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ABSTRACT
The ever-increasing size of data emanating from mobile devices
and sensors, dictates the use of distributed systems for storing
and querying the data. Typically, these data sources provide some
spatio-temporal information, alongside other useful data. The
task of interlinking and interchanging this kind of information
is challenging in the case of large heterogeneity of data sources.
This issue can be addressed by adopting the RDF data model,
proposed by W3C. Hence, with respect to an application scenario
which analyzes vast amount of spatio-temporal heterogeneous
data, the task of efficiently evaluating spatio-temporal queries
on RDF is crucial. In this paper, we address the problem of effi-
ciently processing SPARQL spatio-temporal queries in parallel,
by proposing the DiStRDF system. We use Spark, a well-known
distributed in-memory processing framework, as the underlying
processing engine. On top of it, we devise a set of query execu-
tion plans which exploit an 1D encoding scheme for improving
the performance of our system. Our experimental evaluation
demonstrates the efficiency of DiStRDF system.

1 INTRODUCTION
The Resource Description Framework (RDF) is a specification
recommended by W3C1 for modeling and interchanging data
over the web. RDF data is represented as a set of triples (subject,
property, object) or ⟨s,p,o⟩, also known as statements. SPARQL
is a declarative language for querying RDF data sets. It relies on
graph pattern matching queries to extract relevant data. A triple
pattern tp is an RDF triple where variables may occur in subject,
predicate or object position.

Nowadays, RDF has become a popular model for linking data
from heterogeneous data sources. In the era of ever increasing
size of RDF repositories (e.g. Google Knowledge Vault), it is im-
perative to produce efficient and scalable distributed solutions
for RDF processing. Challenging issues, such as high availability
and fault tolerance, are common in Big Data systems and need to
be thoroughly studied. Existing systems that address these issues,
typically operate on a set of computing nodes, where data and
processing workloads are distributed among them.

The Hadoop ecosystem is a popular solution for addressing
Big Data issues. Efficient performance of SPARQL queries over
MapReduce, is a challenging task, which has attracted the at-
tention of research community [8, 10, 14, 15, 18]. However, in-
memory frameworks, such as Spark, typically provide better
1https://www.w3.org/
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performance and scalability. Therefore, Spark has arguably be-
come the most popular platform for parallel, in-memory, data
processing.

Even though there exist some first approaches for parallel
processing of in-memory RDF data [13, 17, 19], these are not
designed either for handling spatial nor spatio-temporal data.
Essentially, this means that the spatio-temporal processing can-
not be integrated in RDF processing, but must be developed as
a pre- or post-processing step. However, this “decoupled” ap-
proach misses opportunities for pruning unnecessary data early
in the query processing pipeline, and inevitably leads to inferior
performance.

As an application scenario consider the case of surveillance
data from moving objects (e.g., vessels or aircrafts) collected in
real time from various data sources (i.e., radars, satellites) in
heterogeneous formats, transformed to RDF format, linked with
other external data sets and stored in a distributed storage system.
Then, this data need to be efficiently queried, in order to retrieve
useful information, such as “which vessels were moving in a
particular area during the past month?”. Such data analysis tasks
that require advanced spatio-temporal queries over RDF data, are
common in the case of datAcron project2.

In this paper, we focus on spatio-temporal SPARQL queries,
which apply a user-defined spatio-temporal constraint, alongside
other SPARQL operators, on RDF mobility nodes, i.e. RDF nodes
that contain spatio-temporal information. Nodes like these, might
be parts of an object’s trajectory, or other events of interest.
More specifically, given a spatio-temporal query over horizontally
partitioned RDF data, our goal is to provide an efficient and
scalable distributed processing engine. For simplicity, for the
RDF part of the query, we focus on queries expressed as sets of
triple patterns, e.g., {tp1, tp2, . . . , tpn }. Although such sets do not
cover the entire SPARQL specification, they compose a significant
subset that can be used to express several queries, while they
constitute one of the most challenging processing tasks for an
RDF processing engine.

To support scalable and efficient management and querying
of spatio-temporal RDF data, we propose the DiStRDF system
(Distributed Spatio-temporal RDF system) which comprises of
two main modules: the DiStRDF Storage Layer and the DiStRDF
Processing Layer. The Storage Layer performs the necessary man-
agement of data on a persistent storage, in order to enable fast
data retrieval and high data availability, even in the case of hard-
ware failures. Naturally, the design of the Storage Layer deter-
mines to a great extent the efficiency of the corresponding Pro-
cessing Layer. Hence, the DiStRDF Storage Layer provides several

2http://www.datacron-project.eu/
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options for accessing the stored data, to facilitate the selection of
the best option at the time of query execution.

