
The VADALOG System: Swift Logic for
Big Data and Enterprise Knowledge Graphs?

Luigi Bellomarini12, Georg Gottlob13, Andreas Pieris4, Emanuel Sallinger1

1 University of Oxford, UK
2 Banca d’Italia, Italy
3 TU Wien, Austria

4 University of Edinburgh, UK

1 Introduction

Many modern companies wish to maintain knowledge in the form of an enterprise
knowledge graph [21] and to use and manage this knowledge via knowledge graph
management systems (KGMS). We view a KGMS as a knowledge base manage-
ment system (KBMS), which performs complex rule-based reasoning tasks over
very large amounts of data and, in addition, provides methods and tools for data
analytics and machine learning, whence the equation:

KGMS = KBMS + Big Data + Analytics

Fig. 1. KGMS Reference Architecture.

In this paper, we summarize vari-
ous requirements for a fully-fledged
KGMS. Such a system must be capa-
ble of performing complex reasoning
tasks, guaranteeing, at the same time,
efficiency and scalability over Big
Data with an acceptable computa-
tional complexity. Moreover, a KGMS
needs interfaces to many heteroge-
neous data sources, including: corpo-
rate RDBMS, NoSQL stores, the web,
machine-learning and analytics pack-
ages. We present knowledge represen-
tation and reasoning formalisms and a
system achieving these goals. To this
aim, we adopt specific suitable frag-
ments from the Datalog± family of languages [3, 5, 6, 8, 9], and we introduce the
vadalog system (following the reference architecture shown in Fig. 1), which
puts these swift logics into action. Our system exploits the theoretical underpin-
nings of relevant Datalog± languages, combining them with existing and novel
techniques from database engineering and AI practice.

This paper is a short version of a fully detailed paper published in [2]. The
vadalog system is Oxford’s contribution to VADA [20], a joint project of the
universities of Edinburgh, Manchester, and Oxford. We reported first work on
the overall VADA approach to data wrangling in [14]. In this paper, we focus on
the vadalog system at its core. Our system currently fully implements the core
language and is already in use for a number of industrial applications. Many
extensions, especially those important for our partners, are already realized, but
others are still under development and will be integrated in the future. We con-
ducted extensive benchmarks on the system, and the results are very promising
in that they show good performance and scalability for large knowledge graphs.

? This paper is a short version of [2].



2 Desiderata for a KGMS

We now proceed to briefly summarize what we think are the most important
desiderata for a fully-fledged KGMS. We will list these requirements according to
two categories, keeping in mind, however, that these categories are interrelated.

Language and System for Reasoning

There should be a logical formalism for expressing facts and rules, and a reason-
ing engine that uses this language, which should provide the following features.

Simple and Modular Syntax: It should be easy to add and delete facts and to
add new rules. As in logic programming, facts should conceptually coincide with
database tuples.

High Expressive Power: Datalog [12, 17] is a good yardstick for the expressive
power of rule languages. Over ordered structures, Datalog with very mild nega-
tion captures ptime; see, e.g., [13]. A rule language should thus ideally be at
least as expressive as plain recursive Datalog, possibly with mild negation.

Numeric Computation and Aggregations: The basic logical formalism and in-
ference engine should be enriched by features for dealing with numeric values,
including appropriate aggregate functions.

Probabilistic Reasoning: The language should be suited for incorporating ap-
propriate methods of probabilistic reasoning, and the system should propagate
probabilities or certainty values along the reasoning process.

Ontological Reasoning and Query Answering: First, ontological reasoning to
the extent of tractable description logics such as DL-LiteR should be possible.
Second, it should be expressive enough to cover all SPARQL queries over RDF
datasets under the entailment regime for OWL 2 QL [15].

Low Complexity: Reasoning should be tractable in data complexity Whenever
possible, the system should recognize and take profit of rule sets that can be pro-
cessed within low space complexity classes such as nlogspace (e.g. for SPARQL)
or even ac0 (e.g., for traditional conjunctive database queries).

Rule Repository, Rule Management, and Ontology Editor: A library for storing
recurring rules and definitions should be provided, as well as a user interface for
rule management in the spirit of the ontology editor protégé [18].

Accessing and Handling Big Data

Big Data Access: The system must be able to provide efficient access to Big Data
sources and systems and fast reasoning algorithms over Big Data (see e.g. [19]).

Database Access: Seamless access to relational, graph databases, data ware-
houses, RDF stores, and major NoSQL stores should be granted. Data in such
repositories should be directly usable as factual data for reasoning.

Ontology-based Data Access (OBDA): OBDA [11] allows a system to compile a
query that has been formulated on top of an ontology into one directly on the
database. OBDA should be possible whenever appropriate.

Data Cleaning, Exchange and Integration: Integrating, exchanging and cleaning
data should be supported directly and via integration of third-party software.

