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ABSTRACT
Graphs provide an elegant and versatile solution for modeling
complex datasets, especially when the focus of the analysis is on
highlighting interesting associations between data entities. Graph
cubes permit analysis of the resulting data graphs at various
levels of granularity based on their node and edge attributes. In
this work, we utilize information entropy measures in order to
help the analyst navigate within the rich information contained
in a graph cube. Our metrics suggest navigations (drill-downs)
towards more detailed data descriptions, conditioned on what
has been observed at a coarser resolution. We propose a graph
analysis workflow that first suggests interesting cuboids from
the exponential collection of aggregations that exist in the graph
cube. At a latter step, this workflow handpicks sub-graphs out
of these aggregations that deviate significantly from the rest
of the data. We experimentally validate our techniques using
real datasets and demonstrate that the proposed entropy-based
exploration can help eliminate large portions of the respective
graph cubes from consideration. Our techniques help locate the
"needle in the haystack" and steer the user towards data skew
hidden within vast valleys of near-uniform interactions.

1 INTRODUCTION
Despite their versatility, graph data have specific characteristics
that make their analysis often challenging. Of particular interest
in graph data are the relationships between nodes captured by the
edges of the graph. These relationships should be analyzed with
respect to attribute values available at the nodes and edges. For
example, a data scientist may want to investigate how users of a
social network, depending on their gender, relate to other users
based on their nationality. This inquiry can be accommodated
by aggregating existing relationships (edges) in the data graph
based on the attributes of their constituent nodes. This process
forms a graph cuboid, as is depicted in Figure 1.

The graph cube contains all such possible cuboids that can
be generated given the raw graph data [6, 10, 15, 22, 35]. As in
the case of the data cube [11, 12, 16, 28], there is an exponential
number of aggregations that define the space of all possible such
cuboids. Moreover, each of these cuboids is not a flat relation,
but a complex property graph filled with intrinsic structural
information based on the formed relationships and annotated
with computed summary statistics over the attributes of the
graph nodes and edges. A data explorer, familiar with the simpler
multidimensional framework of data cubes, may be overwhelmed
when she tries to navigate this data deluge.
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In this work, we model the relationships between the graph
cuboids as a graph cube lattice produced by taking the Cartesian
product of simpler data cubes on the attributes of the nodes and
edges of the data graph. Using this model, we propose a graph
cube analysis workflow that can be used to explore interesting as-
sociations hidden within very large graph cubes. Our suggested
workflow utilizes two intuitive entropy measures, introduced
in [5], in order to reveal associations that deviate from the ex-
pected behavior. The first measure termed as external entropy
permit us to suggest certain drill-down navigations that reveal
associations that deviate from what has already been observed at
the higher-level aggregations of the graph cube. As demonstrated
by our experiments, from the exponential possible navigations
in the graph cube, only a very small percentage of them leads
to interesting observations. The external entropy helps the data
explorer navigates towards interesting cuboids in the graph cube
lattice and may be used to prune a significant portion of the
lattice from consideration.

In a second step of the workflow, we utilize entropy calcula-
tions in order to elevate particular data associations that deviate
from the rest of the relationships within the cuboids selected
from the first step. This is achieved by using an internal entropy
metric that helps the analyst elevate aggregate interactions that
are the result of skew in the data graph. These interactions be-
come prominent when the raw data is aggregated at the levels
denoted by the cuboid under investigation.

In our experimental section we present results of utilizing our
techniques while processing real social datasets of realistic sizes.
We compare our techniques against an alternative method that
prunes parts of the graph cube based on a minimum support
threshold, as in association rule mining. We observe that our
framework maintains the most varied parts of the data distribu-
tion independently of their frequencies. Thus, many interesting
trends revealed by our technique that focuses on data skew within
and across cuboids, would be missed by methods that merely
seek frequent patterns. We also discuss prominent trends reveled
by our techniques on the real datasets used.

2 MOTIVATING EXAMPLE
We consider a social network which depicts relationships be-
tween different users. Each user can be represented as a node
in a graph. Each user profile has three attributes: gender (male,
female), nation (Greece, Spain, France) and profession (doctor,
professor, musician). For brevity, we refer to these attributes val-
ues by their initial letter. Each edge in the data graph is associated
with a numeric value that indicates the number of interactions
between the respective users.