RDF data in DiStRDF is actually stored encoded using unique
integer identifiers. To produce these identifiers, we exploit an
1D encoding scheme which injects spatio-temporal information
to the stored RDF data. This approach has a significant advan-
tage: we can prune nodes based on spatio-temporal criteria, by
simply checking their unique identifiers. The DiStRDF Processing
Layer exploits this feature to enable efficient distributed spatio-
temporal RDF query processing.

In summary, our contributions can be summarized as follows:
• We present the design and implementation of DiStRDF

which is a parallel in-memory and scalable spatio-temporal
RDF processing engine, based on Spark.
• We propose the DiStRDF Storage Layer which stores en-

coded RDF triples and a dictionary of mappings between
integer identifiers and RDF resources. Moreover, it pro-
vides various options for storing and accessing the en-
coded RDF data.
• We propose the DiStRDF Processing Layer which exploits

an 1D encoding scheme for executing efficient spatio-
temporal RDF queries, while providing the ability to choose
between different query execution plans.
• We implement both Processing and Storage layers and

demonstrate the efficiency of the proposed DiStRDF sys-
tem.

The rest of the paper is organized as follows: Section 2 provides
an overview of related work. Section 3 explains the 1D encoding
scheme used for storing spatio-temporal data and introduces
the DiStRDF Storage Layer. Then, in Section 4 we describe the
DiStRDF Processing Layer, and the logical query plans we have
implemented. Section 5 presents our experimental study and
Section 6 concludes the paper.

2 RELATED WORK
Even though the topic of parallel processing of large-scale RDF
data has attracted much attention recently (cf. [1, 9] for related
surveys), there is no work on parallel and distributed processing
of spatio-temporal RDF data at scale. Approaches for in-memory,
distributed processing of RDF data [13, 17, 19] are related to our
work, yet they do not cater for the case of spatio-temporal data
represented in RDF. In practice, this means that processing of
spatio-temporal RDF queries is “decoupled”, leading to filtering
the RDF data based on the RDF graph patterns (without tak-
ing into account the spatio-temporal constraints), followed by a
refinement step that would exclude from the candidate results,
those that do not satisfy the spatio-temporal constraints. Unfor-
tunately, this approach incurs higher processing costs, since a
large number of candidate results are only pruned at very last
stages of query processing.

Scalable processing of big spatial [5, 21, 23, 24] and spatio-
temporal [2, 7] data has been studied recently, however these ap-
proaches focus only on the spatial (or spatio-temporal) dimension
of data, by enabling efficient retrieval based on spatio-temporal
constraints. In case of spatio-temporal RDF data, such solutions
would have to resolve the required RDF pattern matching after
having identified the data that satisfy the spatio-temporal con-
straints (also called candidate results). Obviously, this approach
leads to wasteful processing, since a high number of candidate re-
sults are computed in vain, since they will later be pruned by the
RDF pattern matching. Clearly, a more efficient solution would

Figure 1: IDs encoding using bits: b total bits, m bits for
spatial part (cell id), k bits for uniqueness, b − (m + k + 1)
bits for temporal part.

resolve both the spatio-temporal part of the query and the graph
patterns at the same time, in order to increase the effectiveness
of filtering. This is the approach adopted by our work, and it
is provided without the use of specialized distributed indexing
structures.

Existing works on spatio-temporal RDF data [3, 6, 11] propose
RDF storage and processing solutions over centralized stores,
therefore they cannot cope with the voluminous nature of big
spatio-temporal RDF data that our approach must handle. Finally,
the proposed encoding scheme for spatio-temporal RDF data has
similarities to the approach adopted in [12] for spatial RDF data.
The main difference is that the temporal dimension cannot be
treated as yet another dimension, but requires special handling.
In turn, this raises challenges relating to producing compact
encoded values, an issue that is studied in detail in [22].

3 THE DISTRDF STORAGE LAYER
The storage layer is responsible for distributed storage of RDF
data, represented as RDF triples. As typical in RDF storage sys-
tems, we employ a dictionary encoding technique [4] using a
mapping table, in order to handle triples of integer values. This
allows more efficient processing, since it is easier to index, com-
press, and process integer values, rather than strings.

