Reasoning with Fuzzy Ontologies

Yanhui Li^1 and Baowen Xu^1 and Jianjiang Lu^2 and Dazhou Kang¹

Abstract. By the development of Semantic Web, increasing demands for vague information representation have triggered a mass of theoretical and applied researches of fuzzy ontologies, whose main logical infrastructures are fuzzy description logics. However, current tableau algorithms can not supply complete reasoning support within fuzzy ontology: reasoning with general TBox is still a difficult problem in fuzzy description logics. The main trouble is that fuzzy description logics adopt fuzzy models with continuous but not discrete membership degrees. In this paper, we propose a novel semantical discretization to discretize membership degrees in fuzzy description logic \mathcal{FSHIN} . Based on this discretization, we design discrete tableau algorithms to achieve reasoning with general TBox.

1 Introduction

The Semantic Web stands for the idea of a future Web, in which information is given well-defined meaning, better enabling intelligent Web information processing [1]. In the Semantic Web, ontology is a crucial knowledge representation model to express a shared understanding of information between users and machines. Along with the evolvement from current Web to the Semantic Web, the management of ill-structured, ill-defined or imprecise information plays a more and more important role in applications of the Semantic Web [13]. This trend calls for ontologies with capability to deal with uncertainty. However, classical DLs, as the logical foundation of ontologies, are two-value-based languages. The need for expressing uncertainty in the Semantic Web has triggered extending classical DLs with fuzzy capabilities, yielding Fuzzy DLs (FDLs for short). Straccia proposed a representative fuzzy extension FALC of DL ALC, in which fuzzy semantics is introduced to interpret concepts and roles as fuzzy sets [11]. Following researchers extended FALC with more complex constructions: \mathcal{FALCQ} [6] with qualified number restriction , \mathcal{FSI} [7] with transitive and inverse role, and \mathcal{FSHIN} [8], a extension of \mathcal{FSI} with role hierarchy and unqualified number restriction. Stoilos et al introduced Straccia's fuzzy framework into OWL, hence getting a fuzzy ontology language \mathcal{FSHOIN} , by which fuzzy ontologies are coded as FDL knowledge bases [9].

Though the fuzzy DLs have done a lot, to our best knowledge, reasoning with general TBox in FDLs is still a difficult problem [8]. Current tableau algorithms in FDLs are applied to achieve reasoning without TBox or with acyclic TBox [7, 8, 11], that limits reasoning support within fuzzy ontologies. The main trouble in reasoning with general TBox is that fuzzy interpretations \mathcal{I} map concepts C into membership degree functions $C^{\mathcal{I}}()$ w.r.t domain $\Delta^{\mathcal{I}}: \Delta^{\mathcal{I}} \rightarrow [0, 1]$, where the value domain [0,1] is continuous. In [4], we represented a novel semantical discretization technique to enable translation of membership degree values from *continuous* ones into *discrete* ones. In this paper, we will extend this discretization technique into \mathcal{FSHIN} ; and based on it, we will design a discrete tableau algorithm for reasoning with general TBox in \mathcal{FSHIN} . Since nominals should not be fuzzyfied, our discrete tableau algorithms for \mathcal{SHIN} , together with reasoning technique to deal with nominals in crisp DLs [3], can be extended to provide a tableau algorithm for general TBox in \mathcal{FSHOIN} , that will achieve complete reasoning within fuzzy ontologies.

2 Logical Infrastructure of Fuzzy Ontologies

Let N_C be a set of concept names (A), N_R a set of role names (R)with a subset N_R^+ of transitive role names and N_I a set of individual names (a). \mathcal{FSHIN} roles are either role names $R \in N_R$ or their inverse roles R^- . To avoid R^{--} , we use Inv(R) to denote the inverse role of R. \mathcal{FSHIN} concepts C, D are inductively defined with the application of \mathcal{FSHIN} concept constructors in the following syntax rules:

$$C,D::\top |\bot|A|\neg C|C \sqcap D|C \sqcup D|\exists R.C|\forall R.C| \geq pR| \leq pR$$