A possible inquiry on this network is to examine how users
depending on their gender, relate to other users based on their
nationality. To accommodate this query we need to perform three
different aggregations. First, starting nodes (i.e. nodes with outgo-
ing edges) are grouped into two aggregate nodes corresponding
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Figure 1: Three possible cuboids: (gender, profession - nation), (gender - nation) and (gender, nation - nation). Notice that
the drill-down to the more fine-grained cuboid on the right reveals irregular associations, conditioned to what has been
revealed by the cuboid in the middle. In contrast, the relationships contained on the (gender, profession-nation) cuboid
seem to follow the same patterns as the original top-level cuboid.

to gender values male and female, respectively. Similarly, three
aggregate nodes corresponding to nations Greece, Spain and
France are formed. Finally, each edge of the network, depend-
ing on the gender attribute value of its starting node and the
nation attribute value of its ending node, is aggregated into an
edge between the corresponding aggregate nodes created at the
previous steps. At this time, a desired aggregate function can
be computed. In this example, we assume that this function is
SUM(). The resulting aggregate graph is depicted in the middle
of Figure 1. Based on its construction we refer to it as the (gender
- nation) cuboid.

Continuing with the running example, the cuboid on the left
part of the figure depicts the outcome of drilling-down from
(gender - nation) to the (gender, profession - nation) cuboid. The
intuition is that we would like to explore whether the profession
of the source node, in addition to its gender, affects the number of
observed relationships. In this contrived example, the aggregated
edges from cuboid (gender - nation) are split almost evenly when
drilling down to the (gender, profession - nation) cuboid. Thus,
this particular navigation step does not seem to reveal interesting
correlations for this data, conditioned on what is already observed
in the (gender - nation) cuboid.

On the right part of Figure 1, we depict another possible drill-
down, this time to the (gender, nation - nation) cuboid. In this
new context, some interesting irregularities are revealed. First,
while female users are linked evenly to users from Greece and
Spain, when these links are conditioned based on her nationality
we can see that females from Spain are mainly linked to users
from the same country. Similarly, French males are mostly linked
to users from Spain. Thus, while cuboid (gender - nation) suggest
a uniform relationship based on the nationality of the target node,
cuboid (gender, nation - nation) reveals that this is not true for
certain members of the user community. It is worth noting that
the majority of the links in the (gender, nation - nation) cuboid
still follow the same uniform pattern suggested by the (gender -
nation) cuboid, since most links emanate from female users in
Greece and male users in Spain. Thus, the examples discussed
above are exceptions to what is suggested by the (gender - nation)
cuboid. These are depicted in red color inside the (gender, nation
- nation) cuboid.

3 THE GRAPH CUBE
In our running example, each user profile has three attributes,
namely gender (G), nation (N) and profession (P). If we treat these
attributes as dimensions in OLAP analysis, the resulting data
cube has 23=8 possible cuboids. The work of [35] extended the
data cube framework to work on graph data by considering also
the relationships between aggregated graph nodes. In particular,
consider a data cube for the data attributes of the starting nodes in
the graph and another one for the ending nodes. These data cubes
share the same dimensions and are, thus, identical in structure
(i.e. contain the same set of cuboids). The graph cube can be
considered as the Cartesian product of these two data cubes: of
the starting- and the ending-cube. In this running example, a
graph cuboid can be ((gender, nation,*) - (*,nation,*)) or, for brevity,
(gender, nation - nation). The starting nodes on this cuboid are
aggregated graph nodes based on their gender, nation attribute
values. Similarly, the ending nodes are aggregations of raw graph
nodes based on the nation attribute values. Starting and ending
nodes in this cuboid are interconnected according to the raw
graph edges. These raw data edges are consolidated producing a
graph cube edge along with a measure. The user may choose any
combination of functions based on attributes on the constituent
nodes and edges.

In many applications, edges of the data graph may have at-
tributes that can also be treated during exploratory analysis as
dimensions. Attributes on the edges of the data graph can be
aggregated creating yet another set of cuboids in an edge-cube
lattice. For example, in a social network a connection can have
several attributes like the typeT of the relationship (family, friend,
sibling etc.) and the date D that this connection was established.
Naturally the analyst may want to include those attributes and
observe their interaction with the node attributes. As an exam-
ple, let us consider the case where the data graph edges have a
Type (T) and a Date (D) dimension (the latter being rolled-up in
a suitable level, e.g. day, year or month). The edge-cube lattice in
this example contains four cuboids, namely (*), (T), (D), and (T,D).
These cuboids can also participate in the Cartesian product of the
graph cube computation adding another dimension in the final
cube. A cuboid in this extended cube is denoted as (starting node-
aggregation - edge-aggregation - ending-node-aggregation).
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Figure 2: The graph cube when both node attributes (side data cubes) and edge attributes (middle data cube) are being used.
The graph cube lattice is produced by taking the Cartesian product of the three data cube lattices that form the constituent
data cubes.