However, as most of our RDF data have a spatio-temporal
nature, we adopt the special-purpose encoding scheme described
in [22]. As in any dictionary encoding scheme, an integer value
corresponds to an RDF resource uniquely. In our case of RDF
resources corresponding to spatio-temporal entities, we generate
integer values in an intentional way, so that they provide an
approximate position of the entity in space and time. In this
way, we can filter RDF triples during scans using spatio-temporal
constraints, as is shown in Section 4. More interestingly, this
feature comes “for free”, without the need to build and maintain
special-purpose (distributed) spatio-temporal indexes. Also, our
solution is readily applicable to any distributed RDF processing
system that utilizes dictionary encoding.

In the following, we first provide a short description of the 1D
encoding scheme used for creating the dictionary (Section 3.1), so
that the paper is self-contained. Then, we propose our solution for
efficient and scalable storage and management of two pieces of
data: (a) the dictionary that maps integer values to RDF resources
and vice-versa (Section 3.2), (b) a large set of integer-encoded
RDF triples (Section 3.3).

3.1 1D Encoding Scheme
Consider a regular spatial grid that partitions the 2D spatial do-
main into 2m = (2m/2 ∗ 2m/2) equi-sized cells. Also, consider
a temporal partitioning T = {T0,T1, . . . } of the time domain,
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where Ti represents a temporal interval. We make no assump-
tions on specific properties of the partitioning, i.e., the length
(or duration) of temporal partitions can vary, apart from the fact
that the partitions are disjoint, they cover the entire time do-
main (

⋃
Ti = T ), and thatTi precedesTi+1 in the temporal order.

Every temporal partition Ti is associated with a 2D spatial grid.
The only restriction is that the identical grid structure (i.e., 2m
equi-sized cells) is used for all temporal partitions Ti .

To encode the spatio-temporal information into an integer
(ID), we consider its binary representation consisting of b bits
(Figure 1). We set the most-significant bit to 0 for all IDs of spatio-
temporal RDF entities, while it is set to 1 for IDs of all other
RDF entities. We also keepm bits to represent the different 2m
spatial grid cells. Each spatial cell is assigned an m-bit identifier
using a space-filling curve (Hilbert curve), in order to produce
identifiers that respect the spatial locality of cells. Furthermore,
we reserve k bits for assigning unique IDs to different entities
in the same spatial cell for the same time partition. As such, the
maximum number of entities that fit in a spatio-temporal (3D)
cell is 2k . This part of the ID is auto-incremented, and is encoded
in the rightmost bits. Thus,m + k bits are used for representing
the identifiers of spatio-temporal entities of a single temporal
partition. The remaining b−(m+k+1) bits are used for encoding
the time, thus we can store 2b−(m+k+1) temporal partitions in
total.

Example 3.1. In Figure 1, we consider the case of b=16,m=4,
and k=3, and the depicted identifier is 28 + 25 + 24 + 2 = 306. The
spatial cell in which it belongs is 6 (=0110), and the spatial grid
contains 24 = 16 cells in total. This encoding can accommodate
2b−(m+k+1) = 28 = 256 temporal partitions.

Given an ID of a spatio-temporal entity, the 3D grid cell enclos-
ing the entity can be retrieved. Also, given a 3D cell, a range of
IDs can be computed that correspond to any entity belonging to
the cell. The proposed encoding ensures that entities with similar
spatio-temporal representations are assigned IDs that belong to
small ranges, thus preserving data locality. For example, given
a time partition Ti , all entities s(τ ) in Ti belong to the interval
[2i ∗ (2m+k ), 2i+1 ∗ (2m+k )], where 2m is the number of spatial
cells, and 2k is the maximum number of objects within each spa-
tial cell. Essentially, 2i is used to shift the intervals, thus we can
map the different temporal partitions to different 1D intervals
of identifiers. In summary, our encoding: (a) allows to retrieve
a spatio-temporal approximation given an ID, and (b) achieves
to reflect the spatio-temporal locality in the 1D integer domain,
by assigning nearby integer values to entities which are close to
each other in the spatio-temporal space. Details on the computa-
tion of the identifier as well as various strategies for partitioning
the temporal domain dynamically are provided in [22].

3.2 Storing the Dictionary
An efficient storage solution needs to be selected for storing the
dictionary, by considering the following requirements:

• The data model of the dictionary is a plain key-value model,
where a bi-directional mapping is required between strings
and integer values.
• Regarding access patterns, the dictionary is used for lookups

(random access) based on some key, and we need to support
very efficient retrieval of the respective values, in order to
avoid delaying the actual query processing.

