
Using a NoSQL graph oriented database to store accessible 
transport routes  

Belén Vela 
Escuela Técnica Superior de 

Ingeniería Informática 
Rey Juan Carlos University 

28933 Móstoles, Spain 
belen.vela@urjc.es 

 
 

José María Cavero  
Escuela Técnica Superior de 

Ingeniería Informática 
Rey Juan Carlos University 

28933 Móstoles, Spain 
josemaria.cavero@urjc.es 

 
 

Paloma Cáceres  
Escuela Técnica Superior de 

Ingeniería Informática 
Rey Juan Carlos University 

28933 Móstoles, Spain 
paloma.caceres@urjc.es 

 

Almudena Sierra 
Escuela Técnica Superior de 

Ingeniería Informática 
Rey Juan Carlos University 

28933 Móstoles, Spain 
almudena.sierra@urjc.es 

 

Carlos E. Cuesta 
Escuela Técnica Superior de 

Ingeniería Informática 
Rey Juan Carlos University 

28933 Móstoles, Spain 
carlos.cuesta@urjc.es 

 

 
 
 
 
 
 

ABSTRACT 
Each day, people have to move to carry out their daily tasks, such as 
going to work, studying, shopping, etc., signifying that thousands of 
trips are taken on public transport on a daily basis. A huge number of 
these trips are taken by people with special mobility needs. In spite of 
the existence of numerous Websites and apps that provide 
information about public transport services, there is a lack of 
information regarding the accessibility of the routes and sites. We 
are, therefore, working on the development of a technological 
framework for the processing, management and exploitation of open 
data, with the goal of promoting accessibility to city public transport 
within the framework of the Access@city project. In this paper we 
specifically focus on the design and storage of accessible transport 
routes, obtained by means of crowdsourcing techniques, in a NoSQL 
graph oriented database.  

1. INTRODUCTION 
According to the World Bank [16], one billion people, or 15% of the 
world’s population, have some type of disability. Although this 
depends on each country, a significant percentage of the people who 
use public transport have special mobility needs. One of the goals of 
smart cities is to improve the quality of life of all citizens [12]. In 
fact, in a smart city, anyone should be able to move easily and 
according to their needs. There are, therefore, several initiatives 
whose objective is to improve accessibility to public transport for 
people with disabilities. For example, the World Health Organization 
in its “World Report on Disability 2011” [17] proposes to improve 
accessibility to public transport for people with disabilities, and this 
includes “making public transport systems more flexible for the user 
by optimizing the use of information technology”. 

Various projects and software tools address the issue of public 
transport and its accessibility. We have carried out a large-scale study 
of websites and mobile applications that offer information regarding 
the accessibility of public transport.  

© 2018 Copyright held by the owner/author(s). Published in the Workshop 
Proceedings of the EDBT/ICDT 2018 Joint Conference (March 26, 2018, 
Vienna,Austria) on CEUR-WS.org (ISSN 1613-0073). Distribution of this 
paper is permitted under the terms of the Creative Commons license CC-by-
nc-nd 4.0. 

The principal eventual aim of our study was to discover the 
strengths or weaknesses of the public transport information provided 
and the services offered. 

With regard to public transport users, we have analysed the 
quality and quantity of accessibility information and services; in this 
case, we have defined six accessibility levels according to the 
accessibility features related to users’ mobility, visual, audible needs, 
along with other user needs, and the capacity to provide accessible 
routes related to those user needs, in addition to assigning an 
accessibility level to each of the applications studied. 

With regard to public transport data, in addition to identifying 
the accessibility information contained in them, we have also 
identified their format in order to determine whether the data 
provided can be simply managed and reused, thus facilitating their 
extraction from the Internet and their subsequent use. 

All of the websites and mobile applications analyzed provide 
maps and services and some type of accessibility information, but 
none of them provides generic mechanisms with which to attain 
accessible transportation data and which would improve mobility in a 
smart city. For example, the website accessible.net shows maps with 
accessibility information, but does not include search options. The 
website for disabled people, www.discapnet.es, presents information 
about training, education, employment, legislation, documentation, 
organization and related services, and includes guides for accessible 
transport with the option of searching for routes. There are also 
websites that provide information regarding accessibility for 
wheelchair users, such as wheelmap.org and Rollstuhlrouting.de. The 
abil.io website provides information regarding accessible journeys 
and service-based routing using public transport. The main reason for 
this is that there is a significant lack of open and reusable data 
concerning public transport and its accessibility. 

