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ABSTRACT
The Earth’s surface is continuously observed by satellites, lead-
ing to large multi-spectral image data sets of increasing spatial
resolution and temporal density. One important application of
satellite data is the mapping of land cover and land use changes
such as urbanization, deforestation, and desertification. This in-
formation should be obtained automatically, with high accuracy,
and at the pixel level, which implies the need to classify millions
of pixels even when only small regions are studied. Balancing
runtime and accuracy for this task becomes even more challeng-
ing with the recent availability of multiple time points per pixel,
created by periodically performed satellite scans. In this paper
we describe a novel approach to classify land cover from series of
multi-spectral satellite images based on multivariate time series
analytics. The main advantage of our method is that it inherently
models the periodic changes (seasons, agriculture etc.) underly-
ing many types of land covers and that it is comparably robust to
noise. Compared to a classical feature-based classifier, our new
method shows a slightly superior overall accuracy, with an in-
crease of up to 20% in accuracy for rare land cover classes, though
at the cost of notably increased runtime. The highest accuracy is
achieved by combining both approaches.

1 INTRODUCTION
Monitoring changes in land usage is an important area of research
as land cover is a key variable driving the Earth’s energy balance,
hydrological and carbon cycle, and the provisioning of natural
resources and habitat [22]. Over the last three decades, satellite-
based Earth Observation (EO) programs have made tremendous
progress in acquiring medium-resolution (10 − 100m) images
around the globe systematically and with increasing frequency
(revisit time). As a result, large volumes of medium-resolution
satellite images are now available free of charge, enabling au-
tomatic approaches to the identification of land usage and the
detection of land surface changes over large areas. For example,
the American Landsat 8 sensor images the Earth at 30-m spatial
resolution every 16 days, and two European Sentinel-2 sensors ac-
quire images with a revisit time of 5 days and a spatial resolution
of 10 − 20 meters, which amounts to roughly 60 measurements
for more than 300 Billions pixels (excluding oceans) in a year.

The free availability of medium-resolution satellite image time
series has spawned new possibilities for mapping land cover [9].
In the past, classification approaches operated on single images or
stacks of images (i.e. composite classification). Multi-date classifi-
cation approaches exploit the notion that land cover can vary over
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time, e.g. because of vegetation senescence or harvesting [27].
The task can be approached in different ways. In a typical base-
line setting, the different measurements per pixel are used as
independent features for a classical machine learning-based clas-
sifier, such as Naive Bayes or Decision Trees [20]. In this ap-
proach, the temporal order of the measurements is ignored as
all features are treated as orthogonal dimensions of the feature
space. An alternative method is to include the consideration of
the order of measurements by using methods from time series
analytics [2, 24]. Here, every pixel is considered as a temporally
ordered (and aligned) series of measurements, and the specific
changes (increasing or decreasing slopes, periodic changes etc.)
of the measurements over time are analyzed to find common-
alities and to derive classification models. Previous works (see
Section 3) have shown that this can be advantageous as land cover
are temporally variable and often follow characteristic temporal
patterns, such as those imposed by seasons. However, given the
enormous scale of the data to be classified, not only the accuracy
of an approach is important, but also the runtime performance
has a critical role in any practical application.

In this work, we evaluate the recently proposed multivariate
time series classification algorithm WEASEL+MUSE [26] for land
cover classification using temporally dense, medium-resolution
satellite images. WEASEL+MUSE models multivariate time series
using the truncated Fourier transformation and discretizes mea-
surements, both of which to reduce noise, builds a rich feature
space to capture also subsequences in the time series, is able to
exploit similar temporal subsequences even when appearing at
very different offsets within a time series, and uses aggressive
feature selection to remove irrelevant features and thereby speed-
up classification. Although WEASEL+MUSE was not developed
specifically for land cover classification, many of its aspects fit
nicely to the specificities of this domain, such as the inherent
noise reduction and the exploitation of repetitive behaviour.

We compare the prediction performance of WEASEL+MUSE
with the performance of an established and popular machine
learning-based approach, Random Forests, using the same input
features on 23 Landsat 8 images collected in 16 day-intervals over
Reunion Island. The study region covers an area of 2866x2633
pixels at 30~m spatial resolution. As reference dataset for model
training and validation, we used a sample of 81714 pixels that
had been manually classified into 9 land cover classes.