Since concepts and roles in \mathcal{FSHIN} are considered as fuzzy sets, the semantics of concepts and roles are defined in terms of fuzzy interpretations $\mathcal{I} = \langle \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}} \rangle$, where $\Delta^{\mathcal{I}}$ is a nonempty domain, and $\cdot^{\mathcal{I}}$ is an interpretation function mapping individuals a into $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$; concept (role) names A(R) into membership functions $A^{\mathcal{I}}(R^{\mathcal{I}}) : \Delta^{\mathcal{I}} (\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}) \to [0, 1]$. And for any transitive role name $R \in N_{\mathrm{R}}^+$, \mathcal{I} satisfies $\forall d, d' \in \Delta^{\mathcal{I}}$, $R^{\mathcal{I}}(d, d') \geq \sup_{x \in \Delta^{\mathcal{I}}} \{\min(R^{\mathcal{I}}(d, x), R^{\mathcal{I}}(x, d'))\}$. Furthermore, $\cdot^{\mathcal{I}}$ satisfies the following conditions for complex concepts and roles built by concept and role constructors: for any $d, d' \in \Delta^{\mathcal{I}}$

 $-\tau$

$$\begin{array}{rcl} \top^{\mathcal{I}}(d) &=& 1 \\ \perp^{\mathcal{I}}(d) &=& 0 \\ (\neg C)^{\mathcal{I}}(d) &=& 1 - C^{\mathcal{I}}(d) \\ (C \sqcap D)^{\mathcal{I}}(d) &=& \min\{C^{\mathcal{I}}(d), D^{\mathcal{I}}(d)\} \\ (C \sqcup D)^{\mathcal{I}}(d) &=& \max\{C^{\mathcal{I}}(d), D^{\mathcal{I}}(d)\} \\ (\exists R.C)^{\mathcal{I}}(d) &=& \sup_{d' \in \Delta^{\mathcal{I}}} \{\min(R^{\mathcal{I}}(d, d'), C^{\mathcal{I}}(d'))\} \\ (\forall R.C)^{\mathcal{I}}(d) &=& \inf_{d' \in \Delta^{\mathcal{I}}} \{\max(1 - R^{\mathcal{I}}(d, d'), C^{\mathcal{I}}(d'))\} \\ (\geq pR)^{\mathcal{I}}(d) &=& \sup_{d_{1}, d_{2}, \dots, d_{p} \in \Delta^{\mathcal{I}}} \{\min_{1}^{p}(R^{\mathcal{I}}(d, d_{i})\} \\ (\leq pR)^{\mathcal{I}}(d) &=& \inf_{d_{1}, d_{2}, \dots, d_{p+1} \in \Delta^{\mathcal{I}}} \{\max_{1}^{p+1}(1 - R^{\mathcal{I}}(d, d_{i})\} \\ (R^{-})^{\mathcal{I}}(d, d') &=& R^{\mathcal{I}}(d', d) \end{array}$$

A \mathcal{FSHIN} knowledge base (KB) \mathcal{K} is a triple $\mathcal{K}=\langle \mathcal{T}, \mathcal{R}, \mathcal{A} \rangle$, where \mathcal{T}, \mathcal{R} and \mathcal{A} are \mathcal{FSHIN} TBox, RBox and ABox. The syntax and semantics of axioms in them are given in table 1. An interpretation \mathcal{I} satisfies an axiom if it satisfies corresponding semantics restriction given in table 1. \mathcal{I} satisfies (is a fuzzy model of) a KB \mathcal{K} , iff \mathcal{I} satisfies any axiom in \mathcal{T}, \mathcal{R} and $\mathcal{A}. \mathcal{K}$ is satisfiable iff it has a

¹ Department of Computer Science and Engineering, Southeast University, Nanjing 210096, P. R. China. email: yanhuili,bwxu,swws@seu.edu.cn

² Institute of Command Automation, PLA University of Science and Technology, Nanjing 210007, China. email:jjlu@seu.edu.cn

fuzzy model. In this paper, we will propose a discrete tableau algorithm to decide satisfiability of \mathcal{FSHIN} KBs, which is based on the "semantical discretization" discussed in the following section.