In order to address this lack of open transport data and of 
information regarding accessibility, we are defining an open data 
repository for accessible public transport within the framework of the 
Access@City project. The repository will be developed using a 
NoSQL database owing to its capacity to manage huge volumes of 
information, along with its flexibility and scalability [14]. We have 
specifically selected a NoSQL graph oriented database as we are 

62



dealing with highly connected data and wish to be able to make 
queries that are more efficient in a graph oriented database [7]. 

We propose to develop the graph oriented database, which will 
be designed from scratch, by using a methodological approach. In 
general, we have detected a lack of specific methodologies for the 
design of NoSQL databases that take into account the application 
characteristics and the most frequent data queries, which is a 
particularly important aspect in this kind of systems.  

A trend concerning how to incorporate traditional modeling 
notions in this context has recently emerged [2]. For example, in [7], 
Kaur and Rani show an example of NoSQL database design. They 
use an Entity Relationship Model [4] to obtain a conceptual 
representation of the model and different data models for each 
NoSQL database (for example, a class diagram for a document 
database). Buggiotti et al. propose a methodology based on an 
abstract data model for NoSQL databases called NoAM (NoSQL 
Abstract Model) [3]. 

In summary, it could be said that different approaches exist but 
that no solution has, as yet, been commonly accepted. In our opinion, 
the key concept here is neither the model nor the representation 
techniques to be used, but rather the design process and the aspects to 
be considered. The characteristics of NoSQL databases are different 
in nature from those of SQL databases. Denormalization and queries 
must be taken into account from the beginning of the process.  

In order to address this lack, in our previous work [15], we 
proposed some guidelines for the design of document databases in 
which we integrated the final use of the data and the most frequent 
queries into the design process.  

In this paper, we shall show how to design a NoSQL graph 
oriented database in which to store accessible routes generated by the 
users of a mobile application. The accessible routes are obtained for 
users with special needs by using crowdsourcing techniques (micro 
tasks) [6][8][9]. For the storage of the routes we specifically use what 
is, according to [13], the most popular graph oriented database i.e., 
Neo4j [11]. 

The remainder of the paper is organized as follows: the 
framework of our work is briefly presented in Section 2. In Section 3 
we present our approach for the design of a graph oriented database 
for the storage of the accessible public transport routes generated. In 
Section 4 we show a validation of our proposal, along with a brief 
description of the mobile application developed for the generation of 
accessible transport routes and their storage in a Neo4j graph oriented 
database. Finally, our main conclusions and future work are 
summarized in Section 5.  

2. FRAMEWORK 
The framework of our paper is the Access@City project, whose 
objective is to define a technological framework for the processing, 
management and exploitation of open data with the goal of promoting 
accessibility to city public transport (see Figure 1). We therefore 
address the integration of accessibility data derived from three kinds 
of sources: 1) existing open data, available from Linked Open Data 
(LOD) initiatives or obtained using the web scraping of non-semantic 
data sources; 2) private data concerning actual accessible routes, 
obtained by means of crowdsourcing and provided by users 
themselves through their mobile devices and also processed using 
Big Data techniques, integrating both historical and real-time data in 
a datastore [10] denominated as “REPOSITORY OF ACCESSIBLE 
ROUTES” shown in Figure 1, and 3) data obtained from already 
existing traffic sensors, in the context of a smart city. 

These data sources will be semantically harmonized, while 
maintaining their diversity, and will feed an open data management 

platform, which consists of a repository (data hub) and a service 
generation layer. This layer will be able to provide access to data 
consumers, through the automatic generation of customized APIs 
composed of services adapted to available data, which will be 
exploited by different applications. In particular, we consider the case 
of mobile applications, which would make it possible for citizens to 
obtain accessible routes between two points in a city in real time, and 
even combine different transport networks. These apps would 
translate the information regarding our smart city into an accessibility 
context, thus resulting in the definition of an accessible city.  

The case study that we present in the following section of this 
paper is focused on the marked part of Figure 1, which includes the 
application that captures the accessible routes obtained and validated 
by users using crowdsourcing techniques and the Big Data repository 
(REPOSITORY OF ACCESSIBLE ROUTES) that will store the 
routes. We consider that a route is accessible if a person with a 
special need can use it to reach his or her destination. 

Access@City
Publi@CityMultiply@City

Service 2

HARM
O

N
IZATIO

N

Service 1

Source
processing

Script

Scraper

Scraper

Service n

REPOSITORY OF ACCESSIBLE 
ROUTES

@@@@

Repository

BIG DATA

Service 3

Data hub
Open Data

Datalog

Autom
atic

G
eneration

of 
API services

Intelligent
generation of 
ETL processes

Script

Script

 
Figure 1. Architecture of Access@City 

The remaining parts of Figure 1 show the rest of the architecture 
on which we are working in the Access@City project. 

