
Towards a communication agnostic middleware for
Ambient Intelligence

David Sainz1, Aitor Almeida1, Jon Valdés2, Diego Lopez de Ipiña1

Mobility Research Lab – More Lab
University of Deusto

Avenida de las Universidades, 24 4007 Bilbao (SPAIN)

1{dsainz, aalmeida, dipina} @eside.deusto.es
2juanval@gmail.com

Abstract. . In this paper a middleware framework for the implementation of
Ambient Intelligence related applications is outlined. The framework abstracts
the developer form the communication methods and technologies and the plat-
form specific user interface problems, allowing him to concentrate in the busi-
ness logic.

1 Introduction

The concept of Ambient Intelligence (AmI) [1] defines an interaction model between
the users and the environment surrounding them, which adapts itself according to the
needs and the actual context of each individual. This environment is formed by vari-
ous common objects equipped with processor power and a certain degree of intelli-
gence that enables them to offer a variety of services (smart objects). Thus, each
smart object can adapt separately or in groups to fulfil the required needs.

Mobile devices such as PDAs or mobile phones are the perfect accessories to act on
behalf of the users and interact with the environment transparently [9]. They can
collect all the desired preferences of a person and actively adapt the context of the
environment to them. They can also serve as an intermediate tool to remotely manage
smart objects, displaying an interface to the final user. These devices are becoming
more common and are also very easily programmable through a set [2] [3] [4] of
different technologies.

In this paper we propose a framework to create and run small programs used to con-
trol smart objects through mainly mobile devices. This framework is our solution to
create and manage AmI scenario. Section 2 describes the overall architecture of the
proposed framework, explaining the involved elements. Section 3 shows the design
of the graphic controls used to abstract the developer from the target platforms. Sec-
tion 4 presents the agnostic communication model and finally section 5 suggests fu-
ture work to be done.

2 The architecture of EMI2lets

The EMI2lets architecture is composed of:
1. EMI2Peers: These components are installed inside each network element

(enhanced smart objects, Smartphones, PDAs, etc.). They control the func-
tionality of the peer and expose it so it can be managed remotely. The peers
form a peer-to-peer network.

2. EMI2let Players: Installed on the mobile devices, they offer all the required
functions to manage the intelligent environment around them. The players
are designed to be as context-aware as possible. When a user finds an AmI
environment, the player starts searching for smart objects and their
EMI2Peers to offer all the functions they have exposed. Once a concrete
EMI2Peer is selected, the required software to control its specific functions
is downloaded to the player and run transparently. The EMI2Player renders
the graphic controls depending on the host platform. Since the mobile de-
vice is aware of its surrounding environment, it can be considered as a sen-
tient device [5].

3. EMI2lets: are the pieces of software run on each EMI2Peer. Each EMI2Peer
can be composed by two parts, the public one which is transmitted to other
EMI2Peers and can have a graphical interface that is renderized by the
EMI2Player and the private, which is not delivered to other EMI2Peers and
contains business logic. These small programs are designed specifically for
each smart object.

Fig. 1. The EMI2Peers form a peer-to-peer network

One of the key features of the EMI2lets is the fact that the same software can be run
in multiple device types, including PDAs, mobile phones and laptops. The architec-
ture is designed so that the graphic controls adapt themselves to the platform they are
running on. Another important feature is its agnostic communication model that pro-
vides a seamless communication mechanism through different technologies. The
architecture automatically chooses the optimal technology to perform the data trans-
fers transparently to both users and EMI2let developers.

The programs used to control the environment are downloaded once the player is near
the EMI2Peers using a technology like Bluetooth [6], but they can be used even when
the player is far away from the smart object. The program can remain in the player for
future needs and use a large distance communication technology if available to com-
municate. This is one of the features that distinguishes EMI2lets from other similar
frameworks like Smoblets [7].

The current implementation is being developed in .NET, taking advantage of its mul-
tiplatform capabilities. To make the framework compatible with the three platforms
(Desktop, Pocket PC and Smart Phone) the design is based on the Smart Phone subset
of classes. This also restricts the set of classes the EMI2let programmer can use.