Figure 2 depicts the graph cube lattice in this extended example
where both node and edge attribute values are being used in the
analysis. In what follows, for simplicity, we will only refer to
examples where attributes on the nodes are being used when
forming the graph cube. However, our techniques also work
when attributes on the edges take also part in the analysis.

4 USING ENTROPY TO NAVIGATE THE
GRAPH CUBE

4.1 Main concepts
In this work, we present techniques that help the analyst identify
irregularities when navigating different aggregations of the orig-
inal data graph. Because of the exponential number of cuboids
in the graph cube, it is extremely difficult to manually explore all
possible cuboids and all navigation steps among them (roll-up,
drill-down) in search for interesting patterns. This realization
provides the motivation for our framework. We seek to provide
the analyst with solid mathematical tools derived from informa-
tion theory and in particular the information entropy, that will
help her reveal interesting irregularities.

In [5] we introduced two types of entropy calculations. The
first one measures the significance of a whole cuboid and it is
called external entropy. This type of entropy is used to detect
whether a drill-down process during exploratory analysis to a
more detailed cuboid provides additional insights or not. In our
running example, external entropy calculations on the (gender,
profession - nation) and (gender - nation) cuboid will suggest that
no apparent irregularities are revealed by this drill-down and it
can, thus, be omitted. In contrast, the external entropy metric
will suggest that the drill down to the (gender, nation - nation)
cuboid reveals certain skew in the calculated relationships that
deviate from what is expected by observing the relationships
in the (gender - nation) cuboid. The second type is the internal
entropy that evaluates the relationships inside a cuboid. Internal
entropy can help steer the user towards surprising, skewed rela-
tionships (such as those depicted in red in the figure) within a
large cuboid, eliminating relationships that do not reveal trends
that deviate from the expected behavior.

In what follows, we first introduce the suggested entropy
calculations used in our navigation framework. More details
on these metrics can be found in [5]. We discuss a graph cube
analysis workflow that can be used for processing very large
graph cubes.

4.2 External Entropy Metric
The edges from a cuboid Ci can be represented as a virtual rela-
tion. Each record in this virtual relation is associated with (i) a
set of attribute values s1, . . . st derived from the starting nodes of
the corresponding edge, (ii) a set of values e1, . . . ew derived from
the ending nodes and (iii) an aggregate value a that denotes the
result of the selected aggregate function applied over the selected
measures from these constituent nodes and edges. In the example
of Figure 1, edge (female, Spain) of cuboid (gender - nation) will
be mapped to a single row (female, Spain, 310) in the virtual ta-
ble. Each such record r j=(s1, . . . st , e1, . . . ew ,a) can be viewed as
a discrete probability distribution P(s1, . . . st , e1, . . . ew ) by nor-
malizing the aggregate a value on each record by the sum of all
aggregate values in the instance of the relation. Thus, record r j
is associated with a probability value p(aj ) = aj∑m

i=1(ai ) . In our
example, the probability value for the record that maps to edge
(female,Spain) will be 310

301+310+711+720 . The external entropy (eH)
of a cuboid is defined as the negative of the logarithm of the
probability distribution of the records in the virtual relation (m
in the formula bellow refers to the number of edges in the cuboid
that also equals the number of records in the virtual table).

eH (Ci ) = −
m∑
j=1

p(aj ) ∗ log2 p(aj ) (1)

A drill-down process in the graph cube lattice is triggered
by adding another attribute (starting or ending) in cuboid Ci .
This leads the analyst to another more detailed cuboid Ck an the
next level of the lattice. We refer to cuboid Ck as the "child" of
Ci , while Ci is the "parent" of Ck . While drilling down from the
parent Ci to the child Ck we can calculate the delta-entropy, i.e.
the difference between the two external entropies as:

δ..(Ck ,Ci ) = eH (Ck ) − eH (Ci ) (2)

