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Abstract. By the development of Semantic Web, increasing de-
mands for vague information representation have triggered a mass of
theoretical and applied researches of fuzzy ontologies, whose main
logical infrastructures are fuzzy description logics. However, cur-
rent tableau algorithms can not supply complete reasoning support
within fuzzy ontology: reasoning with general TBox is still a dif-
ficult problem in fuzzy description logics. The main trouble is that
fuzzy description logics adopt fuzzy models with continuous but not
discrete membership degrees. In this paper, we propose a novel se-
mantical discretization to discretize membership degrees in fuzzy
description logicFSHIN . Based on this discretization, we design
discrete tableau algorithms to achieve reasoning with general TBox.

1 Introduction

The Semantic Web stands for the idea of a future Web, in which in-
formation is given well-defined meaning, better enabling intelligent
Web information processing [1]. In the Semantic Web, ontology is a
crucial knowledge representation model to express a shared under-
standing of information between users and machines. Along with the
evolvement from current Web to the Semantic Web, the management
of ill-structured, ill-defined or imprecise information plays a more
and more important role in applications of the Semantic Web [13].
This trend calls for ontologies with capability to deal with uncer-
tainty. However, classical DLs, as the logical foundation of ontolo-
gies, are two-value-based languages. The need for expressing uncer-
tainty in the Semantic Web has triggered extending classical DLs
with fuzzy capabilities, yielding Fuzzy DLs (FDLs for short). Strac-
cia proposed a representative fuzzy extensionFALC of DL ALC,
in which fuzzy semantics is introduced to interpret concepts and
roles as fuzzy sets [11]. Following researchers extendedFALC with
more complex constructions:FALCQ [6] with qualified number re-
striction ,FSI [7] with transitive and inverse role, andFSHIN
[8], a extension ofFSI with role hierarchy and unqualified num-
ber restriction. Stoilos et al introduced Straccia’s fuzzy framework
into OWL, hence getting a fuzzy ontology languageFSHOIN , by
which fuzzy ontologies are coded as FDL knowledge bases [9].

Though the fuzzy DLs have done a lot, to our best knowledge,
reasoning with general TBox in FDLs is still a difficult problem [8].
Current tableau algorithms in FDLs are applied to achieve reasoning
without TBox or with acyclic TBox [7, 8, 11], that limits reasoning
support within fuzzy ontologies. The main trouble in reasoning with
general TBox is that fuzzy interpretationsI map conceptsC into
membership degree functionsCI() w.r.t domain∆I : ∆I → [0, 1],
where the value domain [0,1] is continuous. In [4], we represented
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a novel semantical discretization technique to enable translation of
membership degree values fromcontinuous ones intodiscrete
ones. In this paper, we will extend this discretization technique into
FSHIN ; and based on it, we will design a discrete tableau algo-
rithm for reasoning with general TBox inFSHIN . Since nominals
should not be fuzzyfied, our discrete tableau algorithms forSHIN ,
together with reasoning technique to deal with nominals in crisp
DLs [3], can be extended to provide a tableau algorithm for general
TBox in FSHOIN , that will achieve complete reasoning within
fuzzy ontologies.

2 Logical Infrastructure of Fuzzy Ontologies

Let NC be a set of concept names(A), NR a set of role names(R)
with a subsetNR

+ of transitive role names andNI a set of individual
names(a).FSHIN roles are either role namesR ∈ NR or their in-
verse rolesR−. To avoidR−−, we useInv(R) to denote the inverse
role ofR. FSHIN conceptsC, D are inductively defined with the
application ofFSHIN concept constructors in the following syn-
tax rules:

C, D :: >|⊥|A|¬C|C uD|C tD|∃R.C|∀R.C| ≥ pR| ≤ pR

Since concepts and roles inFSHIN are considered as fuzzy
sets, the semantics of concepts and roles are defined in terms of
fuzzy interpretationsI = 〈∆I , ·I〉, where∆I is a nonempty do-
main, and·I is an interpretation function mapping individualsa
into aI ∈ ∆I ; concept (role) namesA (R) into membership func-
tions AI(RI) : ∆I (∆I × ∆I) → [0, 1]. And for any transitive
role nameR ∈ NR

