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Abstract

Attention has been the focus of a considerable
amount of research in cognitive models. Yet, most
of the work has been devoted to studying visual
attention. In this paper we focus, instead, on au-
ditory attention and on a model for how it is dis-
tributed in space following basic ideas of top-down
and bottom-up attentional control from verbal mod-
els. In particular, we extend a previous computa-
tional model [Golob et al., 2016; 2017] which is
organized around three main components: a goal
map, a saliency map, and a priority map. The goal
map models the distribution of attention which is
allocated by choice (top-down component). The
saliency map, as the name suggests, models at-
tention related to the saliency of auditory stimuli
(bottom-up component) and the priority map syn-
thesizes the other two maps in an overall distribu-
tion of the attentional bias. This model was shown
to be successful in modeling behavioral data of ex-
periments where there is a single attended location.
We relax this assumption and extend the framework
to encompass scenarios where there can be multiple
attended locations. Most importantly, we leverage
the parameters learned by fitting the behavioral data
with single attended location to make predictions
for the case in which sounds are presented at mul-
tiple locations with equal probability. Our predic-
tions feature a very small error with respect the new
behavioral data and are shown to leave very small
room for improvement. This is an important step in
the, still largely unexplored, field of auditory atten-
tion modeling as it provides a first example of how
the computational model can be used as a predictor.

1 Introduction and Motivation
The auditory system is differentiated from other senses in that
it allows us to monitor the environment for sounds all around
us, including those at a distance and out of sight. This allows
us to sense and quickly shift attention to events, such as a
predator snapping a twig behind us. Although spatial hearing
promotes survival, it is a challenge to strike a balance between

focusing on our current task and recognizing and shifting at-
tention to threats or opportunities in the environment.

While visuospatial attention has attracted a substantial
amount of attention from the research community [Cave and
Bichot, 1999; Greenwood and Parasuraman, 1999; Itti and
Koch, 2001], much less work has been devoted to model au-
ditory spatial attention. Our purpose is to to better understand
this at the cognitive and neural levels of analysis.

Figure 1: Computational Model Schematic.

Our approach consists in an interdisciplinary effort that
uses behavioral methods to test and refine a computational
model of spatial auditory attention and map out auditory at-
tention as a gradient over space. Broadly speaking, our be-
havioral tasks measure reaction time to auditory stimuli gen-
erated at different locations in space. In previous work, we
proposed a computational model of the interplay between
top-down and bottom-up spatial attention. The model was
tested using a task where sounds predominantly come from
one location in space [Golob et al., 2016; 2017]. In this paper
we extend our model to handle scenarios in which attention
is divided over multiple locations in space with similar prob-
ability. We base our extension on utilizing a combination of
the models learned for focusing attention on a single location
and show that this produces a good prediction when attention
is divided over a range of locations.

1.1 Applications to Human-Centered Design
We foresee that this work will help advance understanding
of basic issues in attention, such as top-down and bottom
up interactions, vigilance and capacity limitations. It will
help in identifying the implications of the auditory system’s
comparative advantage over other modalities in its ability to
panoramically monitor the environment. Understanding these



factors is imperative for designing systems for humans where
audition is important. For example, it is an issue in aero-
nautic safety when pilots miss critical alarms in the auditory
environment [Dehais et al., 2014]. Similarly, clinicians find
it challenging to learn and distinguish auditory alarms from
medical devices [Edworthy et al., 2017]. In both of these sit-
uations, it would be helpful to predict when such warnings
might be ignored. Our work targets auditory spatial atten-
tion and thus it will play a fundamental role in understanding
and enhancing the use of spatial sound in particular in vir-
tual environments where it is already applied [Cohen et al.,
2015]. A computational model of spatial auditory attention
will simultaneously bring insight on how the attention alloca-
tion processes work and play a significant role in facilitating
and optimizing systems designed with audition in mind.

2 Background
Most psychological models of attention distinguish between
attention that is guided by personal choice and that which is
directed to a salient event, such as a loud sound [Pillsbury,
1908]. In literature, this can be referred to as top-down vs.
bottom-up attention control. Top-down control biases atten-
tion towards information useful for fulfilling the current goals
in short-term memory. On the other hand, bottom-up refers to
how attention may be captured by something outside the top-
down task set. This distinction is meaningful, although it is
recognized that the two processes are highly interactive [Folk
et al., 1992] and can be challenging to distinguish between.
This motivates our use of a computational model, using AI
constraint programming, that allows examining top-down and
bottom-up functions separately.