	,	
	Syntax	Semantics
TBox \mathcal{T}	$C\sqsubseteq D$	$\forall d \in \Delta^{\mathcal{I}}, C^{\mathcal{I}}(d) \le D^{\mathcal{I}}(d)$
RBox \mathcal{R}	$B \sqsubset P$	$\forall d, d' \in \Lambda^{\mathcal{I}}, B^{\mathcal{I}}(d, d') \leq P^{\mathcal{I}}(d, d')$

Table 1. Syntax and semantics of \mathcal{FSHIN} axioms

KD0X /C	$n \sqsubseteq 1$	$\forall u, u \in \Delta$, Π $(u, u) \leq \Gamma$ (u, u)
	$a: C \bowtie n$	$C^{\mathcal{I}}(a^{\mathcal{I}}) \bowtie n$
ABox \mathcal{A}	$\langle a,b\rangle:R\bowtie$	$R^{\mathcal{I}}(a^{\mathcal{I}}, b^{\mathcal{I}}) \bowtie n$
	$a \neq b$	$a^{\mathcal{I}} \neq b^{\mathcal{I}}$

C and D (R and P) are concepts (roles); $a, b \in N_I$; $\bowtie \in \{\geq, >, \leq, <\}$; $n \in [0,1]$.

Semantical Discretization in \mathcal{FSHIN} 3

For any fuzzy model of \mathcal{FSHIN} KBs, we discretize it into a special model, in which any value of membership degree functions belongs to a given discrete degree set S. And we call it a discrete model within S. Let us now proceed formally in the creation of S. Let N_d be the set of degrees appearing in ABox $N_d = \{n | \alpha \bowtie n \in \mathcal{A}\}$. From N_d , we define the degree closure $N_d^* = \{0, 0.5, 1\} \cup N_d \cup \{n | 1 - n \in \mathbb{N}\}$ N_d and order degrees in ascending order: $N_d^* = \{n_0, n_1, \dots, n_s\},\$ where for any $0 \le i \le s$, $n_i < n_{i+1}$. For any two back-to-back elements $n_i, n_{i+1} \in N_d^*$, we insert their median $m_{i+1} = (n_i + 1)$ $(n_{i+1})/2$ to get $S = \{n_0, m_1, n_1, \dots, n_{s-1}, m_s, n_s\}$. We call S a discrete degree set w.r.t K. Obviously for any $1 \leq i \leq s, m_i + c$ $m_{s+1-i} = 1$ and $n_{i-1} < m_i < n_i$.

Theorem 1 For any $\mathcal{K} = \langle \mathcal{T}, \mathcal{R}, \mathcal{A} \rangle$ and any discrete degree set S w.r.t K, iff K has a fuzzy model, it has a discrete model within S.

Proof. Let $\mathcal{I} = \langle \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}} \rangle$ be a fuzzy model of \mathcal{K} and the degree set $S = \{n_0, m_1, n_1, \dots, n_{s-1}, m_s, n_s\}$. Consider a translation function $\varphi(): [0,1] \to S$:

$$\varphi(x) = \begin{cases} n_i & \text{if } x = n_i \\ m_i & \text{if } n_{i-1} < x < \end{cases}$$

Based on $\varphi()$, we will construct a discrete model $\mathcal{I}_c = \langle \Delta^{\mathcal{I}_c}, \cdot^{\mathcal{I}_c} \rangle$ within S from $\mathcal{I} = \langle \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}} \rangle$:

- The interpretation domain $\Delta^{\mathcal{I}_c}$ is defined as: $\Delta^{\mathcal{I}_c} = \Delta^{\mathcal{I}}$;
- The interpretation function \mathcal{I}_c is defined as: for any individual name $a, a^{\mathcal{I}_c} = a^{\mathcal{I}}$; for any concept name A and any role name R: $A^{\mathcal{I}_c}() = \varphi(A^{\mathcal{I}}())$ and $R^{\mathcal{I}_c}() = \varphi(R^{\mathcal{I}}()).$
- 1. For any concept C and role R and any $d, d' \in \Delta^{\mathcal{I}_c}$, we show, on induction on the structure of C and R, that $C^{\mathcal{I}_c}(d) = \varphi(C^{\mathcal{I}}(d))$ and $R^{\mathcal{I}_c}(d, d') = \varphi(R^{\mathcal{I}}(d, d'))$:
 - $\geq pR: (\geq pR)^{\mathcal{I}}(d) = \sup_{d_1, d_2, \dots, d_p \in \Delta^{\mathcal{I}}} \{\min_1^p (R^{\mathcal{I}}(d, d_i))\}.$ Let $f(d') = R^{\mathcal{I}}(d, d')$, and $f^*(d') = \varphi(f(d))$. Assume there are p elements $d_1^*, d_2^*, \ldots, d_p^*$ with the maximum value of f(): for any other d' in $\Delta^{\mathcal{I}}$, $f(d_i^*) \geq f(d')$. Obviously from the property of $\varphi()$, for any other d' in $\Delta^{\mathcal{I}_c}$, $f^*(d_i^*) = \varphi(f(d_i^*)) \geq \varphi(f(d)) = f^*(d').$ Then we get $(\ge pR)^{\mathcal{I}_c}(d) = \sup_{d_1, d_2, \dots, d_p \in \Delta^{\mathcal{I}_c}} \{\min_1^p(f^*(d_i))\}$ = min_1^p(f^*(d_i^*)) = \varphi(\min_1^p(f(d_i^*))) $= \varphi(\sup_{d_1, d_2, \dots, d_p \in \Delta^{\mathcal{I}}} \{\min_1^p (R^{\mathcal{I}}(d, d_i))\})$ $= \varphi((\geq pR)^{\mathcal{I}}(d))$
- 2. We show \mathcal{I}_c is a fuzzy model of \mathcal{K} .
 - $C \sqsubseteq D \in \mathcal{T}$: Obviously, $\forall d \in \Delta^{\mathcal{I}} = \Delta^{\mathcal{I}_c}, C^{\mathcal{I}}(d) \leq D^{\mathcal{I}}(d)$. And from 1, for any concept $C, C^{\mathcal{I}_c}(d) = \varphi(C^{\mathcal{I}}(d))$. Therefore, $C^{\mathcal{I}_c}(d) = \varphi(C^{\mathcal{I}}(d)) \leq \varphi(D^{\mathcal{I}}(d)) = D^{\mathcal{I}_c}(d);$

Discrete Tableau Algorithms for \mathcal{FSHIN} 4

For a KB \mathcal{K} , let $R_{\mathcal{K}}$ and $O_{\mathcal{K}}$ be the sets of roles and individuals appearing in \mathcal{K} , and sub(\mathcal{K}) the set of sub-concepts of all concepts in \mathcal{K} . We also introduce $\operatorname{Trans}(R)$ as a boolean value to tell whether R is transitive, \triangleright and \triangleleft as two placeholders for the inequalities \geq , > and \leq , <, and the symbols \bowtie^- , \rhd^- and \triangleleft^- to denote their reflections. A discrete tableau T for \mathcal{K} within a degree set S is a quadruple: $\langle \mathcal{O}, \mathcal{L}, \mathcal{E}, \mathcal{V} \rangle$, where

- \mathcal{O} : a nonempty set of nodes;
- $\mathcal{L}: \mathcal{O} \to 2^{M}, M = \operatorname{sub}(\mathcal{K}) \times \{\geq, >, \leq, <\} \times S;$ $\mathcal{E}: \operatorname{R}_{\mathcal{K}} \to 2^{Q}, Q = \{\mathcal{O} \times \mathcal{O}\} \times \{\geq, >, \leq, <\} \times S;$
- $\mathcal{V}:O_{\mathcal{K}} \to \mathcal{O}$, maps any individual into a corresponding node in \mathcal{O} .