Our results indicate that time-series-based algorithms improve
land cover classification accuracy compared to non-temporal al-
gorithms. Our time series algorithm WEASEL+MUSE achieved
higher classification accuracies than Random Forests. The im-
provement in accuracy was most notable with rare and/or difficult
classes. Here, class-wise accuracies increased by 8 and 3 percent-
age points, respectively. Overall accuracy improved by 1%-point
owing to the fact that the dominant classes were less affected by
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the choice of algorithm. Interestingly, Random Forests captures
different signals in the data than the time-series-based approach,
as a simple Ensemble of both approaches further improved clas-
sification accuracy. However, this increased accuracy comes at
the cost of an increased runtime. Thus, we will focus future work
on improving the runtime of our method without loosing the
advancements in prediction performance we observed.

The rest of this paper is organized as follows: Section 2 pro-
vides background on land cover classification using satellite im-
ages. Section 3 presents the current state of the art in land cover
mapping and time series classification. Section 4 describes the
test dataset and the tested classification methods: Random Forests
and WEASEL+MUSE. Section 5 presents the experiments.

2 LAND COVER CLASSIFICATION FROM
SATELLITE IMAGES

The classification of satellite images to extract information on
land cover and land use has a long history. A significant turning
point in terrestrial Earth Observation was the launch of Landsat-1
in 1972 (then called Earth Resource Technology Satellite). For the
first time, Landsat delivered systematic observations of the Earth
land surface for land monitoring, leading to new ways of machine-
assisted approaches for mapping land cover from space [7]. In the
1990s and early 2000s, international and national agencies started
to adopt operational land cover mapping programs with Landsat
and Landsat-like data, e.g. in Europe (CORINE), USA (NLCD),
Canada (EOSD), and Australia (NCAS-LCCP). Even decades later,
the Landsat program is still active today. Since February 2013,
Landsat 8 is taking images of the Earth at 30 m spatial resolution
in 8 spectral bands every 16 days. The radiometric quality and
spectral resolution has greatly improved since the early satellites,
and because of new global acquisition strategies and on-board
storage and download capabilities, so has the sheer number of
available images. The number of medium spatial resolution (10−
100 m) sensors has been increasing [4], thus dense time series of
medium resolution are available for many parts of the globe.

Multi-spectral sensors like Landsat record the sun’s energy
reflected by a surface in a few distinct spectral wavelengths
(bands), e.g. blue, green, red in the visible spectrum (400 nm to
700 nm), near infrared (700 to 1100 nm), and short-wave infrared
(1100 to 3000 nm). Since land surfaces with different chemical and
structural properties often absorb and reflect sunlight differently
and wavelength-dependent, information on land cover can be
derived from these spectral bands. For example, water absorbs
much of the near-infrared radiation, so these wavelengths are
useful for discerning land-water boundaries that are not obvious
in visible light. Similarly, green vegetation absorbs much of the
incoming radiation in the red spectrum while reflecting about
50% of the radiation in the near-infrared spectrum.

Much of the past research on classification algorithms has fo-
cused on exploiting the spectral and spatial properties of land cov-
ers, including artificial neural networks [1], decision trees [11],
support vector machines [15], and spatial segmentation algo-
rithms [10]. Each algorithm has its strength and weakness with
respect to: the distributional assumptions made about the data,
training requirements, computational complexity, and robust-
ness to overfitting, data noise, and errors in training data. Also
common to all algorithms is that the work is supervised, i.e., they
need an independent reference data set (i.e., land cover infor-
mation collected in the field or from air-photos) for training a
model. It is fair to say, that no single algorithm works best for all

applications and reference data. However, there has been a trend
away from parametric statistical models to machine learning to
deal with the complexity of input data and class legends.

It has only recently become feasible to build land cover map-
ping algorithms that exploit the temporal domain of entire pixel
time series with medium resolution data [12]. To this end, satel-
lite images typically first undergo a series of pre-processing steps,
including the correction of atmospheric effects, geometric align-
ment and cloud and cloud-shadow masking. Once these steps
are finished, spectral values of pixels can be traced over time to
identify and detect land surface changes such as deforestation [8],
or urbanization [19].

3 RELATED WORK
Although, time-series based classification (TSC) is a relatively
new area in remote sensing, the topic itself has a long tradi-
tion and dozens of approaches exist (see [2, 24], for instance).
Time-series-based classifiers can broadly be categorized into two
classes: Similarity-based methods use a similarity measure over
sequences, such as Dynamic Time Warping (DTW), to perform a
point-wise comparison of two time series. In contrast, feature-
based TSC rely on comparing features extracted from the different
time series, typically generated from their substructures.