2.1 Auditory Attention
Attention can be expressed as a spatial gradient relative to
an attended location [Cave and Bichot, 1999]. Gradients are
likely reflect limitations in perceptual processing, but may
also relate to limits in possible behaviors at a given mo-
ment [Allport, 1989]. Auditory spatial cuing decreases re-
action times to subsequent targets at a cued location rela-
tive to uncued locations, as shown in [Zatorre et al., 1999;
Rorden and Driver, 2001], where target reaction times were
found to increase monotonically with greater distance be-
tween the cued and target locations. Sometimes visual stud-
ies suggest that gradients may have a more complex shape,
with reaction times increasing and then decreasing away from
the cued location [Mller et al., 2005; Caparos and Linnell,
2010](”Mexican-hat”). This is similar to our preliminary
findings in the auditory modality, but the auditory results have
a much larger spatial range.

2.2 Computational Models of Auditory Attention
Computational models of cognitive processes are beneficial
because they require an explicit theory, can reveal hidden as-
sumptions or logical inconsistencies, and simulations can es-
tablish proof-of-principle much faster than pilot experiments
[Itti and Koch, 2001; Lewandowsky and Farrell, 2010]. Our
model uses basic ideas of top-down and bottom-up atten-
tion control from prominent verbal models [Baddeley, 2010;

Cowan, 1988]. The novelty of the approach we consider here
is the application to auditory spatial attention, which is not
dealt with in detail in the general models. Our model is dis-
tinguished by focusing on auditory spatial attention and how
it emerges from top-down and bottom-up interactions. More-
over, the models of attention mentioned above are designed
as ad hoc mathematical descriptions of the considered phe-
nomena, while we opt to cast our model into a more general
artificial intelligence setting.

Figure 2: Map of attentional bias.

2.3 A Computational Model of Spatial Auditory
Attention

In previous work, [Golob et al., 2016; 2017] we presented
an overall hypothesis of the interplay between top-down and
bottom-up spatial attention processing. The model has three
main components (white boxes in Figure 1): goal map,
saliency map, and priority map. The gray boxes show inputs
and outputs that interface with other cognitive functions.

Each map is a 1-D vector of attentional bias in normal-
ized units (0-1) across the semicircular horizontal frontal
plane (from -90◦on the far left to +90◦on the far right, in
2◦increments, as shown in Figure 2). The goal map indexes
top-down attention bias, and is a function of the central exec-
utive in verbal models. It models top-down, voluntary focus
of attention to a location, and has a progressive, symmetri-
cal decrease in attentional bias away from the attended lo-
cation. The saliency map, instead, models how attention is
allocated to a stimulus given how salient its characteristics
are. The priority map synthesizes the contribution of the other
maps. In all the maps areas of greater attentional bias are as-
sumed to relate to measurable data by having faster reaction
times, more sensitive sensory thresholds, and increased accu-
racy relative to locations with less bias.

This computational model adopts a constraint-based ap-
proach to cast the interactions among the three maps into a
constraint solving problem. Constraint programming [Rossi
et al., 2006] is a powerful artificial intelligence paradigm for
modeling and solving combinatorial search problems. The
basic idea in constraint programming is that the user states
the constraints and a general-purpose constraint solver is used
to solve them. Constraints concern subsets of variables and
define which simultaneous assignments to those variables are



Figure 3: Behavioral data in the form of average reaction times at the five locations. Our first experiment showed distinctly
different distributions for each of the three standards (A). In the new experiment, when sounds were equally likely from all
locations, the distribution of average reaction times was significantly flattened (B). Part C displays the inverse of normalized
mean reaction times for both experiments, showing how attention bias is theorized to relate to reaction time (more bias→ faster
reaction times).

allowed. In the model described in [Golob et al., 2016], there
is one input variable corresponding to attended location (A)
with the domain being locations (2◦increments) in the semi-
circle {-90,-88,...,0,...,88,90}.