Distributed Storage System
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Figure 2: Design of distributed RDF storage.

• The dictionary should be stored in main-memory to enable
fast retrieval.
• The size of the dictionary is expected to be large (related

works have reported that its size can be comparable to the
size of the RDF triples), therefore we need a distributed
storage scheme that scales gracefully with increased data
size.
• The dictionary should provide high availability, even in

the case of hardware failures.
After putting all the above requirements together, we turn our

attention to distributed NoSQL key-value stores that satisfy such
requirements. In particular, we opt for the popular REDIS3, an
open-source, in-memory, distributed key-value store, which fits
our purposes.

Redis provides a key-value storage and access model that fits
our requirements. In order to support efficient bi-directional
lookups, we need to maintain two separate Redis databases: the
integer to string mapping and vice-versa. Redis keeps all data and
indices in main memory, to enable fast data retrieval. Also, it sup-
ports data partitioning and replication, to enhance the capacity
and availability of the system.

3.3 Storing RDF Triples
Distributed storage of RDF triples has been well-studied recently,
due to the ever-increasing number and size of publicly available
RDF data sets. The design of our distributed RDF store is generic
and supports different options for storing and accessing data,
as shown in Figure 2. Our premise is to make available several
different options, and provide the ability for the administrator to
select the desired query execution plan. Based on the literature,
the following aspects guide the design of our RDF triples storage
layer:

File Layout: Typical file layouts include row-based storage (e.g.,
the case of CSV files) and column-based storage (e.g., Parquet4).
Both formats have advantages and disadvantages. For instance, it
is well-established in the field of databases that columnar format
achieves better compression and performs better for queries that
retrieve few columns of a table only, while row format is better
for queries that retrieve many columns. Our storage layer stores
data in both layouts (CSV and Parquet); the desired layout can
be picked at the time of query execution.

3https://redis.io/
4https://parquet.apache.org/
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Data Organization: Encoded RDF data can be organized into
an one triples table, where each row corresponds to a single en-
coded RDF statement. Property tables is another approach for
organizing RDF data, where the row is expanded to include mul-
tiple statements. A single row of the table stores a set of property
values which share a common subject. The number of the val-
ues that are stored together, can be specified at the design time,
while the rest of them are stored as simple leftover triples, in an
one triples table. Property tables show good performance when a
group of properties always exists for a given resource, thereby
avoiding the need of costly joins to reassemble this information.
Our storage layer currently supports the storage and handling of
both one triples table and property tables.

Data Partitioning: The distribution of triples to storage nodes
is also important and typically has a major impact on query
performance. As SPARQL queries typically involve many joins, a
distribution of triples that does not take into account the access
patterns based on the query workload is going to hinder data
locality. Inevitably, this will result to large data transfers over
the network. Thus, a good data partitioning scheme for RDF
data is one that processes large parts of the query locally at a
node, avoiding the need of exchanging large intermediate results.
With respect to the goal of this study, we expect that all queries
are going to have a spatio-temporal constraint. Therefore, we
consider as a good practice to partition data based on spatio-
temporal criteria. To this end, we exploit the spatio-temporal ID
used to encode resources, and range-partition triples based on
the spatio-temporal information injected in the encoded value of
mobility nodes.

Indexing: With respect to indexed access to disk when loading
an RDD in memory, we exploit the predicate pushdown mech-
anism offered by Spark in combination with Parquet storage.
Essentially, this mechanism enables selective access to the stored
data, by exploiting filters present in the query, in order to re-
strict access from disk explicitly on those blocks that contain
data matching the existing filters.

In order to satisfy the above requirements, we opt to HDFS
for storing RDF triples. HDFS is a generic distributed file system
which is optimized for storing large sets of data. It can be used as
a data source for Spark applications while supporting several file
layouts, such as text and Parquet. HDFS supports partitioning
by splitting files into blocks of fixed size (usually 128 MBs). File
blocks are stored internally into different cluster nodes and can
be processed locally when needed. Furthermore, blocks can be
replicated among cluster nodes to support high data availability.