Web Data Extraction, Interaction, and IoT: A KGMS should be able to interact
with the web by (i) extracting relevant web data and integrating these data into
the local fact base, and (ii) exchanging data with web forms and servers that are
available through a web interface.



Procedural Code and Machine Learning: A KGMS should have encapsulation
methods for embedding procedural code and offer a logical interface to it. The
system should be equipped with direct access to existing software packages for
machine learning, text mining, data analytics, and data visualization.

3 The VADALOG Language

vadalog is a Datalog-based language that matches the requirements presented
in Section 2. It belongs to the Datalog± family of languages that extend Datalog
by existential quantifiers in rule heads, as well as by other features, and restricts
at the same time its syntax in order to achieve decidability and data tractabil-
ity; see, e.g., [4, 5, 7, 10]. The logical core of the vadalog language corresponds
to Warded Datalog± [1, 16], which captures plain Datalog as well as SPARQL
queries under the entailment regime for OWL 2 QL [15], and is able to per-
form ontological reasoning tasks. Reasoning with the logical core of vadalog is
computationally efficient. vadalog is obtained by extending Warded Datalog±

with additional features of practical utility. We now illustrate the logical core of
vadalog, while a discussion of the additional features is in the full paper [2].

The logical core of vadalog relies on the notion of wardedness, which applies a
restriction on how the “dangerous” variables of a set of existential rules are used.
Intuitively, a “dangerous” variable is a body-variable that can be unified with a
labeled null value when the chase algorithm is applied, and it is also propagated
to the head of the rule. For example, given the set Σ consisting of the rules

P (x)→ ∃z R(x, z) and R(x, y)→ P (y),

the variable y in the body of the second rule is “dangerous” (w.r.t. Σ) since
starting, e.g., from the database D = {P (a)}, the chase will apply the first rule
and generate R(a, ν), where ν is a null that acts as a witness for the existentially
quantified variable z, and then the second rule will be applied with the variable
y being unified with ν that is propagated to the obtained atom P (ν).

The goal of wardedness is to tame the way null values are propagated during
the construction of the chase instance by posing the following conditions: 1.
all the “dangerous” variables should coexist in a single body-atom α, called
the ward; 2. the ward can share only “harmless” variables with the rest of the
body, i.e., variables that are unified only with database constants during the
construction of the chase.

Warded Datalog± consists of all the (finite) sets of warded existential rules.
As an example of a warded set of rules, the following rules encode part of the
OWL 2 direct semantics entailment regime for OWL 2 QL (see [1, 16]):

Type(x, y),Restriction(y, z)→ ∃wTriple(x, z, w)

Type(x, y),SubClass(y, z)→ Type(x, z)

Triple(x, y, z), Inverse(y, w)→ Triple(z, w, x)

Triple(x, y, z),Restriction(w, y)→ Type(x,w).

It is easy to verify that the above set is warded, where the underlined atoms are
the wards. Indeed, a variable that occurs in an atom of the form Restriction(·, ·),
or SubClass(·, ·), or Inverse(·, ·), is trivially harmless. However, variables that
appear in the first position of Type, or in the first/third position of Triple can
be dangerous. Thus, the underlined atoms are indeed acting as the wards.



4 The VADALOG System

The functional architecture of the vadalog system, our KGMS, is depicted
in Figure 1. The knowledge graph is organized as a repository, a collection of
vadalog rules. The external sources are supported by means of transducers,
intelligent adapters that integrate the sources into the reasoning process.

The vadalog system fulfils the requirements presented in Section 2. The
Big Data characteristics of the sources and the complex functional requirements
of reasoning are tackled by leveraging the underpinnings of the core language,
which are turned into practical execution strategies. In particular, in the rea-
soning algorithms devised for Warded Datalog±, after a certain number of chase
steps (which, in general, depends on the input database), the chase graph [5]
(a directed acyclic graph where facts are represented as nodes and the applied
rules as edges) exhibits specific periodicities and no new information, relevant
to query answering, is generated. The vadalog system adopts an aggressive
recursion and termination control strategy, which detects such redundancy as
early as possible by combining compile-time and runtime techniques. In combi-
nation with a highly engineered architecture, the vadalog system achieves high
performance and an efficient memory footprint.

At compile time, thanks to wardedness, which limits the interaction between
the labeled nulls, the engine rewrites the program in such a way that joins on
specific values of labeled nulls will never occur. At runtime, we do an eager
optimal pruning of redundant chase branches: we exploit fact provenance to
preempt the application of rules which will generate redundant facts. Due to
wardedness, the provenance information needed is bounded.

