Reasoning with Fuzzy Ontologies

Yanhui Li! and Baowen Xu' and Jianjiang Lu? and Dazhou Kang'

Abstract. By the development of Semantic Web, increasing de-a novel semantical discretization technique to enable translation of
mands for vague information representation have triggered a mass afembership degree values fromntinuous ones intodiscrete
theoretical and applied researches of fuzzy ontologies, whose maines. In this paper, we will extend this discretization technique into
logical infrastructures are fuzzy description logics. However, cur-FSHZN; and based on it, we will design a discrete tableau algo-
rent tableau algorithms can not supply complete reasoning supporithm for reasoning with general TBox iRSHZN . Since nominals
within fuzzy ontology: reasoning with general TBox is still a dif- should not be fuzzyfied, our discrete tableau algorithmsSfeZ N,
ficult problem in fuzzy description logics. The main trouble is that together with reasoning technique to deal with nominals in crisp
fuzzy description logics adopt fuzzy models with continuous but notDLs [3], can be extended to provide a tableau algorithm for general
discrete membership degrees. In this paper, we propose a novel sEBox in FSHOZN, that will achieve complete reasoning within
mantical discretization to discretize membership degrees in fuzzjuzzy ontologies.

description logicFSHZN . Based on this discretization, we design

discrete tableau algorithms to achieve reasoning with general TBox, . .
2 Logical Infrastructure of Fuzzy Ontologies

1 Introduction Let N¢ be a set of concept naméd), N a set of role namegR)
with a subseNg * of transitive role names ari a set of individual
The Semantic Web stands for the idea of a future Web, in which in'names(a). FSHIN roles are either role namés < Ny or their in-
formation is given well-defined meaning, better enabling intelligentyerse roles? . To avoid R~ ~, we uselnv(R) to denote the inverse
Web information processind]. In the Semantic Web, ontology is & role of R. FSHZN concepts’, D are inductively defined with the

crucial knowledge representation model to express a shared undegpplication of FSHZN concept constructors in the following syn-
standing of information between users and machines. Along with thggx rules:

evqlvement from'curre_nt Web t_o the S_emgntlc We_b, the management C,D = T|L|A|~C|C N D|C U DI3R.CIVR.C| > pR| < pR
of ill-structured, ill-defined or imprecise information plays a more
and more important role in applications of the Semantic Vi#h. [ Since concepts and roles IRSHZIN are considered as fuzzy
This trend calls for ontologies with capability to deal with uncer- sets, the semantics of concepts and roles are defined in terms of
tainty. However, classical DLs, as the logical foundation of ontolo-fuzzy interpretation€ = (A%, .7), whereA” is a nonempty do-
gies, are two-value-based languages. The need for expressing uncerain, and-* is an interpretation function mapping individuats
tainty in the Semantic Web has triggered extending classical DL#1to a” € A*; concept (role) named (R) into membership func-
with fuzzy capabilities, yielding Fuzzy DLs (FDLs for short). Strac- tions A*(R”) : AT (AT x AT) — [0,1]. And for any transitive

cia proposed a representative fuzzy extensfoALC of DL ACC,  role nameR € Ng™, 7 satisfiesvVd,d' € A%, R*(d,d') >

in which fuzzy semantics is introduced to interpret concepts andup,c Az {min(R*(d,z), R*(z,d’))}. Furthermore;” satisfies the
roles as fuzzy setdll]. Following researchers extendgd4LC with following conditions for complex concepts and roles built by con-
more complex constructiongs.ALC Q [6] with qualified number re- ~ cept and role constructors: for adyd’ € A*

striction , FSZ [[7] with transitive and inverse role, anBSHIN TI(d) - 1
[8], a extension ofFSZ with role hierarchy and unqualified num- LI(d) = 0
ber restriction. Stoilos et al introduced Straccia’s fuzzy framework (- () = 1-C%(d)
into OWL, hence getting a fuzzy ontology langua§8HOZN, by (CNDY(d) = min{CT(d),D*(d)}
which fuzzy ontologies are coded as FDL knowledge be@les [ CuDY(d) = max{CI(d)’ Dz(d)}