4 THE DISTRDF PROCESSING LAYER
The DiStRDF Processing Layer is a SPARQL query engine that
supports scalable and efficient batch RDF query processing over
vast-sized, spatio-temporal RDF data. To implement the DiStRDF
Processing Layer, a parallel in-memory data processing engine is
required. For this purpose, we select Apache Spark [25], since
it is the most popular data processing engine, with the widest
set of contributors, implementing the MapReduce model in main
memory, thereby achieving significant performance gains to com-
petitor systems [20], such as Hadoop.

In the following, we explain the basic Spark query operators
which can be used for processing queries expressed as sets of
triple patterns. Then, we pick a query example to be studied as
a typical use case of the proposed DiStRDF system, in order to
demonstrate the overall processing approach and its merits in

terms of performance gains. We devise a set of logical plans based
on this query, which will be examined later in the experimental
evaluation.

4.1 Basic Query Operators
The very basic operators needed for querying RDF data include
selection, projection and join. Obviously, these operators do not
cover the complete SPARQL specification (e.g., grouping, sorting,
etc.), however they cover a wide variety of SPARQL queries, and
constitute the fundamental and challenging part of a parallel RDF
processing engine.

4.1.1 Selection. The Selection operator (σ ) takes as input a
triple pattern and returns all RDF triples that match the pattern.
In the absence of an index, the Selection operator scans the RDF
triples to identify matching triples. In the case of an index or
sorted access to data, the Selection operator can be implemented
more efficiently and avoid the complete scan.

In Apache Spark, a selection of data based on some filtering
condition requires in principle a parallel scan of the input data,
and loading in an RDD only the records that match the filtering
condition. Spark supports predicate pushdown, namely avoiding
reading all records and filtering them, but rather reading only the
records that match with the filtering condition. Essentially, Spark
dictates to the storage system which records are necessary, and
lets the storage system filter them without reading in memory.
This is a very powerful feature when combined with a storage
format, such as Parquet. We exploit predicate pushdown when
reading data from disk to memory, in order to achieve better
performance.

4.1.2 Projection. The Projection operator (π ) takes as input
a subset of Subject, Predicate, and Object, and returns only this
subset for all RDF triples. In practice, it is useful for keeping only
the part of RDF triples necessary for performing a subsequent
processing step. As an example, consider selecting only the Sub-
jects of all triples having predicate p1 and object o1. It should be
mentioned that projection pushdown is also supported by Parquet.

4.1.3 Join. The Join operator (▷◁) takes as input two instances
of RDF sets of triples and associates triples from both sets us-
ing some common part of the triples (e.g., Subject, Predicate, or
Object), which can also be a variable. Join operators usually re-
sult to large amounts of data being exchanged over the network,
thus optimizing its processing cost is often crucial. Notice that
it is quite common to join one set of triples with itself, such as
the case of searching graph patterns, i.e., triples that are linked
together.

Given the fact that data is distributed, processing a join op-
erator often requires distributed join processing. This is a chal-
lenging operation because it usually results in transferring large
amounts of data from one node to another, and this cost can
dominate the entire execution cost. As a result, optimizing the
processing of joins is a critical factor for a distributed RDF pro-
cessing engine.

The DiStRDF Processing Layer supports all the aforementioned
operators at the logical level. These operators may be physically
implemented using various algorithms. Typically, query engines
support more than one physical implementations on each of the
operators available. As such, it is crucial for a query engine to be
able to choose effectively at runtime the most efficient physical
implementation available in the system. In DiStRDF Processing
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Figure 4: Example of join graph for query of Figure 3, and
different DAGs corresponding to execution plans.

Layer the choice of a physical implementation, depends on a
static set of rules (rule-based optimization).

The Spark SQL API, implements two main physical join op-
erators: Broadcast Hash Join and Sort-merge Join. These algo-
rithms are described in the following, assuming that datasetA
and datasetB are joined together, when the size of datasetB is
estimated5 to be smaller than the size of datasetA:
• Broadcast Hash Join. This algorithm is typically more

efficient for smaller sizes of datasetB. It broadcasts datasetB
to all nodes available in the cluster. Then, each node per-
forms a join operation, using the portion of datasetA avail-
able locally. The execution steps of this algorithm are
described below:

(1) datasetB is collected at a single node of the cluster (also
called driver node).

(2) A hashed structure of datasetB is built locally on the
driver node.