3. DESIGNING A NOSQL GRAPH 
ORIENTED DATABASE 
Our proposal consists of developing the NoSQL graph oriented 
database by following a process based on the traditional database 
design. The proposed approach is summarized in Figure 2 . 

In a first step, we acquire and analyze the data sources or the 
specification in order to be able to determine the entities and their 
relationships, along with their properties. This specification is used to 
define the conceptual data required to design the conceptual schema 
of the database from scratch. The conceptual model can be 
represented using, for example, the Entity-Relationship Model [4] or 
the UML class diagram [13]. 

In the second step, taking into account the conceptual data model 
(which is independent of any database technology) and carrying out a 
study of the application specific access model and the frequent types 
of queries, we design the logical graph oriented database model, 
which is independent of any product. This step provides an initial 
product-independent specification, thus improving the maintainability 
of the NoSQL database, in addition to making migrations between 
products easier. 

In the third step, we attain the physical design and the 
implementation for a specific NoSQL product, and the product 
database model is obtained. In our case, we have chosen Neo4j [11], 
which is, according to the database ranking [5], the most popular 
graph oriented database. Finally, the implementation phase includes 

63



various physical design tasks, such as balancing the need for 
scalability, availability, consistency, partition protection and 
durability. 

 

Conceptual 
Data Model

Logical Graph
Oriented DB 

Model

Product DB 
Model

TEXT

Data Requirements

• Application-
specific access
patterns

• Frequent Queries
Analysis

• Application-
specific needs

• Balancing physical
needs

 
Figure 2. Graph Oriented Database Design Approach 

Focusing on the second step, that is, on the transformation 
of the Conceptual Data Model into the Logical Graph Oriented 
Model (red arrow in Figure 2), we shall begin with a conceptual 
model represented using the Entity-Relationship (E/R) Model. For 
the logical graph oriented model, we shall consider “directed graphs”, 
which are graphs composed of nodes (or “vertices”) connected by 
relationships called “edges”, each of which is associated with a 
direction. The direction of the edges is represented by means of an 
arrowhead on the connecting line between the nodes. 

With regard to the transformation, we consider the E/R schema 
obtained in the first step, the most common queries as regards the 
data (defined in natural language) and the update operations 
performed in the database by the applications in an iterative process. 

Bearing these aspects in mind, along with the fact that the data 
can be queried in many ways, we have to decide when to transform 
an entity or a relationship into a node type or an edge.  

In a first iteration, the summarized rules are: 

• Each entity will be transformed into a node type labelled as 
the entity and its attributes into properties of this node type. 

The constraints (uniqueness or not null) of the attributes 
will be transformed into constraints of the property/ies of a 
node type. 

• Each relationship will, in general, be transformed into an 
edge between the nodes, depending specifically on the 
cardinality of the relationship.  

o One-to-one relationships (0/1 to 0/1) will be transformed 
into an edge (without an arrowhead) between both node 
types to denote the 1:1 relation between the entities.  

o One-to-many relationships (0/1 to 0/n) will be 
transformed into an edge with an arrowhead to denote the 
1:N relation between the entities. 

o Many-to-many relationships (0/n to 0/m) will be 
transformed into an edge between both node types with an 
arrowhead on each end to denote the N:M relation 
between the entities. At this point, we have to decide and 
check whether this relationship should be transformed into 
an edge or a node.  

o A generalization is a special kind of relationship and will 
be transformed in the same way as the other types of 
relationships, according to its cardinality and including an 
edge labelled “is-a”. 

o A composition is a special kind of relationship and will be 
transformed in the same way as the other types of 1:N 
relationships, according to its cardinality and including an 
edge labelled “is-composed-of”. 

After this first iteration, we have to refine our logical graph 
oriented DB model, taking into account both the access patterns of 
the applications and frequent queries in order to be able to query the 
connected data in many ways, as required by the users. 

4. VALIDATION: APPLICATION FOR 
GENERATING AND STORING ACCESIBLE 
ROUTES USING A GRAPH ORIENTED 
DATABASE 

In order to validate our proposal, we have developed a native 
Android application as we need to use the GPS of the users’ device. 
In general, native applications have significant advantages over 
hybrid applications because they are able to easily access and use the 
built-in capabilities of the user’s devices (e.g., GPS) [1].  