The delta entropy is a non-negative number. This is because
the external entropy of the child cuboid Ck is greater or equal
to the external entropy of its parent Ci . The maximum external
entropy of the child is obtained when the aggregate a of each
edge is distributed evenly among the more detailed edges in Ck
and their number is maximized. Let dmax denote the number of
possible values of the attribute on which the drill down process
was performed. In order to maximize the entropy of a child cuboid,
an edge with aggregate value aij inCi is replaced during the drill-
down withdmax more detailed edges inCk with aggregate values

ako=
aij

dmax
. Thus, the maximum possible external entropy value
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of the child cuboid given its parent is

eH i
max (Ck ) = −

m∑
j=1

p(aij ) ∗ log2
p(aij )
dmax

(3)

The external entropy rate quantifies how informative, the pro-
cess of drilling down from parent Ci to its child Ck is:

eHrate (Ck ,Ci ) =
eH (Ck ) − eH (Ci )

eH i
max (Ck ) − eH (Ci )

(4)

This rate takes values between 0 and 1. A value that is close
to 1 implies that the drill-down process doesn’t change signifi-
cantly the distribution of the records and, thus, no new insights
are given to the analyst. The exact opposite happens when the
value is close to, or zero. We can therefore exclude less interest-
ing navigations in the lattice by defining a maximum external
entropy rate threshold value between zero and one. When the
external entropy rate of a drill down navigation step surpasses
the threshold, then this drill down is omitted from consideration.

4.3 Internal Entropy Metric
With similar arguments we can introduce an internal entropy
rate threshold in order to select subgraphs within a cuboid that
differ significantly from the rest of the cuboid data. Since we
consider directed data graphs, we distinguish between two kinds
of internal entropy, namely starting internal entropy and ending
internal entropy.

Consider cuboid Ci with l distinct combinations of starting
attribute values of the form (sy1 , s

y
2 , . . . , s

y
s ). Let my is the sum

of the aggregate values of all such edges, where y ∈ [1, l]. For
each such combination (indicated by parameter y) there are fy
edges with different combinations of ending attribute values.
Let zqy be sum of their aggregate values as well. We calculate
the starting internal entropy as the conditional entropy of the
ending attributes’ values conditioned from each starting attribute
combination of values.

siH (Cyi ) = −
fy∑
j=1

p(qyj ) ∗ log2 p(q
y
j ) where p(qyj ) =

zqy

my
(5)

The ending internal entropy eiH is defined in an analogous
manner. As in the case of external entropy, we introduce the
internal entropy rate (for the starting or ending internal entropy,
respectively) as the fraction between the (starting/ending) inter-
nal entropy and the maximum possible value of internal entropy.
The value of the internal entropy rate is between 0 and 1 and can
be used to select the most prominent trends within a cuboid, as
will be explained in the next Section.

5 GRAPH CUBE ANALYSIS WORKFLOW
Motivated by the examples of the previous subsections, in this
work we present techniques that
• Weigh all possible navigations within a graph cube lattice

and suggest drill-down operations that reveal surprising
trends, conditioned on what is observed in the more ab-
stract cuboids contained in the cube. This process elimi-
nates a significant portion of the graph cube, steering the
user towards cuboids that reveal skew that is hidden when
focusing in more abstract aggregations.
• Evaluate the relationships within the cuboids suggested

from the previous step in order to reveal parts of data that
contain skewed relationships.

Figure 3: Graph Cube Analysis Workflow

In Figure 3 we depict the distinct steps involved in using our
techniques for analyzing massive graph data cubes. After the
graph cube is computed, we first utilize an external entropy rate
threshold in order to prune edges of the lattice and, consequently,
cuboids that do not provide significant insights with respect
to their ancestors and descendants. For those cuboids that are
connected by edges suggested by this process, we compute the
internal entropy rates (for starting and ending attributes aggre-
gated at the level denoted by the corresponding cuboid). We
can then use a user-provided internal entropy rate threshold to
only return relationships in these cuboids that do not exceed the
threshold or, we can sort them and return the top-k selections in
increasing order of internal entropy rate.

6 EXPERIMENTS
In this section, we provide preliminary results from applying our
suggested framework on three real social network datasets. The
focus on this exposition is to first highlight the pruning power
of using entropy to navigate very large graph cubes and then to
discuss some of the main trends observed in the social datasets
used.

The datasets used are summarized in Table 1. The Twitter
dataset was crawled by our team and contains 3 attributes: gen-
der, location and language, used in each user profile. We also
crawled the VK dataset from VKontakte, the largest European on-
line social networking service. The sample contains 5 attributes:
birthyear, country, city, gender and education level of the user.
Finally, the Pokec dataset, available from [20] is a social-network
from Slovakia and uses 6 node attributes: age, region, gender,
registration year, public profile and completion percentage of the
profile.

