2014)

14. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantitative
verification and sensitivity analysis at run time. IEEE Trans. Software Eng. 42(1),
75–99 (2016)

15. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal
models. ER 2, 167–181 (2002)

16. Knauss, A., Damian, D., Franch, X., Rook, A., Müller, H.A., Thomo, A.: Acon:
A learning-based approach to deal with uncertainty in contextual requirements at
runtime. Information & Software Technology 70, 85–99 (2016)

17. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and
applications of sumo-simulation of urban mobility. International Journal On Ad-
vances in Systems and Measurements 5(3&4), 128–138 (2012)

18. Letier, E., van Lamsweerde, A.: Reasoning about partial goal satisfaction for re-
quirements and design engineering. In: Proc. of SIGSOFT, 2004. pp. 53–62 (2004)

19. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Sec. 4(1-2), 2–16 (2005)

20. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Proc. of FM, 2006. pp. 573–586 (2006)

21. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-
aware systems: A research agenda for RE for self-adaptive systems. In: Proc. of
RE. pp. 95–103 (2010)

22. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M.Z.,
McDermid, J.A., Paige, R.F.: Large-scale complex IT systems. Commun. ACM
55(7), 71–77 (2012)

23. Wang, Y., McIlraith, S.A., Yu, Y., Mylopoulos, J.: Monitoring and diagnosing
software requirements. Autom. Softw. Eng. 16(1), 3–35 (2009)

24. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.: RELAX: a language
to address uncertainty in self-adaptive systems requirement. Requir. Eng. 15(2),
177–196 (2010)

25. Wieringa, R.: Design Science Methodology for Information Systems and Software
Engineering. Springer (2014)

26. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. 6(1), 1–30 (1997)

27. Zowghi, D., Gervasi, V.: On the interplay between consistency, completeness, and
correctness in requirements evolution. Information & Software Technology 45(14),
993–1009 (2003)