Variables V i
G, V i

S and V i
P represent respectively, the i-th

variable of the goal, saliency and priority map where i ranges
in {-90,...,+90}. The domain to quantify attentional bias uses
normalized units (0-1, in .01 increments). The attentional bias
in the goal map, given that location A = a is (voluntarily)
attended, is represented by a standard Gaussian distribution
modeled as the set of constraints over variable A and V i

G:

(A = a, V i
G = GGe

−|a−i|2

2∗d2
G ). (1)

Here, dG is the standard deviation of the goal map and GG is
the height of its peak.

Similarly the bias in the saliency map is constrained to a
inverted Gaussian distribution by the following constraints:

(A = a, V i
S = GS −GSe

−|a−i|2

2∗d2
S ). (2)

Here, dS is the standard deviation for the saliency map, and
GS is its minimum value.

Finally, the priority map is defined as the sum of the contri-
butions of the goal and saliency map, with α and β between
0 and 1:

(V i
G = u, V i

S = v, V i
P = αu+ βv). (3)

This model was validated on results obtained from the be-
havioral task outlined in 2.4 by testing it against different
options for the goal and saliency map. Equations 2 and 3
emerged as the best in terms of fitting the experimental data
obtained from the behavioral task described in 2.4, for all
three locations. The best fitting values (1 − E(p)), where
E(p) =

∑
x∈{−90◦,−45◦,0◦,+45◦,+90◦}(dx − p(x))2, were

equal to: 0.943 for 0◦, 0.739 for +90◦and 0.904 for -90◦.

2.4 Behavioral task and results with a single
attended location

We now describe the behavioral task generating the data we
used to evaluate both our previous model and the new, more
general, model presented in Section 3.

Study participants completed a simple behavioral task de-
signed to index auditory attention across space. Participants
were told to judge non-spatial aspects of sounds that came
from different spatial locations. Individuals reaction times
to sounds at 5 different locations in space were utilized to
derive the relative distribution of attention over space. Two
distinct types of white noise were presented from 5 possible
locations across the participants’ 180◦frontal horizontal plane
(90◦, 45◦, 0◦, +45◦, +90◦). Subjects were instructed to dis-
criminate between two types of noise via button press, with
one button for each noise. Both noises were amplitude mod-
ulated at different rates (25Hz and 75Hz AM-rates). Noise
with the 25Hz AM-rate was described to participants as a
card shuffling sound, and noise with the 75Hz AM-rate was
described to participants as a buzzing sound. Most stimuli
came from a standard location (p = 0.84) but sometimes shift
to a distractor location (p = 0.04). Separate blocks had the
standard at -90◦, 0◦and +90◦(counterbalanced).

Figure 3 (A) shows the average reaction time over 42 par-
ticipants for the three standard locations. In Figure 3 (C), all
lines represent the same results but inverted (using the for-
mula (2000 − x)/2000 to show the attentional bias. Units
of attentional bias are arbitrary, but correspond to the range
of reaction times between 0 and 2000 ms. All conditions
showed faster reaction times at the attended/standard loca-
tion (p < .001), where sounds were most likely to occur.
The 0◦standard showed slower reaction times at the ±45◦ lo-
cations, but faster reaction times to sounds occurring at the
±90◦ locations (p < .001). Participants responded accurately
to the AM-rate on over 95% of trials.

These results demonstrate that attentional bias does not
decrease linearly as distance from the attended location in-
creases. First, a sharp decrease in attentional bias occurs at
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Figure 4: Variables and constraints representing the three maps and their interconnections when the model includes (a) a single
attended location or (b) multiple attended locations. For clarity, only the constraints relative to the attended location(s) and the
variable corresponding to the [-90◦,-88◦] locations are shown.

areas surrounding the attended location. Research into visual-
spatial attention has produced similar findings. When fix-
ating visual attention, the brain has been shown to actively
inhibit visual-attention at areas immediately surrounding the
attended location, in order to help isolate attention to that lo-
cation - termed center-surround inhibition [Itti et al., 1998].
Second, reaction times speed up again for sounds occurring at
locations far from the attended location (+/-90◦in Figure 3).
The auditory system is able to detect sounds coming from any
direction, making it excellent at detecting potential oncoming
threats [Scharf, 1998]. This on-line threat detection system
is believed to be responsible for the increased attentional bias
observed at locations far from the attended location, and is
accordingly modeled by the saliency map in our model.