In order to compute the graph cubes of these datasets, we set
up a small cluster of 4 PCs equipped with Intel i7-3770 CPUs
clocked at 3.40GHz, 4GB of memory and 1TB 7200rpm HDDs.
We used the popular Apache Spark [34] framework on 8 VMs
(one being the master) running on this cluster. The graph cube
for each dataset was computed using an extension of the BUC
algorithm discussed in [5].

In first experiment, we utilize the suggested data analysis
workflow and evaluate the pruning power of the external and the
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(a) Twitter dataset (b) VK dataset

(c) Pokec dataset

Figure 4: Number of records in the graph cube, scaling both internal and external entropy rates

Twitter VK Pokec
Profiles (nodes) 34M 3,9M 1,6M
Relations (edges) 910M 493M 31M
Number of Attributes 3 5 6
Number of Cuboids 64 1024 4096
Graph Cube Records 4M 362M 66,3B
Graph Cube Size 143MB 235GB 1.58TB
Cluster CPUs 4 × 4 Cores
Cluster RAM 4 × 4 GB

Table 1: Description of datasets and hardware used

internal entropy metrics. Figures 4a,4b and 4c illustrate how the
starting internal and external rates reduce the number of records
of the graph cube, in each dataset. Plots for the using the ending
internal entropy are similar and are omitted due to lack of space.
The plots suggest a steep reduction in the sizes of the graph
cubes for all datasets, as the respective entropy rate thresholds
are increased. We observe that using thresholds in the ranges
from 5% to 20% helps trim the million or billions (in the case of
the Pokec dataset) records in the corresponding graph cubes to

manageable sizes. This suggests that indeed, in these real data,
there is a needle in the haystack that begs to be revealed. This is
more evident in the largest graph cube from the Pokec dataset
that contains 4096 cuboids and more than 66 billion records. In
that dataset, a 10% external entropy threshold leads the analyst
to focus on less than 0.002% of the aggregated graph cube records
that contain 9 out of the 10 more prominent associations (when
ranked in decreasing order of their internal entropy).

In Figures 5a, 5b and 5c we depict the filtered sub-lattices (sets
of cuboids) selected when using an external rate threshold of 3.5%
in the graph cube analysis workflow of Figure 3. For the Twitter
dataset 17 out of the 64 cuboids of the graph cube are chosen. For
the VK dataset 9 out of 1024 cuboids are retained. Finally, for the
Pokec dataset only 10 from the 4096 cuboids are kept for post-
processing. Based on the characteristics of the datasets shown in
Table 1 we observe that the external entropy helps prune more
cuboids when the number of node attributes is increased, as this
results in larger lattices for the full graph cube.

These filtered cuboids are used as input for the final stage of
our workflow that further selects parts of these cuboids based in
their internal entropy. For that step we used a rate threshold of
20% and present in Table 2 some characteristic results for each
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G,L-* G-G G-N N-G N-N N-L

G,L-G G,L-N N-G,L N-N,L N,L-L

N,L-N,LN,L-G,L N-G,N,L

N,L-G,N,L

(a) Twitter dataset

*-*

*-A G-* *-E

*-A,N G-N G-G

G-G,AG-A,N

G,E-A,N

(b) VK dataset

*-*

L-* *-R A-* *-G

L-L A-G G-G R-G

L-L,A A,R-G

A,R-G,A

(c) Pokec dataset

Figure 5: Selected sub-lattices for a 3.5% external entropy rate threshold

dataset. Due to space limitations the attributes in the table are
shown with their first letter. Thus, N stands for nation, L for
language, G for gender, A for age and E for education level.

In the Twitter dataset, we find that users from all countries
follow mostly users from the USA. Exceptions include users from
Portugal, Romania, Latvia, Venezuela, Taiwan, Chile, Brunei,
Brazil and Norway. Users of these countries seek to follow mainly
other users from the same country. From the cuboid (nation -
gender) the entropy reveals that users from Monaco and Nauru
follow males 2.2 times more often than females. Similarly, users
from Thailand follow men 1.7 times more often than women. On
the contrary, Mongolia users follow women 2.1 times more often
than men.