From the definition of T, each node d is labelled with a set $\mathcal{L}(d)$ of degree triples: $\langle C, \bowtie, n \rangle$, which denotes the membership degree of d being an instance of $C \bowtie n$. In a discrete tableau T, for any $d, d' \in \mathcal{O}, a, b \in \mathcal{O}_{\mathcal{K}}, C, D \in \mathrm{sub}(\mathcal{K})$ and $R \in \mathcal{R}_{\mathcal{K}}$, the following conditions, a extension of tableau conditions in dealing without TBox [8] by adding KB conditions and NNF conditions, must hold:

- **KB condition:** If $C \sqsubseteq D \in \mathcal{T}$, then there must be some $n \in S$ with $\langle C, \leq, n \rangle$ and $\langle D, \geq, n \rangle$ in $\mathcal{L}(d)$.
- **NNF condition:** If $\langle C, \bowtie, n \rangle \in \mathcal{L}(d)$, then $\langle \operatorname{nnf}(\neg C), \bowtie^{-}, 1 \rangle$ $n \in \mathcal{L}(d)$. Here we use $nnf(\neg C)$ to denote the equivalent form of $\neg C$ in Negation Normal Form (NNF).

Theorem 2 For any $\mathcal{K} = \langle \mathcal{T}, \mathcal{R}, \mathcal{A} \rangle$ and any discrete degree set S w.r.t \mathcal{K} , \mathcal{K} has a discrete model within S iff it has a discrete tableau T within S.

From theorem 1 and 2, an algorithm that constructs a discrete tableau of \mathcal{K} within S can be considered as a decision procedure for the satisfiability of \mathcal{K} . The discrete tableau algorithm works on a completion forest $F_{\mathcal{K}}$ with a set S^{\neq} to denote " \neq " relation between nodes. The algorithm expands the forest $F_{\mathcal{K}}$ either by extending $\mathcal{L}(x)$ for the current node x or by adding new leaf node y with expansion rules in table 2. A node y is called an Rsuccessor of another node x and x is called a R-predecessor of y, if $\langle R, \bowtie, n \rangle \in \mathcal{L}(\langle x, y \rangle)$. Ancestor is the transitive closure of predecessor. And for any two connected nodes x and y, we define $D_R(x,y) = \{ \langle \bowtie, n \rangle | P \sqsubseteq^* R, \langle P, \bowtie, n \rangle \in \mathcal{L}(\langle x, y \rangle) \text{ or } \langle \operatorname{Inv}(P), \bowtie \rangle \}$ $(n, n) \in \mathcal{L}(\langle y, x \rangle)$. If $D_R(x, y) \neq \emptyset$, y is called a R-neighbor of x.

The tableau algorithm initializes $F_{\mathcal{K}}$ to contain a root node x_a for each individual $a \in O_{\mathcal{K}}$ and labels x_a with $\mathcal{L}(x_a) = \{ \langle C, \bowtie, n \rangle | a :$ $C \bowtie n \in \mathcal{A}$; for any pair $\langle x_a, x_b \rangle$, $\mathcal{L} \langle x_a, x_b \rangle = \{ \langle R, \bowtie, n \rangle | \langle a, b \rangle :$ $R \bowtie n \in \mathcal{A}$; and for any $a \neq b \in \mathcal{A}, \langle x_a, x_b \rangle \in S^{\neq}$. As inverse role and number restriction are allowed in SHIN, we make use of pairwise blocking technique [2] to ensure the termination and correctness of our tableau algorithm: a node x is directly blocked by its ancestor y iff (1) x is not a root node; (2) x and y have predecessors x' and y', such that $\mathcal{L}(x) = \mathcal{L}(y)$ and $\mathcal{L}(x') = \mathcal{L}(y')$ and $\mathcal{L}(\langle y', y \rangle) = \mathcal{L}(\langle x', x \rangle)$. A node x is indirectly blocked if its predecessor is blocked. A node x is blocked iff it is either directly or indirectly blocked. A completion forest $F_{\mathcal{K}}$ is said to contain a clash, if for a node x in $F_{\mathcal{K}}$, (1) $\mathcal{L}(x)$ contains two conjugated triples, or a mistake triple [4]; or (2) $\langle \geq pR, \lhd, n \rangle$ or $\langle \leq (p-1)R, \lhd^-, 1-n \rangle \in \mathbb{C}$ $\mathcal{L}(x)$, and there are p nodes $y_1, y_2, \ldots y_p$ in $F_{\mathcal{K}}$ with $\langle R, \triangleright_i, m_i \rangle$, $\langle \triangleright_i, m_i \rangle$ is conjugated with $\langle \triangleleft, n \rangle$ and for any two nodes y_i and y_j , $\langle y_i, y_j \rangle \in S^{\neq}$. A completion forest $F_{\mathcal{K}}$ is clash-free if it does not contain a clash, and it is complete if none of the expansion rules are applicable.