3 Extending the model to multiple locations

We now relax the assumption that a sound is expected from a
single location, allowing for the case where a sound is equally
probable from multiple locations. The constraint-based rep-
resentation of this more general model remains similar to the
previous model described above, except now the model takes
k attended locations as input for the goal and saliency map.

Our cognitive hypothesis is that a k-location setting can be
modeled as a combination of k copies of the original modeled
each centered at one of the locations.

In the new model, the single attended location variable A
is now replaced by a set of k location variables Aj = aj ,
where j = 1..k. Each binary constraint (involving only two
variables) in the original model, which involved A and each
of the V i

G is now replaced by a constraint involving k + 1
variables, namely the k locations variables and V i

G:

Average of k Standard Gaussian Distributions:

(A1 = a1, ..., Ak = ak, V
i
G =

G

k

k∑
j=1

e
−|aj−i|2

2∗d2
G ) (4)

As it can be seen the overall bias of the goal map is defined
as the average of k identical Gaussians each having its peak
at one of the k locations.

Similarly, the k+1-ary constraints below replace the binary
constraints of the saliency map in the original model.

Average of k Inverted Gaussian distributions:

(A1 = a1, ..., Ak = ak, V
i
S =

GS

k
−GS

k

k∑
j=1

e
−|aj−i|2

2∗d2
S ) (5)

The bias of the saliency map is thus defined as the average of
k inverted Gaussians centered at the k locations. The priority
map does not change, and remains defined as in Equation 3.

In Figure 4 we depict (partially) in (a) the constraint graph
of the original model and in (b) the graph of the new model.
In both graphs we have the location variables (green nodes),
the goal map variables (red nodes), the saliency map variables
(blue nodes) and the priority map variables (purple nodes).
Above the nodes corresponding to goal and priority map and
under those of the saliency map we depict a graph showing
the bias. This should be interpreted as follows: each node
corresponds to a variable modeling the bias at a particular lo-
cation. Such a location is the value on the x-axis. The corre-
sponding value on y-axis is the level of attentional bias, that is
the value assigned to the variable corresponding to that node.
For example, the left most node of the goal map, represent
the variable corresponding to location [-90◦,-88◦] which has
value 0. Constraints are depicted as (hyper)-edges in Figure 4
connecting the nodes corresponding to constrained variables.
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Figure 5: Graphs of the goal, saliency and priority maps in the general model when calculated using parameters found to best
fit data at 0◦, -90◦, and 90◦standard locations.

4 Behavioral task and results with multiple
attended locations

In this section we describe how the behavioral data for
equiprobable attended locations was generated and we dis-
cuss how the new model, with the appropriate parameters was
able to predict such results.

4.1 Behavioral task
We validate our extended model on data generated by an ex-
periment which utilizes the same approach described in 2.4,
but differs in that stimuli were equally likely to occur from all
five spatial locations (p=0.2). Accordingly, participants were
not instructed to attend to any one particular location during
the task. We previously performed an experiment with equal
probability at all locations [Golob et al., 2016], but this was
done uniquely as a control to ensure the observed attentional
distribution was caused specifically by subjects’ expectancy
at the ’standard’ location. The new experiment reproduced
these control results in a new group of participants.

As shown in Figure 3 (B) and (C) (dotted line), and in line
with previous control results, the results of this experiment
demonstrate no significant differences in reaction time across
all five locations. These results show that participants tend
to distribute attention evenly across all five locations when
they are not provided with a standard location. The observed
flattening of the curve provides a challenging but potentially
fruitful base-case that ultimately let to extending the model.

5 Results
As we have mentioned in Section 2.3, with our original model
we targeted the case where sounds are expected from a stan-
dard location using Equations 1, 2 and 3 [Golob et al., 2016].
In this model, the peak of attentional bias is centered at the
standard location. Stochastic local search was used to fit the
parameter values dG, dS , GG, and GS to the behavioral data
obtained for each of three standard locations (0◦, -90◦and
90◦). We used the sum of squared errors to evaluate the fit
after each iteration of local search until convergence. The
values for the parameters corresponding to the best fits are
listed in Table 1. Recall that in the new model, the priority
map is the summation of a goal map (created from the av-
erage of k gaussians) and a saliency map (created from the

average of k inverted gaussians). In the goal map, each of
the five gaussians is centered around one of the equally prob-
able locations. Likewise, each of the five minimums of the
inverted gaussians are placed at one of these same locations.
The key point here is: what are the right parameters for the
Gaussians? We conjectured that the parameters learned from
the single-location would be a good choice.