Though the fuzzy DLs have done a lot, to our best knowledge, @ROY () = su {r,nin(RI(d &), CT(d))}
reasoning with general TBox in FDLs is still a difficult probleB).[ T _ Pareaz T N T

- . . . . (VR.O)Y*(d) = infgyeaz{max1l— R"(d,d),C*(d))}

Current tableau algorithms in FDLs are applied to achieve reasoning (>pR)*(d) = sup {(min? (RZ(d, d;)}
without TBox or with acyclic TBox(7,/8,/11], that limits reasoning =T T T Tduda,dpeAt Yo,
support within fuzzy ontologies. The main trouble in reasoning with (SpR)*(d) = inf di,dz,...,dpt1 ear{max™ (1 — R*(d, di)}
general TBox is that fuzzy interpretatio@fsmap concept€ into (R7)*(d,d) = R*(d.d)
membership degree functiod™ () w.r.t domainA*: A* — [0, 1], A FSHIN knowledge base (KBK is a triple K=(T, R, A),

where the value domain [0,1] is continuous. #), we represented  \hereT, R and.4 are FSHZN TBox, RBox and ABox. The syn-

I - — - tax and semantics of axioms in them are given in tdblan inter-
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fuzzy model. In this paper, we will propose a discrete tableau algo4  Discrete Tableau Algorithms for FSHZN

rithm to decide satisfiability aF SHZN KBs, which is based on the
"semantical discretization” discussed in the following section.

Table 1. Syntax and semantics FSHZN axioms

Syntax Semantics
TBox T cCD vd € AT,C%T(d) < DZ(d)
RBoOXR RLCP vd,d’ € AT, R*(d,d") < PZ(d,d")
a:Cxan CT(a)>in
ABox A (a,b): Rex  RT(aZ,b%)xin
a#b aZ #£bL
CandD (R andP) are concepts (roles);, b € Ny; <€ {>, >, <, <};n €[0,1].

3 Semantical Discretization inNFSHIN
For any fuzzy model af SHZN KBs, we discretize it into a special

For a KB I, let Rx and Ox be the sets of roles and individuals
appearing inC, andsub(K) the set of sub-concepts of all concepts
in XC. We also introduc&rans(R) as a boolean value to tell whether
R is transitive,>> and <1 as two placeholders for the inequalities
>, > and<, <, and the symbols<™, >~ and<1~ to denote their
reflections. A discrete tabledl for /C within a degree sef is a
quadruple{O, L, £, V), where

e (O: anonempty set of nodes;

L£:0 — 2 M =sub(K) x {>,>,<,<} x S;

ERk —29,Q={0Ox 0} x{>,>,<,<} x S;

V:Ox — O, maps any individual into a corresponding nodéin

From the definition ofI', each nodel is labelled with a sef’(d)
of degree triples{C, <, n), which denotes the membership degree

model, in which any value of membership degree functions belonggf d being an instance of' 0« n. In a discrete tableail’, for any

to a given discrete degree s8t And we call it a discrete model
within S. Let us now proceed formally in the creation®fLet N, be
the set of degrees appearing in ABdy = {n|a >xn € A}. From
N4, we define the degree closukg = {0,0.5, 1}UNqU{n|1—n €
Ny} and order degrees in ascending ord€éj: = {no, n1,...,ns},
where for any0 < ¢ < s, n; < m;+1. For any two back-to-back
elementsn;, n;+1 € NJ, we insert their mediam; 11 = (n; +
ni+1)/2 to getS = {no,m1,n1,...,ns—1,ms,ns}. We call S a
discrete degree set w.ikE. Obviously for anyl < ¢ < s, m; +
Mst1—i = landn;—1 < m; < n,.