Rule name	Description	
KB rule:	if $C \sqsubseteq D \in \mathcal{T}$ and there is no <i>n</i> with $\langle C, \leq, n \rangle$ and $\langle D, \geq, n \rangle$ in $\mathcal{L}(x)$; then $\mathcal{L}(x) \to \mathcal{L}(x) \cup \{ \langle C, \leq, n \rangle \langle D, \geq, n \rangle \}$ for some $n \in S$.	
The following rules are applied to nodes x which is not indirectly blocked.		
\neg^{\bowtie} rule:	if $\langle C, \bowtie, n \rangle \in \mathcal{L}(x)$ and $\langle \operatorname{nnf}(\neg C), \bowtie^-, n \rangle \notin \mathcal{L}(x)$; then $\mathcal{L}(x) \to \mathcal{L}(x) \cup \{ \langle \operatorname{nnf}(\neg C), \bowtie^-, n \rangle \}.$	
\sqcap^{\triangleright} rule:	if $\langle C \sqcap D, \rhd, n \rangle \in \mathcal{L}(x)$, and $\langle C, \rhd, n \rangle$ or $\langle D, \rhd, n \rangle \notin \mathcal{L}(x)$; then $\mathcal{L}(x) \to \mathcal{L}(x) \cup \{\langle C, \rhd, n \rangle, \langle D, \rhd, n \rangle\}$.	
\sqcup^{\triangleright} rule:	if $\langle C \sqcup D, \rhd, n \rangle \in \mathcal{L}(x)$, and $\langle C, \rhd, n \rangle, \langle D, \rhd, n \rangle \notin \mathcal{L}(x)$ then $\mathcal{L}(x) \to \mathcal{L}(x) \cup \{T\}$, for some $T \in \{\langle C, \rhd, n \rangle, \langle D, \rhd, n \rangle\}$	
∀ [⊳] rule:	if $\langle \forall R.C, \rhd, n \rangle \in \mathcal{L}(x)$, there is a <i>R</i> -neighbor <i>y</i> of <i>x</i> with $\langle \rhd', m \rangle \in D_R(x, y)$, which is conjugated with $\langle \rhd^-, 1 - n \rangle$ and $\langle C, \rhd, n \rangle \notin \mathcal{L}(y)$; then $\mathcal{L}(y) \to \mathcal{L}(y) \cup \{\langle C, \rhd, n \rangle\}$.	
$\forall^{+\triangleright}$ rule:	if $\langle \forall P.C, \triangleright, n \rangle \in \mathcal{L}(x)$, there is a <i>R</i> -neighbor <i>y</i> of <i>x</i> with $R \sqsubseteq^* P$, Trans (R) =True and $\langle \triangleright', m \rangle \in D_R(x, y)$, $\langle \triangleright', m \rangle$ is conjugated with $\langle \triangleright^-, 1 - n \rangle$ and $\langle \forall R.C, \triangleright, n \rangle \notin \mathcal{L}(y)$; $\mathcal{L}(y) \to \mathcal{L}(y) \cup \{ \langle \forall R.C, \triangleright, n \rangle \}$.	