The vadalog system uses a pull stream-based approach (or pipeline ap-
proach), where the facts are actively requested from the output nodes to their
predecessors and so on down to the input nodes, which eventually fetch the facts
from the data sources. The stream approach is essential to limit the memory
consumption or, at least make it predictable, so that the system is effective for
large volumes of data. Our setting is made more challenging by the presence of
multiple interacting rules in a single rule set and the wide presence of recur-
sion. We address this by means of a specialized buffer management technique.
We adopt pervasive local caches in the form of wrappers to the nodes of the
access plan, where the facts produced by each node are stored. The local caches
work particularly well in combination with the pull stream-based approach, since
facts requested by a node successor can be immediately reused by all the other
successors, without triggering further backward requests. Also, this combination
realizes an extreme form of multi-query optimization, where each rule exploits
the facts produced by the others, whenever applicable. To limit memory occu-
pation, the local caches are flushed with an eager eviction strategy that detects
when a fact has been consumed by all the possible requestors and thus drops it
from the memory. Cases of actual cache overflow are managed by resorting to
standard disk swap heuristics (e.g. LRU, LFU, etc.)

5 Conclusion

The vadalog system is already in use for a number of industrial applications.
We believe that the vadalog system is a well-suited platform for knowledge
graph applications that integrate machine learning (ML) and data analytics
with logical reasoning. We are currently implementing applications of this type
and will report about them soon.



Acknowledgments This work has been supported by the EPSRC Programme
Grant EP/M025268/1 (http://vada.org.uk/). The VADALOG system as pre-
sented here is the intellectual property of the University of Oxford.

References

1. M. Arenas, G. Gottlob, and A. Pieris. Expressive languages for querying the
semantic web. In PODS, pages 14–26, 2014.

2. L. Bellomarini, G. Gottlob, A. Pieris, and E. Sallinger. Swift logic for big data and
knowledge graphs. In IJCAI, pages 2–10, 2017.

3. A. Cal̀ı, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. J. Artif. Intell. Res, 48:115–174, 2013.

4. A. Cal̀ı, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. J. Artif. Intell. Res., 48:115–174, 2013.

5. A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for
tractable query answering over ontologies. J. Web Sem., 14:57–83, 2012.

6. A. Cal̀ı, G. Gottlob, T. Lukasiewicz, B. Marnette, and A. Pieris. Datalog+/-: A
family of logical knowledge representation and query languages for new applica-
tions. In Logic in Computer Science (LICS), 2010 25th Annual IEEE Symposium
on, pages 228–242. IEEE, 2010.

7. A. Cal̀ı, G. Gottlob, T. Lukasiewicz, B. Marnette, and A. Pieris. Datalog+/-: A
family of logical knowledge representation and query languages for new applica-
tions. In LICS, pages 228–242, 2010.

8. A. Cal̀ı, G. Gottlob, and A. Pieris. New expressive languages for ontological query
answering. In Proc. of AAAI, volume 2011, 2011.

9. A. Cal̀ı, G. Gottlob, and A. Pieris. Towards more expressive ontology languages:
The query answering problem. Artificial Intelligence, 193:87–128, 2012.

10. A. Cal̀ı, G. Gottlob, and A. Pieris. Towards more expressive ontology languages:
The query answering problem. Artif. Intell., 193:87–128, 2012.

11. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-
Muro, R. Rosati, M. Ruzzi, and D. F. Savo. The mastro system for ontology-based
data access. Semantic Web, 2(1):43–53, 2011.

12. S. Ceri, G. Gottlob, and L. Tanca. Logic programming and databases. Springer,
2012.

13. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive
power of logic programming. ACM Comput. Surv., 33(3):374–425, 2001.

14. T. Furche, G. Gottlob, B. Neumayr, and E. Sallinger. Data wrangling for big data:
Towards a lingua franca for data wrangling. In AMW, volume 1644 of CEUR
Workshop Proceedings. CEUR-WS.org, 2016.

15. B. Glimm, C. Ogbuji, S. Hawke, I. Herman, B. Parsia, A. Polleres, and A. Seaborne.
SPARQL 1.1 entailment regimes, 2013. W3C Recommendation 21 March 2013,
2013.

16. G. Gottlob and A. Pieris. Beyond SPARQL under OWL 2 QL entailment regime:
Rules to the rescue. In IJCAI, pages 2999–3007, 2015.

17. S. S. Huang, T. J. Green, and B. T. Loo. Datalog and emerging applications: an
interactive tutorial. In SIGMOD, pages 1213–1216. ACM, 2011.

18. N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W. Fergerson, and M. A. Musen.
Creating semantic web contents with protege-2000. IEEE IS, 16(2):60–71, 2001.

19. A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C. Zaniolo. Big
Data Analytics with Datalog Queries on Spark. In SIGMOD, pages 1135–1149,
2016.

20. VADA. Project Website. http://vada.org.uk/, 2016. [Online; accessed 3-Mar-
2018].

21. Wikipedia. Knowledge graph. https://en.wikipedia.org/wiki/Knowledge_

Graph, 2017. [Online; accessed 3-Mar-2018].