These two approaches are also the basis for methods in multi-
variate time series classification (MTSC), where a time series is
not made of a single stream of values but by multiple streams,
each one usually synchronized in time. A popular similarity-
based MTSC method is dynamic time warping (DTW) [21].
Feature-based MTSC can be grouped into those methods that
build feature from so-called shapelets [30], which are short and
maximally discriminative subsequences of the time series, and
methods using the bag-of-patterns (BOP) approach [3]. The stan-
dard BOP model [17] break up a time series into windows, rep-
resent the corresponding subsequences within each window as
discrete features (or words), and finally derives a classifier from
the frequencies of the words. Different approaches to TSC (and
MTSC) differ not only in their accuracy on different data sets, but
also in their runtime for classification, which is a critical issue
when it comes to very large data sets as is the case of satellite
images. For instance, we recently evaluated the runtime of 12
different state-of-the-art methods for (univariate) TSC and found
differences of up to three orders of magnitude [24, 25].

Most approaches to land cover classification rely on traditional
machine-learning methods (see previous section), and there have
been only a few prior studies on using time series information. For
example, [32] fitted harmonic functions to each satellite band and
used the fitted parameters as features in subsequent classification
(which implies that it falls into the class of feature-based MTSC
methods). [14] found that including temporal information into a
model can have a bigger impact on classification accuracy than
the choice of the particular classification algorithm. New time-
series-based algorithms are needed to leverage the predictive
potential of satellite time series images [6].

4 METHODS
4.1 Description of Data
For our analysis, we used a public dataset taken from the TiSeLaC
(Time Series Land Cover Classification Challenge) [28]. This
dataset consists of time series of 23 Landsat 8 images collected in
16 day-intervals over Reunion Island in 2014. Landsat data were
provided by the French Pôle Thématique Surfaces Continentales
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Figure 1: Normalized Difference Vegetation Index (NDVI)
of 9 different land cover classes for our reference
dataset [28].

ID Land cover class Samples
1 Urban Areas 16000
2 Other built-up surfaces 3236
3 Forests 16000
4 Sparse Vegetation 16000
5 Rocks and bare soil 12942
6 Grassland 5681
7 Sugarcane crops 7656
8 Other crops 1600
9 Water 2599

Table 1: Land cover classes and distribution of reference
samples [28].

(THEIA), and atmospherically corrected, geometrically corrected,
and cloud-masked with the Multi-sensor Atmospheric Correction
and Cloud Screening (MACCS) level 2A processor developed at the
French National Space Agency (CNES). Data pre-processing and
temporal gap filling was performed using the iota21 Land Cover
processor developed by CESBIO2. For each time step and pixel,
ten spectral features were extracted, i.e., the seven reflectance
bands and three vegetation indices: the Normalized Difference
Vegetation Index (NDVI), the Normalized Difference Water Index
(NDWI), and the Brightness Index (BI). Figure 1 shows examples
of NDVI time series for different land cover classes.

Reference land cover data were derived from two publicly
available dataset: the 2012 CORINE Land Cover (CLC) map and
the 2014 farmers’ graphical land parcel registration (Régistre
Parcellaire Graphique - RPG). The most significant classes for
the study area were retained, and a spatial processing (aided by
photo-interpretation) was performed to ensure consistency with
image geometry. Finally, a pixel-based random sampling of this
dataset was applied to provide an almost balanced ground truth.
The final reference dataset consisted of a total of 81714 pixels
distributed over 9 classes (Table1). We split this reference dataset
randomly in half for model training and testing.

1http://tully.ups-tlse.fr/jordi/iota2.git
2http://www.cesbio.ups-tlse.fr

4.2 Time Series Analytics
In general, a time series dataset contains N time series. Each time
series is associated with a class label y from a predefined set of
labels Y. Time series classification (TSC) is the task of predicting a
class label for a time series whose label is unknown. A classifier
is a function that is learned from a set of labelled time series
(the training data), takes an unlabelled time series as input and
outputs a label. In this paper, each pixel should be labeled by one
of the nine reference land cover classes.

The 23 Landsat 8 images contain 10 time series of spectral
features each of length 23. At the pixel level, this data can be
interpreted as a multivariate time series (MTS).