From the VK dataset, we mine some other trends. Most con-
nections are towards 35-year-old users from Russia and after
that from Ukraine. Most connected users are born between 1986
and 1990. Users from USA are connected mostly with women,
the same appears for users from Kazkhstan. Users connected
with Turkish profiles are 70% men. Women are related uniformly
with both genders while men are connected 60% with other men
and 40% with women. Most users are connected to other profiles
without a university degree and after that with users that got
their diploma between 2008-2012.

Using the entropy-based techniques in the Pokec dataset we
see other interesting trends. First, we observe that most relation-
ships are towards women. Specifically, users between 19 and 22
years old have mainly connections to women. On the other hand,
19-year-old females are more frequently connected with other
females. With respect to location, connections between the same
cities dominate. Also, the most connections are with users from
the Presovsky kraj and Presov regions. Users from most of the
regions are connected with female users except for those from
Nitriansky kraj and Nitra that are associated with more men.
19-year-old users from Presovsky kraj, Bardejov are connected
mainly with male peers. Users between 32 and 37 years old from
Banskobystricky kraj, Banska are connected mainly with females
that are 22 years old.

The rightmost column of Table 2 depicts the support of the
corresponding trend. The numbers validate our intuition that
skewed trends are quite often hidden within valleys of uniform
behavior. Indeed, most trends have small support values and
would be, thus, missed by a frequent itemset counting algorithm.

7 RELATED WORK
The work in [35] introduced the graph cube that takes into ac-
count both attribute aggregation and structure summarization of
the underlying graphs. This work is mainly focused on cuboids
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Dataset Trend Cuboid min(siHrate ,eiHrate ) Support
Twitter * - En N - L 11.05% 87.12%
Twitter * - USA N - N 12.15% 36.07%
Twitter Portugal - Portugal N - N 12.21% 0.054%
Twitter Romania - Romania N - N 15.01% 0.025%
Twitter Latvia - Latvia N - N 15.23% 0.006%
Twitter Venezuela - Venezuela N - N 15.73% 0.009%
Twitter Taiwan - Taiwan N - N 16.10% 0.006%
Twitter Chile - Chile N - N 16.39% 0.029%
Twitter Brunei - Brunei N - N 16.88% 0.001%
Twitter Brazil - Brazil N - N 16.89% 0.564%
Twitter Norway - Norway N - N 17.03% 0.061%
Twitter Monaco - Male N - G 17.31% 0.002%
Twitter Nauru - Male N - G 17.71% 0.00004%
Twitter Thailand - Male N - G 17.93% 0.021%
Twitter Mongolia - Female N - G 18.06% 0.001%

VK * - 35, Russia|Ukraine * - A, N 13.23% 0.963%
VK * - [1986..1990] * - A 14.11% 2.388%
VK Female - Usa|Kazakhstan G - N 15.53% 0.478%
VK Male - Turkey G - N 16.42% 0.082%
VK Male - Male G - G 16.51% 37.74%
VK * - No Diploma|Diploma 2008-2012 * - E 17.01% 13.42%

Pokec age:[19..22] - Female A - G 12.97% 0.098%
Pokec age:19, Female - Female A - G 13.05% 0.001%
Pokec Cityx - Cityx (same city connection) L - L 15.66% 9.908%
Pokec Female - Male , Male - Female G - G 15.98% 65.34%
Pokec * - Presovsky kraj|Presov region * - R 16.18% 0.032%
Pokec Nitrianskykraj, Nitra - Man R - G 16.47% 0.001%
Pokec age:19, Presovsky kraj|Bardejov - Male A, R - G 17.02% 0.712%
Pokec age:[32..37], Branska - Female,22 A, R - G, A 17.11% 0.012%

Table 2: Main trends derived from the three social datasets

that aggregate the starting and ending nodes on the same di-
mensions, e.g. (nation - nation). More general aggregations that
differentiate between the starting and ending nodes of the graph
are not specifically mentioned but can be addressed under a cross-
cuboid computation that is mentioned as an extension. In our
work, we elevate such cuboids as first-class-citizens in the graph
cube framework. As our experiments with real datasets indicate,
such cuboids often hold significant insights for the underlying
interconnections. Another distinction is that the work of [35]
considers all records in the proposed graph cube. As we show
in our work, only a small part of a complex graph cube carries
interesting information when analyzed under the lens of our
entropy-based navigation framework.