3. EMI2lets user interface library

EMI2lets includes a graphic controls library called EMI2.Controls that helps to free
the developer from having to deal with all the platform-specific GUI controls imple-
mentations. The purpose of this library is to overcome the existing differences be-
tween all the supported platforms. For instance, Smartphone controls implementation
is very limited – it doesn’t even support buttons– which leaves the multi-platform
developer having to choose between two solutions: use just the small subset of con-
trols available for all platforms, or develop a different GUI for each one.

EMI2.Controls tries to address that problem giving the developer a set of controls that
behave in a predictable way no matter which platform the program is being run on.
The developer will only work with a class that represents the abstract GUI control,
managing its properties programmatically and without caring about the target plat-
form. The control will render itself specifically for the platform at execution time.

3.1. Implemented Controls

As of this moment, a small set of controls has been implemented to test the system,
but a complete EMI2.Controls library is intended to be implemented to make a full-
featured system to build any kind of platform-independent GUIs. These controls
share some common attributes – such as Location, Size, Show or Clicked – and also
posses few attributes of its own.

Fig. 2. An Emi2let running in a Pocket PC. The controls are renderized differently in each
platform.

3.2. Internal EMI2.Control structure

All EMI2.Controls have the same structure consisting of 3 components, as it can be
seen in figure 3

Fig. 3. Structure of an EMI2Button, showing the programmer-visible layer (EMI2Button),
PocketPC and Smartphone implementations (EMI2ButtonImplementation) and the real controls
displayed to the user (Button and MenuItem).

Of all these components, EMI2Button will be the only one visible to the programmer,
as it is the class that exposes every public atribute of a button.
EMI2ButtonImplementation is the real behavior of the GUI control, is platform-
dependant and loaded at run-time from an assembly using reflection. Each platform
will have its own assembly containing all the required implementations. Therefore, an
underlying control that is shown to the user is created. The code to manage a
EMI2Button is the same, but the behavior differs as it is merged with the
EMI2ButtonImplementation at run-time. For example, as it can be seen in the figure
running on a PocketPC EMI2Button will create and display a Button, whereas in
Smartphones it will create a MenuItem instead.

However there are some inherent limitations to the chosen design. As PCs and the
different mobile platforms have surprisingly different feature sets, the library does not
implement some very useful features, as there would be no equivalent in other plat-
forms (e.g. Drag&Drop in Smartphones).

4. The agnostic communication model

The EMI2lets platform is designed to abstract completely the user from the commu-
nication technology used by the player to discover EMI2Peers and transfer the data.
This is achieved using a common abstract class for each of the plug-in families:
IEMI2CommunicationPlugin and IEMI2DiscoveryPlugin. The implementation of
communication and discovery methods lies on the technology specific plug-ins.

Each of the EMI2peers has a collection of EMI2Channels, representing each channel
a connection with a remote peer. The peers have an array of connection strings, being
reachable by multiple transmission methods. When a new EMI2peer is discovered
metadata is exchanged in the subsequent handshake. The metadata describes the
EMI2peer, the available communication methods and the residing EMI2lets.

Fig. 4. Diagram of the discovery protocol. The discovery is done in 3 steps. First the
EMI2Endpoints are discovered by the player. Then the player requests the UUID of the
EMI2Peer who owns the EMI2EndPoint. If the EMI2Peer has not been already discovered
XML metadata is requested.

The metadata format is the following:
<EMI2PEER>
 <UUID>peer uuid</UUID>
 <NAME>peer name</NAME>
 <DESCRIPTION>peer description</DESCRIPTION>
 <ENDPOINTS>
 <ENDPOINT type=‘type’>connection string
 </ENDPOINT>
 <ENDPOINTS>
 <EMI2LETS>
 <EMI2LET uuid=’uuid’>
 <NAME> EMI2let name </NAME>

 <DESCRIPTION> EMI2let
 description</DESCRIPTION>
 </EMI2LET>
 </EMI2LETS>
</EMI2PEER>

Each EMI2Peer, EMI2Channel and EMI2let is identified by a unique UUID. The
EMI2lets’ assemblies are not transmitted with the metadata to optimize the communi-
cation, being recovered by player request only if it wasn’t previously downloaded.