To test our hypothesis we plugged in our general model
(Equations 4, 5) the parameters found in Table 1 for each of
the five Gaussians in the goal and saliency map. We tried
this with the parameters learned for the standard 0◦, -90◦and
90◦locations. The resulting goal, saliency and priority maps
can be seen in Figure 5. By calculating the sum of squared
errors of the new model against the behavioral data (where
sounds are equally probable from five locations), we get the
fit values found in the first row of Table 2. The fit values
indicate relatively small errors, with the best fit model being
the one using parameters learned from the +90◦data.

To further support our hypothesis that single-location pa-
rameters are good predictors for equiprobable-location set-
tings, we ran stochastic local search to find parameter values
that could improve the fit further. The local search algorithm
was initialized with the single-source parameters and then
iterated until convergence (approximately, 1000 iterations),
searching for parameters that increased the fit of the behav-
ioral data. The final fit values are indicated in second row of
Table 2. From this we can see that the fit improved only very
modestly and only when starting at the the ±90◦ parameters.

Std Loc: dG dS GG GS Fit
0◦ 5.95 15.169 0.764 0.742 0.0009

-90◦ 48.496 50.989 0.755 0.746 0.0033
90◦ 4.96 13.87 0.764 0.741 0.0034

Table 1: Parameter values obtained from using a stochastic
local search to fit the priority map to the experimental data.

6 Conclusions and Future Work
We have presented a new model of spatial auditory atten-
tion that handles a task where sounds come from equiprob-
able locations. We hypothesized that parameters previously
learned from a single-location task would be good predictors



Model 0◦ -90◦ 90◦
Before local search 0.004 0.02 0.003
After local search 0.004 0.002 0.002

Table 2: Fit values calculated as the sum of squared error
between model results and behavioral data.

for an equiprobable location task. By using these parameters,
we were able to achieve good fit with relatively small error
against new behavioral data from a task where sounds come
from five equally probable locations.

We will further investigate the role of probability in atten-
tion gradients using experimental data where sounds are pre-
sented away from the standard attended location with 0.04
and 0.12 probability. For the computational model, this will
involve handling sequences of stimuli. We will also examine
the addition of short-term memory load into the behavioral
task, such as when memorizing three words and then per-
forming several trials of the task. Since the load and task-
specific information both rely on short-term memory, this
should impair top-down control and the goal map. We hy-
pothesize that this should increase reaction times to sounds
near the attended location, but not far where the saliency map
has a larger influence. Finally, we plan to investigate whether
changes in sound intensity decrease reaction times near the
standard location, which would be represented by changes to
the saliency map. A long-term goal is the embedding of our
model as an ACT-R module for auditory spatial attention.

Acknowledgments
This work is supported by NIH under grant number R01-
DC015736.

References
[Allport, 1989] Allen Allport. Foundations of Cognitive Sci-

ence. pages 631–682. MIT Press, Cambridge, MA, USA,
1989.

[Baddeley, 2010] Alan Baddeley. Working memory. Current
Biology, 20(4):R136–R140, February 2010.

[Caparos and Linnell, 2010] Serge Caparos and Karina J.
Linnell. The spatial focus of attention is controlled
at perceptual and cognitive levels. Journal of Experi-
mental Psychology. Human Perception and Performance,
36(5):1080–1107, October 2010.

[Cave and Bichot, 1999] K. R. Cave and N. P. Bichot. Visu-
ospatial attention: beyond a spotlight model. Psychonomic
Bulletin & Review, 6(2):204–223, June 1999.

[Cohen et al., 2015] Michael Cohen, Julián Villegas, and
Woodrow Barfield. Special issue on spatial sound in vir-
tual, augmented, and mixed-reality environments. Virtual
Reality, 19(3-4):147–148, 2015.

[Cowan, 1988] N. Cowan. Evolving conceptions of memory
storage, selective attention, and their mutual constraints
within the human information-processing system. Psycho-
logical Bulletin, 104(2):163–191, September 1988.

[Dehais et al., 2014] Frédéric Dehais, Mickaël Causse,
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