This application will allow users to register for the generation of 
accessible routes. They can then use the starting a route option, 
indicating which special need (wheelchair, bike, baby stroller, baby 
buggy, etc…) they will have on their journey. During the journey, the 
application will periodically register the GPS position (initially, every 
25 seconds, although this could change depending on the route, the 
special need, etc.). When the user finishes the journey, he/she can 
either discard the route or save it. Users may include comments about 
the routes taken, reporting possible incidents and/or including photos. 

Figure 3 shows the main functionalities of the application by 
means of a Use Case Diagram: 

 
Figure 3. Use Case Diagram  

In Figure 4, some of the main screenshots of the application 
developed are shown.  

64



      

      
Figure 4. Screenshots of the application “Gestión de rutas 
accesibles” (Generation and Storage of Accesible Routes)  
For the storage of the routes, we have developed a Big Data 

repository in which to store accessible routes obtained by means of 
the aforementioned application using crowdsourcing techniques. 

The Big Data repository in our Case Study was developed by first 
identifying the data requirements. We then defined the conceptual 
data model using an Entity-Relationship Data Model (Figure 5).  

User

Special_Need

Route

Point

(1,1)

(0,n)

(0,n)

(1,1)
(2,.n)

(1,1)
Name

Password

Login

User_cod

E-Mail

Birth_date

Route_cod

Duration

Comments Photos

Y_Coor

X_Coor

Type

Point_cod

Name

Need_cod

Description

Create

ContainHas 
Default

(0,n)

 
Figure 5. Conceptual Data Model 

This conceptual data model includes user registration data 
(USER Entity) and information about the routes (ROUTE Entity) 
taken by users with special needs (SPECIAL_NEED Entity). We also 
consider possible comments made and/or photos taken by users on 

their journeys. The routes are composed of at least two GPS points 
(POINT Entity). Each of these points is composed of X and Y 
coordinates and has a Type, which can be “start point”, “intermediate 
point” or “end point” 

At this point, another necessary and important decision that had 
to be made was which kind of NoSQL database to use for the 
development of our big data repository. In this work, we have chosen 
a graph oriented database owing to the nature of the data of the 
routes, which is highly connected, and the need to query the data in 
many ways. The methodology shown in Figure 2 assumes that the 
database chosen is a NoSQL graph oriented database. The case study 
has been implemented in Neo4j. The application will be connected to 
the Neo4j database using API REST and an HTTP connection. 

In a previous work [15], we developed our repository using a 
NoSQL document database because of its flexibility and ability to 
manage complex data structures [14]. However, as the data in our 
case study are highly connected (point of a route), the traversal is 
much simpler using a graph oriented database. 

In order to obtain the logical graph oriented database model, in 
a first iteration we have to apply the proposed guidelines. We then 
have to consider how the data will be used by the applications, that is, 
what the most frequent queries and application-specific access 
models are. 

In our case study, the most common queries will be related to 
users or to routes. The most frequent queries are:  

1) Data of the registered users, including their default special 
need. 

2) Is a route between two given points accessible? 
3) Comments concerning or photos of the stored accessible 

routes. 
4) Of which points is a route composed? 

 
Apart from the queries, there will also be two basic update 

operations in the database: inserting a new registered user or inserting 
a new route. 

Bearing in mind the conceptual data model and the 
aforementioned queries (defined in natural language), we have 
designed the new model (according to our proposed guidelines): 

a) A node type labelled for each entity: User, Special_Need, 
Route and Point. The attributes of the entity become the 
properties of each node type, as can be seen in Figure 6. 

User Special
_Need PointRoute

 

 
Figure 6. Node of User type with its properties  

b) It is now necessary to carry out the transformation of the 
existing relationships. Here, we have to decide whether 
relationships will be implemented using an edge or a node. 

65



There are three relationships: Has Default relationship (1;N), 
Create relationship (1:N:M) and Contain relationship (1:N). 

c) When analyzing the queries and the application data, we 
consider grouping the information of certain entities of the 
conceptual data model that will be used together. We therefore 
exclude the Special_Need node, as its information can be 
considered as information regarding the User and the Route. We 
shall, therefore, include the Special Need information as 
properties of the User and Route node types. This signifies that 
we now continue working with only three node types and two 
relationships. 

In order to transform both 1:N relationships, we create an edge 
labelled as the relationship with an arrowhead to denote the 1:N 
relation between the entities: Create and Contain. 