(3) Hashed datasetB is broadcast to all the nodes.
(4) The broadcast datasetB is joined with local portions of

datasetA in parallel, using the hash join algorithm.
• Sort-merge Join. This algorithm performs better for larger

sizes of datasetB. It can also be used when the actual size
of datasetB is unknown and cannot be estimated accu-
rately. It performs a shuffling (i.e. repartitioning) of both
datasetA and datasetB on all nodes of the cluster and then
joins together the local subsets. Sort-merge Join is a more
decentralized algorithm compared to Broadcast Hash Join,

5An estimator is built in Spark SQL Catalyst optimizer.

at the cost of potentially higher network bandwidth con-
sumption.

(1) datasetA and datasetB are repartitioned (shuffled) using
the same partitioner6 on their respective join keys. Thus,
records from both datasets will reside on the same node,
if and only if these records share the same join keys.

(2) Each local subset of datasetA is sorted in parallel on all
nodes.

(3) The Sort-merge Join algorithm is applied on the subsets
of sorted datasetA and datasetB.

4.2 Spatio-temporal RDF Processing
Consider the case of a spatio-temporal query StW, which is de-
fined by a non spatio-temporal SPARQL query Q , and a spatio-
temporal constraint q. Moreover, for ease of presentation, let us
restrict the SPARQL query Q to consist of a set of triple patterns,
i.e., Q = {tp1, tp2, . . . , tpn }. In abstract terms, processing an StW
query consists of two parts: (a) processing the triple patterns Q
to find qualifying triples, and (b) processing the spatio-temporal
query q to find matching entities in spatio-temporal terms. The
final result is the intersection of these intermediate results.

The gist of our approach is that given the spatio-temporal one-
dimensional encoding introduced in Section 3.1, we can transform
the spatio-temporal part of the query q into a range filter for en-
coded Subjects in triples, i.e., similar to having an additional triple
pattern tpn+1 in Q . This approach has the advantage that it es-
sentially replaces the need for spatio-temporal processing (and
any specialized index structure that would be required for ef-
ficient processing) with a plain additional filtering constraint
that needs to be imposed on resulting triples. The caveat is that
this approach can produce false positives, i.e., triples that do not
actually match the spatio-temporal constraint q. Therefore, the
produced result set needs to go through a refinement phase, in
order to discard false positives from the final result set.

For a given StW query, we construct a logical query plan that
practically determines one potential way to process the query, by
specifying the execution order of the query operators. Obviously,
several queries may be executed using various query plans, each
leading to different performance. For instance, the StW query
might be executed by either processing the spatio-temporal part
of the query first (denoted ST-First), or by processing the RDF
part of the query first (denoted RDF-First). Undoubtedly, other
query plans can be produced by changing the order of the triple
patterns in the RDF part of the query, but we assume a specific
order of execution for the triple patterns to ease exposition and
examine only these two options for query plans.

DiStRDF impements both ST-First and RDF-First logical query
plans, which are described in detail in the following.

4.3 Logical Query Plans
To exemplify, Figure 3 demonstrates the the case of an StW query,
where the left part shows (part of) an RDF graph and the right
part depicts a query on that graph that consists of two triple
patterns and a spatio-temporal constraint. Essentially the RDF
graph is composed of a mobility node (node1) which has a specific
rdf:type property and a set of observation values, such as its
speed, its status, its spatial and temporal information, etc. The
query’s goal is to retrieve the mobility nodes which are of type

6A partitioner is a mechanism that determines the location (i.e. node) of each record,
on the repartitioning process.
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Figure 5: Logical query plans.

"Node" and have status "SPEED_CHANGE", while satisfying a
spatio-temporal box constraint.

The two triple patterns are marked with 1 and 2. Also, we mark
the spatio-temporal constraint with 3, as if it were an additional
triple pattern, since we have explained that our encoding permits
us to deal with spatio-temporal constraints as a triple pattern,
namely a Selection operator on triples.

Figure 4 shows the join graph corresponding to the query. Also,
notice that the join graph consists of 3 nodes, which correspond
to the 3 triple patterns of the query. The edges connect nodes
that share a common variable, in this case: ?s. Essentially, the
join graph is a representation of triples pattern joins.

This graph can be transformed to a directed acyclic graph
(DAG) in different ways, as shown in Figures 4(b) and (c). In this
way physical execution plans are produced, which correspond
to alternative ways to execute the query. For example, the DAG
in Figure 4(b) corresponds to an RDF-First approach, where the
RDF part of the query is processed first, pruning unnecessary
triples, and followed by the spatio-temporal part of the query.
This plan should be selected when the RDF part of the query is
very selective, thus eagerly pruning a great number of triples.
In contrast, the DAG in Figure 4(c) corresponds to an ST-First
approach, where the spatio-temporal filter is processed first, thus
restricting the number of RDF triple by pruning those that do
not comply with the spatio-temporal constraint, followed by
processing the RDF part of the query. Again, this plan is preferred
when the spatio-temporal constraint is very selective.