$\leq p^{ hightarrow}$ rule:	$ \begin{array}{l} \mathrm{if} \left\langle \leq pR, \rhd, n \in \mathcal{L}(x) \mathrm{; there is } p+1 \ R \mathrm{-successors } y_1, y_2, \ldots, y_{p+1} \mathrm{ of } x \mathrm{ ~with } \left\langle R, \rhd_i, m_i \right\rangle \in \mathcal{L}(\left\langle x, y_i \right\rangle) \mathrm{ and } \left\langle \rhd_i, m_i \right\rangle \mathrm{ is ~conjugated ~with } \left\langle \triangleleft^-, 1-n \right\rangle \mathrm{ for ~any } 1 \leq i \leq p+1 \mathrm{; and } \left\langle y_i, y_j \right\rangle \notin S^{\neq} \mathrm{ for ~some } 1 \leq i < j \leq p+1 \mathrm{ then ~merge two nodes } y_i \mathrm{ and } y_j \mathrm{ into ~one } : \mathcal{L}(y_i) \rightarrow \mathcal{L}(y_i) \cup \mathcal{L}(y_j) \mathrm{; } \forall x, \mathcal{L}(y_i, x) \rightarrow \mathcal{L}(y_i, x) \cup \mathcal{L}(y_j, x), \left\langle y_j, x \right\rangle \in S^{\neq} \mathrm{, add } \left\langle y_i, x \right\rangle \mathrm{ in } S^{\neq} \mathrm{ oth } S^{\neq} \mathrm{ into ~one } : \mathcal{L}(y_i) \rightarrow \mathcal{L}(y_i) \cup \mathcal{L}(y_j) \mathrm{; } \forall x, \mathcal{L}(y_i, x) \rightarrow \mathcal{L}(y_i, x) \cup \mathcal{L}(y_j, x), \left\langle y_j, x \right\rangle \in S^{\neq} \mathrm{, add } \left\langle y_i, x \right\rangle \mathrm{ in } S^{\neq} \mathrm{ oth } S^{\neq} \mathrm{ into ~one } : \mathcal{L}(y_i) \rightarrow \mathcal{L}(y_i) \cup \mathcal{L}(y_j) \mathrm{ into ~one } : \mathcal{L}(y_i) \rightarrow \mathcal{L}(y_i) \cup \mathcal{L}(y_j) \mathrm{ into ~one } \mathrm{ ind ~} S^{\neq} \mathrm{ into ~one } into ~one $	
The following rules are applied to nodes x which is not blocked.		
∃ [⊳] rule:	if $\langle \exists R.C, \rhd, n \rangle \in \mathcal{L}(x)$; there is not a <i>R</i> -neighbor <i>y</i> of <i>x</i> with $\langle \rhd, n \rangle \in D_R(x, y)$ and $\langle C, \rhd, n \rangle \in \mathcal{L}(y)$. then add a new node <i>z</i> with $\langle R, \rhd, n \rangle \in \mathcal{L}(\langle x, z \rangle)$ and $\langle C, \rhd, n \rangle \in \mathcal{L}(z)$.	
$\geq pR^{\triangleright}$ rule:	if $\langle \geq pR, \rhd, n \rangle \in \mathcal{L}(x)$, there are not p R-neighbors y_1, y_2, \ldots, y_p of x with $\langle R, \rhd, n \rangle \in \mathcal{L}(\langle x, y_i \rangle)$ and for any $i \neq j$, $\langle y_i, y_j \rangle \in S^{\neq}$. then add p new nodes z_1, z_2, \ldots, z_p with $\langle R, \rhd, n \rangle \in \mathcal{L}(\langle x, z_i \rangle)$ and for any two node z_i and z_i , add $\langle z_i, z_j \rangle$ in S^{\neq} .	