User PointRoute

 

User PointRoute
Create Contain

 
Figure 7. Node types with edges  

The final graph oriented database design will, therefore, consist 
of three node types: USER, ROUTE and POINTs. USERS will store, 
for each user, a set of information (name, email, birth date, etc…) and 
information on their default special needs. ROUTES will store the 
special needs for that route, and some additional information, such as 
comments, photos, etc. POINTs will store information concerning the 
X and Y coordinates and the type of point (initial, intermediate and 
end point). The information regarding routes and subroutes with a 
special need can be easily obtained with this design.  

5. CONCLUSIONS 
Although document databases have a dynamic schema (but are 
not schemaless, as stated in some forums), it is very important to 
design this schema correctly because of its impact on the 
performance of the database. A methodological process with which to 
guide the user in the design process of a NoSQL database is, 
therefore, required. However, despite the existence of several works 
and many websites with best practices, there is no commonly 
accepted solution for the design of NoSQL databases. 

In [15], we proposed some guidelines for the design of a 
document database. In this paper, and in order to complete our 
NoSQL Design Methodology, we address the design of NoSQL 
graph oriented databases. In order to validate this proposal, we 
present a case study in which we generate accessible routes created 
by users with special mobility needs using a micro-task based on 
crowdsourcing and store them in a NoSQL graph oriented database in 
Neo4j. The design process is principally based on the requirements of 
the applications and the most frequent queries that the system will 
have to deal with. 

One of our future works will be the formal representation of the 
queries and the specification of a formal method with which to 
transform the conceptual model and the query model into a logical 
design model based on a NoSQL database (document DB or graph 
oriented DB). We plan to put the application into use with users with 
disabilities in the near future. Moreover, an immediate future task is 
to extend the functionalities of the mobile application in order to 
create a version that can be evaluated by users with special needs.  

ACKNOWLEDGMENTS 
This work was partially supported by the Access@City project 
(TIN2016-78103-C2-1-R), funded by the Spanish Ministry of 
Economy and Competitiveness.  

REFERENCES 
[1] Abed, R. (2016). Mobile. Hybrid vs Native Mobile Apps – The Answer 

is Clear. Retrieved from: https://ymedialabs.com/hybrid-vs-native-
mobile-apps-the-answer-is-clear/ 

[2] Atzeni, P. (2015) Models for NoSQL databases: a contradiction? 
Presentation. Sezione di Informatica e Automazione. 

[3] Buggioti, F. , Cabibbo, L., Atzeni, P. and Torlone, R. (2014). Database 
Design for NoSQL Systems. ER 2014, LNCS 8824, pp.223-231. 

[4] Chen, Peter (March 1976). The Entity-Relationship Model - Toward a 
Unified View of Data. ACM Transactions on Database Systems. 1 (1): 
9–36. 

[5] DB-Engines Ranking (2017). https://db-engines.com/en/ranking. 
[6] Estellés Arolas, E., González Ladrón de Guevara, F. (2012). Towards an 

integrated crowdsourcing definition. Journal of Information Science, 
38(2): 189-200. 

[7] Frisendal, T. (2016). Graph Data Modeling for NoSQL and SQL. 
Visualize Structure and Meaning. Technincs Publications. 

[8] Grier, D. A. (2013). Crowdsourcing For Dummies. Paperback 
[9] Ke Mao , Licia Capra , Mark Harman , Yue Jia - A survey of the use of 

crowdsourcing in software engineering (2016). The Journal of Systems 
and Software 

[10] Marz, N.; Warren, J. (2015). Big Data: Principles and best practices of 
scalable realtime systems. Manning.  

[11] Neo4j. https://neo4j.com/product/ 
[12] Neirotti, P., De Marco, A., Cagliano, A. C., Mangano, G., & Scorrano, 

F. (2014). Current trends in Smart City initiatives: Some stylised facts. 
Cities, 38, 25-36. 

[13] Object Management Group (2015) OMG Unified Modeling Language 
TM (OMG UML) Version 2.5. Retrieved from 
http://www.omg.org/spec/UML/2.5/ Solid IT (2017).  

[14] Sullivan, D. (2015). NoSQL For Mere Mortals. Addison-Wesley. 
[15] Vela, B., Cavero, J.M., Caceres, P., Sierra, A.& Cuesta, C.E. (2017), 

Defining a NoSQL document of accessible transport routes. Darli-Ap 
2017 in  iThings-GreenCom-CPSCom-SmartData 2017. Exeter, UK. 

[16] World Bank. http://www.worldbank.org/en/topic/disability/overview  
[17] World Report on Disability, 2011. 

http://www.who.int/disabilities/world_report/2011/report/en/ 
 

 

66