+, I satisfies∀d, d′ ∈ ∆I , RI(d, d′) ≥
supx∈∆I{min(RI(d, x), RI(x, d′))}. Furthermore,·I satisfies the
following conditions for complex concepts and roles built by con-
cept and role constructors: for anyd, d′ ∈ ∆I

>I(d) = 1
⊥I(d) = 0

(¬C)I(d) = 1− CI(d)
(C uD)I(d) = min{CI(d), DI(d)}
(C tD)I(d) = max{CI(d), DI(d)}
(∃R.C)I(d) = supd′∈∆I{min(RI(d, d′), CI(d′))}
(∀R.C)I(d) = inf d′∈∆I{max(1−RI(d, d′), CI(d′))}
(≥ pR)I(d) = supd1,d2,...,dp∈∆I{minp

1(R
I(d, di)}

(≤ pR)I(d) = inf d1,d2,...,dp+1∈∆I{maxp+1
1 (1−RI(d, di)}

(R−)I(d, d′) = RI(d′, d)

A FSHIN knowledge base (KB)K is a tripleK=〈T ,R,A〉,
whereT ,R andA areFSHIN TBox, RBox and ABox. The syn-
tax and semantics of axioms in them are given in table1. An inter-
pretationI satisfies an axiom if it satisfies corresponding semantics
restriction given in table1. I satisfies (is a fuzzy model of) a KBK,
iff I satisfies any axiom inT , R andA. K is satisfiable iff it has a



fuzzy model. In this paper, we will propose a discrete tableau algo-
rithm to decide satisfiability ofFSHIN KBs, which is based on the
”semantical discretization” discussed in the following section.

Table 1. Syntax and semantics ofFSHIN axioms

Syntax Semantics

TBox T C v D ∀d ∈ ∆I , CI(d) ≤ DI(d)

RBoxR R v P ∀d, d′ ∈ ∆I , RI(d, d′) ≤ PI(d, d′)
a : C ./ n CI(aI) ./ n

ABoxA 〈a, b〉 : R ./ RI(aI , bI) ./ n

a 6= b aI 6= bI

C andD (R andP ) are concepts (roles);a, b ∈ NI; ./∈{≥, >,≤, <}; n ∈ [0,1].

3 Semantical Discretization inFSHIN
For any fuzzy model ofFSHIN KBs, we discretize it into a special
model, in which any value of membership degree functions belongs
to a given discrete degree setS. And we call it a discrete model
within S. Let us now proceed formally in the creation ofS. LetNd be
the set of degrees appearing in ABoxNd = {n|α ./ n ∈ A}. From
Nd, we define the degree closureN∗

d = {0, 0.5, 1}∪Nd∪{n|1−n ∈
Nd} and order degrees in ascending order:N∗

d = {n0, n1, . . . , ns},
where for any0 ≤ i ≤ s, ni < ni+1. For any two back-to-back
elementsni, ni+1 ∈ N∗

d , we insert their medianmi+1 = (ni +
ni+1)/2 to getS = {n0, m1, n1, . . . , ns−1, ms, ns}. We callS a
discrete degree set w.r.tK. Obviously for any1 ≤ i ≤ s, mi +
ms+1−i = 1 andni−1 < mi < ni.

Theorem 1 For anyK=〈T ,R,A〉 and any discrete degree setS
w.r.tK, iff K has a fuzzy model, it has a discrete model withinS.