A multivariate time series (MTS) T = {t1, . . . , tn } is an ordered
sequence of n ∈ N streams ti = (ti,1, . . . ti,m ) ∈ Rm , i.e., m
recorded values at each fixed time stamp. As we address MTS
generated from satellites with a fixed revisit time, we can safely
ignore the concrete time stamps. MTS are typically produced by
sensors recording data over time like motion captures, gestures,
EEG signals, hand-written letters, sign language, or the multi-
spectral image data sets captured by satellites.

4.3 Machine Learning Approach using
Random Forests

Random forests (RF) are an ensemble learning method widely used
in Earth Observation (EO) for classifying land cover and land use
(e.g. [31]). RF build ensembles of decision trees wherein each tree
is trained on randomly selected features of a bootstrapped train-
ing sample. Node splits are performed using a random subset of
predictor variables. Because of these random components, the
RF approach does not require tree pruning and is relatively in-
sensitive to overfitting [5]. To predict a class label, a RF classifies
the sample with all its decision trees and returns the mode of the
predicted classes. A RF approach to satellite image / pixel classi-
fication uses the concatenated spectral features of each pixel as
input (this is a vector of length 230 and the 2 coordinates, lon-
gitude and latitude). RF are a typical machine learning method
which do not consider any order of the features. If time series
are used as features, each point in time is considered as an in-
dependent feature and the order of measurements is ignored.
This implies that such methods are unable to reproduce serial
correlations or to detect temporal trends in the data.

4.4 Land Cover Classification with
WEASEL+MUSE

WEASEL+MUSE (Word ExtrAction for time SEries cLassification +
MUltivariate Symbols and dErivatives) [26] is a state-of-the-art
MTS classifier that is composed of the building blocks depicted
in Figure 2. It conceptually builds upon the univariate Bag-of-
Patterns model applied to each dimension. In the BOP model [23],
a time series is characterized by the frequency of occurrence of
substructures. BOP-based algorithms build a classification model
by (1) extracting subsequences from a time series, (2) transform-
ing each subsequence (of real values, the measurements) into a
discrete-valued word (a sequence of symbols over a fixed alpha-
bet), (3) building a feature vector from word counts (histogram),
and (4) finally using a classification model from the machine
learning repertoire on these feature vectors.

Specifically, WEASEL+MUSE treats the pixel time series of the
10 spectral features as a MTS with 10 dimensions. For each spec-
tral feature, subsequences using varying lengths are extracted,
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Figure 2: WEASEL+MUSE Pipeline: Feature extraction, univariate BOP models and the multivariate BOP model.

approximated using the truncated Fourier transform, and dis-
cretized into words using equi-depth or equi-frequency binning.
A feature vector is built from the words (unigrams) and pairs
of words (bigrams) to obtain order awareness. Finally, features
are concatenated with the sensor id, to maintain a disjoint word
space for each dimension. This high dimensional feature space
is subsequently filtered using statistical feature selection (Chi-
squared test); finally, a logistic regression classifier is trained,
assigning weights to characteristic word in each spectral band.

Because WEASEL+MUSE is multivariate, the algorithm can
leverage the multi-spectral information of satellite time series.
This is an advantage over univariate time series models that
operate on single indices (i.e. vegetation indices), as spectral-
temporal patterns may differ from sensor band to sensor band.

The feature extraction and selection in WEASEL+MUSE make
it interesting for land cover recognition:
• Features extraction: The words are derived from sub-

sequences extracted at multiple window lengths in each
spectral feature using the truncated Fourier transform
and discretization. The Fourier transform reduces noise
introduced by preprocessing, such as the cloud mask or
geometric alignment, and the different window lengths
capture the seasonal trends at different time granularity. Bi-
grams can capture seasonal trends, e.g., higher intensities
in the spectrum in summer than in autumn. By extracting
subsequences from the pixel stream, the classifier allows
for small shifts in the time line, e.g. a delayed bloom of
crops in some regions.
• Feature selection: The wide range of words consid-

ered also introduces many irrelevant features. Therefore,
WEASEL+MUSE applies statistical feature selection to re-
move irrelevant words from each class. These may be a
result of erroneous information introduced by the image
capture or preprocessing.

The resulting feature vector is highly discriminative and contains
words that are characteristic for each class, which allows the use
of fast logistic regression classifier. To perform our analysis, we
used the JAVA implementation available from [29].