4.3.1 RDF-First Logical Plan. Figure 5a depicts the RDF-First
logical plan. This query plan aims to minimize the size of R1.

First, the RDF data source (set of RDF triples) is filtered by the
RDF query predicate, and then by the spatio-temporal informa-
tion present in the 1D encoding. These filters produce R1. Notice
the benefit of the proposed encoding scheme: in the absence of
this encoding, it would not be possible to apply the second filter,
thus R1 would contain data filtered only by the RDF constraint.
Thus, we can reduce the size of R1 at an early stage of processing.

As described earlier, filtering by spatio-temporal ID informa-
tion, produces false positives, which need to be refined. For this
purpose, we need the spatio-temporal exact information of each
entity. Therefore, R2 is produced by applying the spatial and
temporal predicates on the data source. R2 contains all the spatio-
temporal information contained in the data source.

Then, a join operator is used between R1 and R2, in order to
add the encoded spatio-temporal information to the intermediate
result set.

After the join, the refinement phase takes place, which is the
same for all logical query plans: spatio-temporal information is
decoded in actual spatial and temporal value, and false positives
are eliminated to produce the result set. Practically, only the
records that satisfy the spatio-temporal query range predicate
are kept. Finally, a projection of the final result set is applied to
select only the columns that the user has requested. Obviously,
the result needs to be decoded prior to being reported to the user.

4.3.2 Improved RDF-First Logical Plan. Figure 5b depicts the
improved RDF-First logical plan. This plan aims to minimize both
R1 and R2 at the cost of an extra filtering step. This is achieved
by changing the first operator in the plan, which besides filtering
based on the RDF constraint, it also keeps the spatial and temporal
information. In this way, the filter operator that produces R2 is
able to avoid accessing the data source, rather it is produced
from the in-memory result (RDD) produced by the previous filter
operator.

4.3.3 ST-First Logical Plan. Figure 5c depicts the ST-First logi-
cal plan. In this plan, the spatio-temporal filtering is applied first.
This query plan aims to minimize the size of R2.

As already mentioned, the plan performs a spatio-temporal
filter first, based on the information encoded in spatio-temporal
ID. R1 is produced directly by this filter, while R2 is produced by
applying a filter to R1 to keep only the spatio-temporal informa-
tion.
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Figure 6: Performance of DiStRDF system when using various execution plans and join operators.

Then, R1 and R2 are joined together to enrich the intermediate
result set with spatio-temporal information and the rest of the
refinement process is identical to the aforementioned RDF-First
logical query plan.

5 EXPERIMENTAL EVALUATION
In this section, we present the results of our experimental study.
Our algorithms are implemented using Scala 2.11 and Apache
Spark 2.1. We deployed our code on a proprietary cluster of 10
physical nodes, each having 64GB RAM and a 6-core 1.7GHz
processor. All nodes are running Ubuntu 16.04.

5.1 Experimental Setup

Parameter Values
Encoding scheme 1D encoding, random encoding
Logical plans Improved RDF-First, RDF-First, ST-First
Physical plans Sort-merge Join, Broadcast Hash Join
Data organizations One-triples table, Property table

Table 1: Experimental setup parameters (default values in
bold).

Data sets. We used surveillance and static information from
the maritime domain, collected in January 2016, covering the
Mediterranean Sea and part of the Atlantic Ocean. We used
the RDF ontology described in [16]. The size of the data set is
269,357,225 triples, which translates to approximately 6GB in text
format. These triples were encoded to integer values using the
method described in Section 3.1 to form the encoded triples data
set. Data is stored in HDFS using Parquet file format, to enable
efficient access for Spark applications and benefit by columnar
storage, compression and predicate pushdown. The Parquet input
data set is partitioned to 10 HDFS blocks which results to roughly
3GB size of compressed data.

A dictionary containing the mapping between encoded and
decoded values was also created and stored in a Redis cluster in-
stance, running on all 10 nodes of the cluster, with no replication
enabled.