Theorem 1 For any K=(7, R, A) and any discrete degree s#t
w.rt K, iff IC has a fuzzy model, it has a discrete model within

Proof. LetZ = (AZ,.T) be a fuzzy model ofC and the degree
setS = {no,mi,n1,...,ns—1,ms,ns}. Consider a translation
functione() : [0,1] — S:

p(x) = { -

m; ifni_1 <z <n;
Based onp(), we will construct a discrete modgél = (A%e, . %e)
within S fromZ = (A%, .T):
e The interpretation domainZ- is defined asAZe = AZ;
e The interpretation function’= is defined as: for any individual

nameq, a’c = aZ; for any concept namd and any role name:
ATe() = p(AT() and R () = (R*()).

1. For any concep€ and roleR and anyd, d’ € A%<, we show, on
induction on the structure @ and R, thatCZ<(d) = ¢(C*(d))
andR%e(d,d') = p(R*(d,d")):

o > pR: (> pR)*(d) = SUPy, 4, 4y ez {MIM (R (d, d:))}.
Let f(d') = R*(d,d), and f*(d') = ¢(f(d)). Assume
there arep elementsd;, ds, . . ., d;, with the maximum value
of f(): for any otherd’ in A%, f(d;) > f(d'). Obvi-
ously from the property ofp(), for any otherd’ in A%e,
frdi) = o(f(d7)) = o(f(d)) = f*(d). Then we get

Ze A *
(= pR)™*(d) = SUPy, 4, . a,enz. {MINT (f7(di))}
= ming (f7(d7)) = @(ming (f(d;)))
= @(SUpdl,dQ,M,dpeAI{minf(RI(d, di))})
= ¢((> pR)*(d))

2. We showZ, is a fuzzy model ofC.

e C C D e T:Obviously,vd € A* = A, C*(d) < D*(d).
And from 1, for any concept, C%¢(d) = @(Cz(d)) here-
fore, C%<(d) = p(C*(d)) < p(D*(d)) = D**(d);

d,d € O,a,b e Ok, C,D € sub(K) andR € R, the following
conditions, a extension of tableau conditions in dealing without
TBox [8] by adding KB conditions and NNF conditions, must hold:

KB condition: If C T D € 7, then there must be some € S
with (C, <,n) and(D, >, n}) in L(d).

NNF condition: If (C,xx,n) € L(d), then (unf(-C),<",1 —
n) € L(d). Here we usewnf(—C) to denote the equivalent form
of =C' in Negation Normal Form (NNF).

Theorem 2 Forany X =< 7, R, A > and any discrete degree set
S w.rt/C, K has a discrete model withisi iff it has a discrete tableau
T within S.

From theorem 1 and 2, an algorithm that constructs a discrete
tableau ofC within S can be considered as a decision procedure
for the satisfiability of/C. The discrete tableau algorithm works
on a completion foresFx with a setS” to denote %" rela-
tion between nodes. The algorithm expands the foFgsteither
by extendingL(x) for the current node: or by adding new leaf
nodey with expansion rules in tabl2. A nodey is called anRk-
successor of another nodeand z is called aR-predecessor of
y, if (R,><,n) € L({z,y)). Ancestor is the transitive closure of
predecessor. And for any two connected nodemdy, we define
Dr(x,y)={(=,n)|P =" R, (P,p,n) € L((z,y)) or (Inv(P),

n) € L({y,z))}. If Dr(z,y) # 0, y is called aR-neighbor ofz.