4.5 Ensemble Approach
To understand whether there is value in combining the time-
series-based approach and the feature-based approach, we
build and tested a third model based on the ensemble of
WEASEL+MUSE and RF. Both approaches output class probabili-
ties for each pixel and select the class with the highest probability.
Pixels belonging to a unique spectral class may be associated with
high class probabilities, whereas pixels with less distinct class
membership may have more equally distributed probabilities,

e.g. 49% vs 51%. To combine the two sets of class probabilities
(2x9 class probabilities), we trained a RF model using the 18
class probabilities from the training dataset as predictors and the
corresponding land cover class labels as response.

5 EXPERIMENTS
5.1 Experimental setup
Datasets: We evaluated our competitors using the described
Landsat dataset. The dataset was randomly split into 40857 train-
ing and 40857 test samples. The training dataset was used to
train each classifier. All reported accuracies are based on the test
dataset.

Competitors: We performed a series of experiments:
• Build RF on the training dataset and apply it to test dataset.
• Build WEASEL+MUSE on the training dataset and apply

it to test dataset.
• Build the combined model on the RF- and MUSE-predicted

class probabilities on the training dataset and apply it to
the test dataset.

Training: For WEASEL+MUSE we performed 10-fold cross-
validation on the training dataset to optimize the parameters
for the SFA quantization method (equi-depth or equi-frequency
binning). To perform the RF analysis, we used the R statistical
language and the RF package from [16]. We set the algorithm to
build 1000 trees and randomly sampled√p variables as candidates
at each split (wherep = 232, andp is the total number of predictor
variables).

5.2 Results
Table 2 presents the class-wise accuracies and overall accuracy
(weighted and simple average F1-scores) on the test samples for
each of the three methods. Overall, the combined model had
the highest F1-score of 91.1% followed by WEASEL+MUSE with
89.6% and RF with 89.0% (weighted averages). Thus, the choice of
the classifier had a relatively small effect on the overall accuracy.
However, classes with high F1-scores were also better represented
in the training and test samples. The effect on overall accuracy
was therefore higher when sample sizes were ignored.

When looking at the results in detail, all classifiers showed
high F1-scores of about 90% for all but two classes: “other built-
up” and “other crops”. For these classes, the accuracy was only
~60% and ~50%, respectively. While RF showed a high precision,
WEASEL+MUSE had a higher recall and F1-score, indicating that
the temporal profile improved the detection of challenging classes.
However, the largest improvement in accuracy was obtained from
combining the two classifiers, which further improved the F1-
score by up to 20 percentage points for the “other crops” class.
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Random Forests (RF) WEASEL+MUSE Combined
Land cover Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Urban 86.7% 91.1% 88.9% 87.6% 91.6% 89.6% 88.9% 91.6% 90.2%
Other built-up 75.0% 52.6% 61.9% 73.8% 57.7% 64.8% 71.9% 61.6% 66.3%

Forests 86.1% 93.1% 89.4% 87.9% 91.7% 89.8% 90.2% 92.5% 91.3%
Sparse Vegetation 92.3% 93.5% 92.9% 90.5% 93.3% 91.8% 93.9% 94.6% 94.2%

Barren 96.2% 95.3% 95.7% 96.0% 92.6% 94.3% 96.7% 95.9% 96.3%
Grassland 83.1% 84.5% 83.8% 85.1% 86.5% 85.8% 87.1% 89.1% 88.1%
Sugarcane 94.1% 94.1% 94.1% 94.1% 94.9% 94.5% 94.7% 95.3% 95.0%
Other crops 95.2% 34.5% 50.6% 81.6% 45.3% 58.3% 85.3% 58.2% 69.2%

Water 90.0% 78.1% 83.6% 91.3% 84.0% 87.5% 91.0% 86.6% 88.7%
Weight. Average 89.4% 89.4% 89.0% 89.5% 89.6% 89.6% 91.1% 91.2% 91.1%

Average 88.7% 79.6% 82.3% 87.5% 82.0% 84.0% 88.9% 85.1% 86.6%
Table 2: Class-wise accuracy and overall accuracy based on test sample for RF, WEASEL+MUSE, and our combined model.
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Urban 7274 544 118 59 24 79 90 142 59 86.7%
Other built-up 163 840 12 41 4 8 16 5 31 75.0%

Forests 273 60 7448 146 30 282 73 237 106 86.1%
Sparse Vegetation 50 33 195 7494 226 33 8 9 72 92.3%

Barren 5 7 15 209 6164 2 0 3 4 96.2%
Grassland 123 60 137 48 2 2382 38 75 2 83.1%
Sugarcane 69 20 50 0 0 32 3669 52 6 94.1%

Other crops 1 1 11 0 0 0 1 276 0 95.2%
Water 26 31 14 17 18 1 2 2 998 90.0%

Producers Accuracy 91.1% 52.6% 93.1% 93.5% 95.3% 84.5% 94.2% 34.5% 78.1%
Table 3: Confusion matrix from Random Forests classification.