A recent work [33] considers aggregate attributed graphs. The
authors name their model as a hyper graph cube and show how
to compute it using MapReduce batches. The hyper graph cubes
aggregate separately attributes at vertices and edges and then
calculate the Cartesian product between them. Thus, they do
not exploit and analyze the existing relationships under different
levels of aggregation on the starting and ending nodes of the
graph. OLAP-style summarization in the context of RDF graphs
has been recently studied in [2]. The most significant difference
from the previous works in graph cubes, is that our techniques
address the vast size and complexity of the produced cuboids. To
the best of our knowledge we are the first that utilize the entropy
in order to filter the information of a graph cube.

The authors of [24] propose a novel framework for recon-
structing multidimensional data from stored aggregates using
the maximum entropy principle. In a nutshell, the proposed tech-
nique finds the model with the least information (maximum
entropy) given a set of constraints that can be the 2n − 2 differ-
ent aggregations in the cube (excluding the raw data and the
grand total aggregate). The method uses a multi-pass algorithm
called Iterative Proportional Filtering (IPF) that converges to the
maximum entropy solution.

The information entropy was first introduced in [29] as a mea-
sure of unpredictability of information content. It measures how
much information there is in an event. Entropy is frequently used
for splitting decisions when computing Decision Trees [27] The
information gain measures the change in information entropy
from a prior state to new state after a split. Our external entropy
rate measure utilizes the information gain metric in the nomina-
tor of its respective formula but differs in that it also takes into
consideration the maximum possible increase in the entropy of a
child cuboid in a drill down step. By conditioning the information
gain over this quantity we are able to obtain the bounds that our
selection algorithm utilizes.

Recently, an entropy-based model has been proposed [25] in
order to estimate the strength of social connections by analyzing
users’ occurrences in space and time. This work considers triplets
of (user, location, time) data and utilizes entropy to measure
the diversity of user co-occurrences. In our work, we utilize
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entropy to measure the diversity within and across graph cuboids.
The works of [3, 4] consider the case of analyzing very large
collections of smaller data graphs, while in this work we consider
a singe massive graph that is under investigation.

Our techniques can be used in conjunction with existing sys-
tems for parallel graph processing [30] and tools like Perseus [19]
that summarizes an input graph using statistics such as PageRank,
radius, degree and flags outlier nodes [31], graph visualization
tools [18], or with systems that recommend promising visualiza-
tions on aggregated datasets like SEEDB [32]. Our techniques
may also be combined with the work of [13] that seeks intuitive
drill-down operations from aggregated views of data.

Application of graph mining techniques [1, 8, 17, 21, 23, 26]
is also orthogonal to our framework and can be used in con-
junction. For instance, the work of [23] looks for structural pat-
terns (or motifs) in the k-hop neighborhood of a node. The work
of [21] suggests aggregation of graph nodes scores on vertices
that contain some attribute of interest. Unlike conventional ice-
berg queries, the authors propose an aggregation method that is
based on random walks and demonstrate their effectiveness and
scalability. The authors of [7] explore data mining techniques to
analyze tagging behavior on social graphs. The authors of [9]
introduce graph-pattern association rules (GPAR). These rules ex-
tend traditional association rules with graph patterns that specify
association between entities in a social graph.

There is recent work on systems that permit interactive ex-
ploration of very large data cubes. For example DICE [14] is a
distributed system that utilizes faceted exploration in order to
limit the number of possible queries in an interactive session.
Extending this technique for graph cubes is an interesting re-
search direction. Our entropy-based cube navigation framework
can be combined with the idea of faceted exploration, either as a
pre-processing step that limits the set of possible aggregations
(cuboids) that need to be considered, or during interactive explo-
ration by using the external/internal entropy rates in order to
steer the user towards skewed correlations.

8 CONCLUSIONS
Graph data is becoming popular due to emerging applications
that need to process and analyze interconnected datasets. In this
work we proposed a graph data analysis framework based on
the graph cube operator. Similar to the data cube, graph cubes
contain an exponential number of aggregations of the raw data
graph. Moreover, these aggregations are not simple flat records
but rather complex graph structures that make their exploration
cumbersome.

To overcome these obstacles our framework utilizes two novel
entropy metrics that help locate unusual patterns hidden within
billions of graph data aggregations. We put our framework to the
test using three real social datasets of realistic sizes. Our prelimi-
nary results demonstrate that indeed entropy-guided exploration
can help prune lots of uniform correlations enabling the analyst
to focus on skewed parts of the data that often reveal interesting
trends.
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