Proof. LetI = 〈∆I , ·I〉 be a fuzzy model ofK and the degree
set S = {n0, m1, n1, . . . , ns−1, ms, ns}. Consider a translation
functionϕ() : [0, 1] → S:

ϕ(x) =

{
ni if x = ni

mi if ni−1 < x < ni

Based onϕ(), we will construct a discrete modelIc = 〈∆Ic , ·Ic〉
within S from I = 〈∆I , ·I〉:
• The interpretation domain∆Ic is defined as:∆Ic = ∆I ;
• The interpretation function·Ic is defined as: for any individual

namea, aIc = aI ; for any concept nameA and any role nameR:
AIc() = ϕ(AI()) andRIc() = ϕ(RI()).

1. For any conceptC and roleR and anyd, d′ ∈ ∆Ic , we show, on
induction on the structure ofC andR, thatCIc(d) = ϕ(CI(d))
andRIc(d, d′) = ϕ(RI(d, d′)):

• ≥ pR: (≥ pR)I(d) = supd1,d2,...,dp∈∆I{minp
1(R

I(d, di))}.
Let f(d′) = RI(d, d′), and f∗(d′) = ϕ(f(d)). Assume
there arep elementsd∗1, d

∗
2, . . . , d

∗
p with the maximum value

of f(): for any other d′ in ∆I , f(d∗i ) ≥ f(d′). Obvi-
ously from the property ofϕ( ), for any otherd′ in ∆Ic ,
f∗(d∗i ) = ϕ(f(d∗i )) ≥ ϕ(f(d)) = f∗(d′). Then we get
(≥ pR)Ic(d) = supd1,d2,...,dp∈∆Ic {minp

1(f
∗(di))}

= minp
1(f

∗(d∗i )) = ϕ(minp
1(f(d∗i )))

= ϕ(supd1,d2,...,dp∈∆I{minp
1(R

I(d, di))})
= ϕ((≥ pR)I(d))

2. We showIc is a fuzzy model ofK.
• C v D ∈ T : Obviously,∀d ∈ ∆I = ∆Ic , CI(d) ≤ DI(d).

And from 1, for any conceptC, CIc(d) = ϕ(CI(d)). There-
fore,CIc(d) = ϕ(CI(d)) ≤ ϕ(DI(d)) = DIc(d);

4 Discrete Tableau Algorithms forFSHIN
For a KBK, let RK and OK be the sets of roles and individuals
appearing inK, andsub(K) the set of sub-concepts of all concepts
in K. We also introduceTrans(R) as a boolean value to tell whether
R is transitive,¤ and ¢ as two placeholders for the inequalities
≥, > and≤, <, and the symbols./−, ¤− and¢− to denote their
reflections. A discrete tableauT for K within a degree setS is a
quadruple:〈O, L, E , V〉, where

• O: a nonempty set of nodes;
• L:O → 2M , M = sub(K)× {≥, >,≤, <} × S;
• E : RK → 2Q, Q = {O ×O} × {≥, >,≤, <} × S;
• V:OK → O, maps any individual into a corresponding node inO.

From the definition ofT, each noded is labelled with a setL(d)
of degree triples:〈C, ./, n〉, which denotes the membership degree
of d being an instance ofC ./ n. In a discrete tableauT, for any
d, d′ ∈ O, a, b ∈ OK, C, D ∈ sub(K) andR ∈ RK, the following
conditions, a extension of tableau conditions in dealing without
TBox [8] by adding KB conditions and NNF conditions, must hold:

KB condition: If C v D ∈ T , then there must be somen ∈ S
with 〈C,≤, n〉 and〈D,≥, n〉 in L(d).

NNF condition: If 〈C, ./, n〉 ∈ L(d), then 〈nnf(¬C), ./−, 1 −
n〉 ∈ L(d). Here we usennf(¬C) to denote the equivalent form
of ¬C in Negation Normal Form (NNF).

Theorem 2 For anyK =< T ,R,A > and any discrete degree set
S w.r.tK,K has a discrete model withinS iff it has a discrete tableau
T within S.