Configuration. We configured Spark on YARN, where each
executor is set to use one virtual core and 2GB of RAM. One node
was set to be the driver node, while the others contain the Spark
Executors. All experiments conducted, use 10 Spark Executors,

with 5 executor cores each. We also used the Jedis 7 library, to
communicate with the Redis cluster instances.

Type of query. We focused our experiments on star spatio-
temporal queries, i.e., StW queries having a star RDF predicate
on a fixed spatio-temporal constraint. All of our experiments
were conducted using the same query parameters, producing a
result set of 21 triples.

Algorithms. We have implemented the aforementioned logi-
cal and physical plans as described in the previous sections for
star spatio-temporal queries. More specifically, we experimented
with (a) RDF-First, ST-First, Improved RDF-First logical plans,
(b) Broadcast Hash Join, Sort-merge Join physical plans and (c)
one-triples table, property tables data organizations. Table 1 sum-
marizes the algorithms used during the experimental evaluation
process.

Metrics. Our main evaluation metric was the total execution
time of each experiment on the Spark cluster. The actual exe-
cution time of our algorithms is presented here, omitting any
overhead caused by Spark initialization procedures. Each experi-
ment was run 3 times, and the average execution time is depicted
in the charts.

Methodology. First, we study the benefits of the 1D encod-
ing scheme, by conducting experiments using our 1D encoding
against random encoding, which is typically used by RDF engines.
Then, we evaluate each of the logical plans, using a fixed physical
plan for the join operator (Sort Merge Join). In the following, we
experiment with the two join physical plans, using only the Im-
proved RDF-First logical plan. Finally, we examine the feature of
storing RDF data in property tables, against the one-triples table.
Our experimental setup is summarized in Table 1, having in bold
the default value of each parameter, unless specified otherwise.

5.2 Results
Benefit of 1D Encoding. Figure 6a depicts the execution time

comparing our 1D encoding against a random encoding, for all
three logical plans. Clearly, by using the spatio-temporal 1D
encoding we are able to prune early a set of triples which do
not satisfy the query spatio-temporal constraint. This improves
performance by at least 10 seconds. It is expected that this gain
will increase for larger data sets. This demonstrates the advantage
offered by our deliberate encoding scheme. It is also important to
note that this early pruning also exploits the predicate pushdown

7https://github.com/xetorthio/jedis
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feature of Parquet, resulting in smaller I/O cost, since fewer data
will be accessed from HDFS.

Comparing the Performance of Logical Plans. Figure 6a demon-
strates the performance comparison of logical plans, when using
the 1D encoding scheme. ST-First logical plan performs worst,
due to the increased size of input to the join operator. Evidently,
the RDF predicate is able to prune many triples, resulting to better
performance for the RDF-First alternatives. RDF-First achieves to
reduce the input size to the join operator, performing better than
ST-RDF. However, the Improved RDF-First algorithm combines
the benefits of both RDF-First and ST-First, providing to the join
operator the smallest input size. These benefits correspond to the
execution time needed by Improved RDF-First, which performs
better than all other alternatives.

Comparing the Performance of Physical Join Operators. Fig-
ure 6b demonstrates the impact on performance by the selection
of a physical join operator. The Sort-merge join operator per-
forms better than the Broadcast join operator due to the large
size of input data. Notice that we used 5 CPU cores per executor,
which results to plenty of data being exchanged locally on the ex-
ecutor’s shared memory. It is also worth noting that Sort-merge
Join algorithm, as implemented by Spark SQL API, performs a
re-partitioning of the entire data set, to a user configurable num-
ber of partitions. This number was set to be equal to the number
of executors (10) during the above experiments.

Figure 6c shows that using the property tables data organiza-
tion results to much better performance, due to not needing a
join operation to evaluate the query results.

6 CONCLUSIONS
In this paper, we present the first parallel and scalable in-memory
solution to the problem of spatio-temporal RDF query processing.
Our proposed DiStRDF system, which comprises of a Process-
ing and a Storage layer, is designed to benefit by the tools and
best practices for handling vast sizes of data. Notable features
of the proposed solution include the support for various query
execution plans, as well as different storage file types and data
organizations. Our experiments demonstrate the performance
of our system, which is able to efficiently process simple RDF
spatio-temporal queries, in a few seconds.

In the future, we plan to extend our system, to cover a larger
part of the SPARQL specification. Furthermore, we plan to im-
prove the performance of DiStRDF Processing Layer by imple-
menting more sophisticated execution plans, based on statistics
of the data.
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