The tableau algorithm initializelS« to contain a root node,, for
each individuak: € Ox and labelst, with £(z.)= {(C,,n)|a :

C xin € A}; for any pair{xa, xp), L{Tq,zs)={(R, <, n)|{a,b) :
Ran € A}; and for anya # b € A, (za,z) € S7. Asin-
verse role and number restriction are allowedSIHZN, we make
use of pairwise blocking technigug|[to ensure the termination and
correctness of our tableau algorithm: a nads directly blocked by
its ancestow iff (1) = is not a root node; (2 andy have prede-
cessorse’ andy’, such thatC(z) = L(y) and£L(z") = L(y’) and
Ly, y)) = L({z',z)). A nodez is indirectly blocked if its pre-
decessor is blocked. A nodeis blocked iff it is either directly or
indirectly blocked. A completion fore$tc is said to contain a clash,
if for a nodez in Fi, (1) £(z) contains two conjugated triples, or a
mistake triple/f]; or (2) (> pR, <, n) or (< (p—1)R, <™, 1—n) €
L(z), and there ar@ nodesyi, y2, . . . yp in Fx with (R, >;, m;),
(>3, ms) is conjugated with{<1, n) and for any two nodeg; andy;;,
(yi,y;) € S”. A completion foresiFx is clash-free if it does not
contain a clash, and it is complete if none of the expansion rules are
applicable.



Table 2. Expansion rules of discrete Tableau

Rule name  Description

KB rule:
thenL(z) — L(z) U {(C, <,n) (D, >,n)} for somen € S.

»

if C C D € 7 and there is na with (C, <,n) and(D, >, n) in L(z);

The following rules are applied to nodgsvhich is not indirectly blocked.

if (VR.C,>,n) € L(z), there is aR-neighbory of z with (', m) € Dgr(z,y), which is conjugated withr>—,1 — n)

—>rule: if (C,x,n) € L(z) and(nnf(=C),<x", n) ¢ L(z);
thenL(z) — L(z) U {{nnf(=C),x",n)}.
N> rule:  if (C M1 D,>,n) € L(x), and{C,>,n) or (D, >, n) ¢ L(z);
thenL(z) — L(z) U {{(C,>,n),(D,>,n)}.
U>rule:  if (CUD,1>,n) € L(z),and(C, >,n), (D, >,n) ¢ L(z)
thenL(z) — L(z) U {T}, forsomeT € {(C,>,n),(D,>,n)}
V> rule:
and(C,>,n) & L(y);
thenZ(y) — L(y) U {(C,>,n)}.
v+>rule:  if (YP.C,>,n) € L(x), there is aR-neighbory of z with R C* P, Trans(R)=True and(>>’, m) € Dgr(z,y),
(>’, m) is conjugated witht>—, 1 — n) and(VR.C, >, n) ¢ L(y);
L(y) = L(y) U{(VR.C,1>,n)}.
<p™rule: if(<pR,>,n € L(z); thereisp + 1 R-successorgs, yz, . . .

s Yp+1 Of z with (R, >, m;) € L({z,y;)) and(>;, m;)

is conjugated wit{<t—,1 — n) foranyl < i < p+ 1; and(y;, y;) ¢ S7 forsomel < i< j<p+1
then merge two nodeg andy; into one :L£(y;) — L(y;) U L(y;); Yz, L(yi, ) — L(yi, x) U L(y;,x), (yj,x) € S*, add(y;,z) in S*

The following rules are applied to nodeswvhich is not blocked.

3> rule:  if (3R.C, >, n) € L(z); there is not ak-neighbory of = with (>, n) € Dgr(z,y) and(C,>,n) € L(y).
then add a new nodewith (R, >,n) € L({z, z)) and(C, >, n) € L(z).
> pR> rule:  if (> pR,>,n) € L(x), there are nop R-neighborsy;, y2, . ..

then add p new nodes, 22, . .

,yp Of z with (R, >, n) € L({z,y;)) and for anyi # j, (y;,y;) € S%.
., zp With (R, >, n) € L({x, 2;)) and for any two node; andz;, add(z;, z;) in S7.

Theorem 3 For anyK =< 7, R, A > and any discrete degree set TBox in FSHZN KBs. Our work can be considered as a logical

Sw.rtC, K has a discrete tableau withifi iff the tableau algorithm
can construct a complete and clash-free completion forest.

foundation to support reasoning with fuzzy ontologies.
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