From theorem 1 and 2, an algorithm that constructs a discrete
tableau ofK within S can be considered as a decision procedure
for the satisfiability ofK. The discrete tableau algorithm works
on a completion forestFK with a set S 6= to denote ”6=” rela-
tion between nodes. The algorithm expands the forestFK either
by extendingL(x) for the current nodex or by adding new leaf
nodey with expansion rules in table2. A nodey is called anR-
successor of another nodex and x is called aR-predecessor of
y, if 〈R, ./, n〉 ∈ L(〈x, y〉). Ancestor is the transitive closure of
predecessor. And for any two connected nodesx andy, we define
DR(x, y)={〈./, n〉|P v∗ R, 〈P, ./, n〉 ∈ L(〈x, y〉) or 〈Inv(P ), ./
, n〉 ∈ L(〈y, x〉)}. If DR(x, y) 6= ∅, y is called aR-neighbor ofx.

The tableau algorithm initializesFK to contain a root nodexa for
each individuala∈OK and labelsxa with L(xa)= {〈C, ./, n〉|a :
C ./ n ∈ A}; for any pair〈xa, xb〉, L〈xa, xb〉={〈R, ./, n〉|〈a, b〉 :
R ./ n ∈ A}; and for anya 6= b ∈ A, 〈xa, xb〉 ∈ S 6=. As in-
verse role and number restriction are allowed inSHIN , we make
use of pairwise blocking technique [2] to ensure the termination and
correctness of our tableau algorithm: a nodex is directly blocked by
its ancestory iff (1) x is not a root node; (2)x andy have prede-
cessorsx′ andy′, such thatL(x) = L(y) andL(x′) = L(y′) and
L(〈y′, y〉) = L(〈x′, x〉). A nodex is indirectly blocked if its pre-
decessor is blocked. A nodex is blocked iff it is either directly or
indirectly blocked. A completion forestFK is said to contain a clash,
if for a nodex in FK, (1)L(x) contains two conjugated triples, or a
mistake triple [4]; or (2) 〈≥ pR, ¢, n〉 or 〈≤ (p−1)R, ¢−, 1−n〉 ∈
L(x), and there arep nodesy1, y2, . . . yp in FK with 〈R, ¤i, mi〉,
〈¤i, mi〉 is conjugated with〈¢, n〉 and for any two nodesyi andyj ,
〈yi, yj〉 ∈ S 6=. A completion forestFK is clash-free if it does not
contain a clash, and it is complete if none of the expansion rules are
applicable.



Table 2. Expansion rules of discrete Tableau

Rule name Description

KB rule: if C v D ∈ T and there is non with 〈C,≤, n〉 and〈D,≥, n〉 in L(x);
thenL(x) → L(x) ∪ {〈C,≤, n〉 〈D,≥, n〉} for somen ∈ S.

The following rules are applied to nodesx which is not indirectly blocked.
¬./ rule: if 〈C, ./, n〉 ∈ L(x) and〈nnf(¬C), ./−, n〉 /∈ L(x);

thenL(x) → L(x) ∪ {〈nnf(¬C), ./−, n〉}.
u¤ rule: if 〈C uD, ¤, n〉 ∈ L(x), and〈C, ¤, n〉 or 〈D, ¤, n〉 /∈ L(x);

thenL(x) → L(x) ∪ {〈C, ¤, n〉, 〈D, ¤, n〉}.
t¤ rule: if 〈C tD, ¤, n〉 ∈ L(x), and〈C, ¤, n〉, 〈D, ¤, n〉 /∈ L(x)

thenL(x) → L(x) ∪ {T}, for someT ∈ {〈C, ¤, n〉, 〈D, ¤, n〉}
∀¤ rule: if 〈∀R.C, ¤, n〉 ∈ L(x), there is aR-neighbory of x with 〈¤′, m〉 ∈ DR(x, y), which is conjugated with〈¤−, 1− n〉

and〈C, ¤, n〉 /∈ L(y);
thenL(y) → L(y) ∪ {〈C, ¤, n〉}.