Theorem 3 For any $\mathcal{K} = \langle \mathcal{T}, \mathcal{R}, \mathcal{A} \rangle$ and any discrete degree set S w.r.t \mathcal{K} , \mathcal{K} has a discrete tableau within S iff the tableau algorithm can construct a complete and clash-free completion forest.

5 Related Work

In FDLs area, we have introduced a lot of work in introduction, all that work are based on Straccia' fuzzification framework. Here we get into reasoning issue for fuzzy DLs. The first reasoning algorithm was represented in [10], and the soundness and completeness of it were proved in [11]. This algorithm is designed to reasoning with FALC acyclic TBox form. More in detail, it first adopted KB expansion [5] to eliminate acyclic TBox, then achieved reasoning without TBox. However, such expansion technique is not available for general TBox in FDLs. The following extension of \mathcal{FALC} inherited this idea to design reasoning algorithm, so most of these extension are limited to dealing with empty or acyclic TBox. In general TBox cases, a noteworthy reasoning method is PTIME bounded translations from \mathcal{FALCH} KBs into \mathcal{ALCH} ones and reusing existing classical algorithm to achieve reasoning in fuzzy DLs [12]. This PTIME bounded translation can be considered as a result of researches on relationship between DLs and fuzzy DLs. It can not deal with $\langle a, b \rangle : R \triangleleft n$ in \mathcal{A} , as this assertion will be translated into role negation (that is not allowed in ALC).

6 Conclusion

In this paper, we point out a novel semantical discretization to discretize membership degree values in fuzzy models of \mathcal{FSHIN} KBs, hence yielding "discrete models". Based on this discretization technique, we design a discrete tableau algorithm to construct discrete tableaus, which are abstraction of discrete models. From the equivalence of existence between fuzzy models and discrete models, our algorithm is a decision procedure to achieve reasoning with general TBox in \mathcal{FSHIN} KBs. Our work can be considered as a logical foundation to support reasoning with fuzzy ontologies.

REFERENCES

- [1] T. Berners-Lee, J. Hendler, and O. Lassila, 'The semantic web', *Scientific American*, **284**(5), 34–43, (2001).
- [2] I. Horrocks and U. Sattler, 'A description logic with transitive and inverse roles and role hierarchies', *Journal of Logic and Computation*, 9, 385–410, (1999).
- [3] I. Horrocks and U. Sattler, 'A tableaux decision procedure for shoiq', in *Proceedings of 19th Int. Joint Conf. on Artificial Intelligence*, (2005).
- [4] Y.H. Li, B.W. Xu, J.J. Lu, and D.Z. Kang, 'Discrete tableau Algorithms for fshi', in *Proceedings of 2006 International Workshop on Description Logics - DL2006*, The Lake District of the UK, (2006).
- [5] B. Nebel, 'Computational complexity of terminological reasoning in back', *Artificial Intelligence*, **34**, 371–383, (1988).
- [6] D. Sanchez and G. Tettamanzi, 'Generalizing quantification in fuzzy description logic', in *Proceedings of the 8th Fuzzy Days*, (2004).
- [7] G. Stoilos, G. Stamou, V. Tzouvaras, J.Z. Pan, and I. Horrock, 'A Fuzzy Description Logic for Multimedia Knowledge Representation', in *Proc.* of the International Workshop on Multimedia and the Semantic Web, (2005).
- [8] G. Stoilos, G. Stamou, V. Tzouvaras, J.Z. Pan, and I. Horrocks, 'The fuzzy description logic shin', in *Proceedings of International Workshop* of OWL: Experiences and Directions, Galway, (2005).
- [9] G. Stoilos, G. Stamou, V. Tzouvaras, J.Z. Pan, and I. Horrocks, 'Fuzzy owl: Uncertainty and the semantic web', in *Proceedings of International Workshop of OWL: Experiences and Directions*, Galway, (2005).
- [10] U. Straccia, 'A fuzzy description logic', in *Proceedings of AAAI-98*, 15th National Conference on Artificial Intelligence, pp. 594–599, Madison, Wisconsin, (1998).
- [11] U. Straccia, 'Reasoning within fuzzy description logics', Journal of Artificial Intelligence Researc, 14, 137–166, (2001).
- [12] U. Straccia, Transforming fuzzy description logics into classical description logics', in *Proceedings of the 9th European Conference on Logics in Artificial Intelligence*, pp. 385–399, Lisbon, (2004).
- [13] D.H. Widyantoro and J. Yen, 'Using fuzzy ontology for query refinement in a personalized abstract search engine', in *Proceedings of Joint* 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada, (2001).