The confusion matrix for the RF (Table 3) gives a detailed
picture. “other build-up” is often confused with “urban”, and
“other crops” is often confused with the “other forests”, “urban”
or “grassland”. This might be a result of an under-representation
of these land cover classes in the dataset, as these two classes are
the ones with the lowest number of instances (Table 1). On aver-
age WEASEL+MUSE required 5.8 ms for a single pixel prediction,
as a result of the feature extraction and selection phases prior to
classification. The RF took 2.7 ms on average per pixel for classifi-
cation. For the 7.5 Mio pixels of the study area, this translates into
a total, single-CPU runtime of about 5.4 hours for RF compared to
12.2 hours with WEASEL+MUSE. WEASEL+MUSE obtained very
promising accuracy for many classes. However we observed a
limitation of WEASEL+MUSE and all Bag-of-Pattern approaches
when applied in the context of land cover classification, namely
the discretization step introduced for noise reduction and to ob-
tain words from real-valued sequences. For discretization, the
value range is divided into bins, and each one is associated with
a label. However, only a limited number of symbols, typically
between 4 to 8, can be used to discretize the value range with-
out negatively impacting accuracy [17]. For the Landsat data
the spectral range is between 0 and 1000 and the absolute dif-
ference between pixels is important for classification. However,
after discretization using 8 symbols (i.e., a = [000 − 125] and
b = [151 − 250], . . . ) there can be a difference between 0 up to

125 between the values of the same symbol. This noise reduc-
tion is useful for applications like gesture recognition [25], but it
seems to be too aggressive here.

5.3 Sensitivity Analysis
To better judge the performance of the two classification methods,
we tested their sensitivity regarding the weighted F1-score to
varying sizes of the training sample (Figure 3). Specifically, it
was unclear whether the superior performance of the time series
classifier could be replicated with small sample sizes. Starting
with a random sample of 10% of the original training sample, we
iteratively increased the training sample size up to 100% , and
tested all models using the test samples. The results show that
WEASEL+MUSE scored consistently higher than RF across all
sample sizes. The absolute difference was constant, indicating
that both approaches were equally sensitive to the sample size.

6 CONCLUSION
Our objective was to test a time-series-based classification ap-
proach (WEASEL+MUSE) to earth observation time series for land
cover classification and conventional machine learning approach
(Random Forests). We reported results of a series of experiments
using 23 Landsat 8 images collected in 16 day-intervals over Re-
union Island. The reference dataset consisted of a total of 81714
pixels distributed over 9 classes. Our key finding is that the use
of temporal information improved the classification accuracy,
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Figure 3: Overall accuracy of WEASEL+MUSE and Ran-
dom Forests (RF) classification with varying train sample
sizes, i.e., 10%-100% of the training samples to build the
model and 100% to estimate accuracy.

but not for all land cover classes. The improvement in accuracy
was highest for rare and difficult classes. For these, a combined
classifier was able to improve the F1-score even further. We used
Random Forests because they are widely used and robust, but
the ensemble would also work with other classifiers that output
class probabilities. Regarding classification times, the Random
Forests approach was twice as fast as WEASEL+MUSE, as Ran-
dom Forests do not require feature extraction or selection, as
opposed to time-series-based approaches.

Further research is needed to understand how
MUSE+WEASEL scales over larger areas, e.g. continental
scale. The complexity of land cover processes and their
spectral-temporal patterns will probably grow with increasing
area size. From an application point of view, our presented
method may be of particular interest for mapping agricultural
land use patterns. Agricultural land can be highly dynamic and
spectrally variable throughout the year [13]. This land use class
is therefore likely to benefit from time-series based approaches.
Future research could test the performance of our time-series
based method for classifying a broader range of crop types and
cropping cycles. The presented approaches essentially disregard
the spatial neighbourhood of a pixel. Experiments have shown
that including spatial information can improve classification
accuracies, similar to the results reported in [18].
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