∀+¤ rule: if 〈∀P.C, ¤, n〉 ∈ L(x), there is aR-neighbory of x with R v∗ P , Trans(R)=True and〈¤′, m〉 ∈ DR(x, y),
〈¤′, m〉 is conjugated with〈¤−, 1− n〉 and〈∀R.C, ¤, n〉 /∈ L(y);
L(y) → L(y) ∪ {〈∀R.C, ¤, n〉}.

≤ p¤ rule: if 〈≤ pR, ¤, n ∈ L(x); there isp + 1 R-successorsy1, y2, . . . , yp+1 of x with 〈R, ¤i, mi〉 ∈ L(〈x, yi〉) and〈¤i, mi〉
is conjugated with〈¢−, 1− n〉 for any1 ≤ i ≤ p + 1; and〈yi, yj〉 /∈ S 6= for some1 ≤ i < j ≤ p + 1
then merge two nodesyi andyj into one :L(yi) → L(yi) ∪ L(yj); ∀x,L(yi, x) → L(yi, x) ∪ L(yj , x), 〈yj , x〉 ∈ S 6=, add〈yi, x〉 in S 6=

The following rules are applied to nodesx which is not blocked.
∃¤ rule: if 〈∃R.C, ¤, n〉 ∈ L(x); there is not aR-neighbory of x with 〈¤, n〉 ∈ DR(x, y) and〈C, ¤, n〉 ∈ L(y).

then add a new nodez with 〈R, ¤, n〉 ∈ L(〈x, z〉) and〈C, ¤, n〉 ∈ L(z).
≥ pR¤ rule: if 〈≥ pR, ¤, n〉 ∈ L(x), there are notp R-neighborsy1, y2, . . . , yp of x with 〈R, ¤, n〉 ∈ L(〈x, yi〉) and for anyi 6= j, 〈yi, yj〉 ∈ S 6=.

then add p new nodesz1, z2, . . . , zp with 〈R, ¤, n〉 ∈ L(〈x, zi〉) and for any two nodezi andzj , add〈zi, zj〉 in S 6=.

Theorem 3 For anyK =< T ,R,A > and any discrete degree set
S w.r.tK,K has a discrete tableau withinS iff the tableau algorithm
can construct a complete and clash-free completion forest.

5 Related Work

In FDLs area, we have introduced a lot of work in introduction, all
that work are based on Straccia’ fuzzification framework. Here we
get into reasoning issue for fuzzy DLs. The first reasoning algo-
rithm was represented in [10], and the soundness and completeness
of it were proved in [11]. This algorithm is designed to reasoning
with FALC acyclic TBox form. More in detail, it first adopted KB
expansion [5] to eliminate acyclic TBox, then achieved reasoning
without TBox. However, such expansion technique is not available
for general TBox in FDLs. The following extension ofFALC in-
herited this idea to design reasoning algorithm, so most of these ex-
tension are limited to dealing with empty or acyclic TBox. In gen-
eral TBox cases, a noteworthy reasoning method is PTIME bounded
translations fromFALCH KBs intoALCH ones and reusing ex-
isting classical algorithm to achieve reasoning in fuzzy DLs [12].
This PTIME bounded translation can be considered as a result of re-
searches on relationship between DLs and fuzzy DLs. It can not deal
with 〈a, b〉 : R ¢ n inA, as this assertion will be translated into role
negation (that is not allowed inALC).

6 Conclusion

In this paper, we point out a novel semantical discretization to dis-
cretize membership degree values in fuzzy models ofFSHIN KBs,
hence yielding ”discrete models”. Based on this discretization tech-
nique, we design a discrete tableau algorithm to construct discrete
tableaus, which are abstraction of discrete models. From the equiv-
alence of existence between fuzzy models and discrete models, our
algorithm is a decision procedure to achieve reasoning with general

TBox in FSHIN KBs. Our work can be considered as a logical
foundation to support reasoning with fuzzy ontologies.
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