Fig. 5. A Pocket PC and a Smartphone Client discover an EMI2Peer and its EMI2lets

Users are able to configure connection preferences, choosing whether to use a charge
free technology or not. If the connection with an EMI2peer is lost during the use of
an EMI2let the client seamlessly uses the next available connection string according
to the stated preferences. In the same way, if the client is using a non-free technology
(e.g. GPRS) and while moving discovers a free endpoint (e.g. Bluetooth) for the same
EMI2Peer technologies will be switched automatically. These operations are com-
pletely transparent for the EMI2let developer, being his only concern the business
logic of the application. The developer sends and receives data ignoring which under-
lying communication technology is being used at each moment.

Fig. 6. Users can configure their connection preferences and the communication plug-ins to
use.

One of the main drawbacks of the current model is that connection is stateless due to
the nomadic and non-reliable nature of the EMI2Peers.

5. Conclusion and future work

In this paper we have defined the architecture of a framework used to manage AmI
environments via different types of devices using seamless communication trough
various kinds of communication technologies. This framework transforms mobile
devices into universal remote controllers capable of managing the smart objects exist-
ing inside their area of action, using even large distance communications to ensure
global operation anywhere.

This framework offers a high degree of abstraction: The communication and presen-
tation mechanisms are transparent for the user and the developer, who do not have to
concern about which communication technology must be used or what kind of
graphical interface must be rendered for each device. The design offers also high
degree of interoperability since the framework is designed in a way that a single piece
of code can run in many device types.

In future work we want to want to add UPnP [8] as new discovery mechanism inside
the set of available technologies and cooperation [10][11][12][13] between different
EMI2lets.

References

[1] Shadbolt N.: Ambient Intelligence. IEEE Intelligent Systems, Vol. 2, no.3, (2003).
[2] Java 2 Platform, Micro Edition (J2ME), http://java.sun.com/j2me/, Sun Microsystems, Inc,

(2005)
[3] Mobile Developer Center, http://msdn.microsoft.com/mobility/, Microsoft Coorporation

(2005)
[4] Symbian OS – the mobile operating System, http://www.symbian.com/, Symbian Ltd.

(2005)
[5] López de Ipiña D., Vázquez I., Sainz D.: Interacting with our Environment through Sentient

Mobile Phones. Proceedings of IWUC-2005, pp. 19-28, ISBN 972-8865-24-4 (2005).
[6] Bluetooth Specification version 1.1, http://www.bluetooth.com
[7] Siegemund, F., Krauer T.: Integrating Handhelds into Environments of Cooperating Smart

Everyday Objects
[8] Universal Plug and Play Forum, http://www.upnp.org (2005)
[9] George Roussos, Andy J. Marsh, Stavroula Maglavera. Enabling Pervasive Computing with

Smart Phones. Pervasive Computing, April-June 2005 pp. 20-27.
[10] Marco Conti, Enrico Gregori, Gaia Maselli. Cooperation Issues in Mobile Ad Hoc Net-

works, 24th International Conference on Distributed Computing Systems Workshops - W6:
WWAN (ICDCSW'04), March 2004, pp. 803-808

[11] T. Andrews. F. Curbcra. H. Dholakia, Y. Goland, J. Klcin, F. Lcymann, K. Liu, D. Roller,
D. Smith, S. Thanc. 1. Trickovic, and S. Wcerawdrana, 2003, Business process execution
language for web services version 1.1. Technical report, BEA. IBM, Microsoft, SAP. and
Siebel Systems.

[12] William B. Bradley, David P. Maher , 2004, The NEMO P2P Service Orchestration
Framework. Proceedings of the 37th Annual Hawaii International Conference on System
Sciences (HICSS'04) - Track 9. pp. 90290c

[13] Aitor Almeida Escondrillas, David Sainz Gonzalez, 2006, Enabling Service Orchestration,
Transactionality and Security in UPnP. IADIS International Conference on Applied Com-
puting.

