
How “Standard” is the SQL Standard?

Paolo Guagliardo and Leonid Libkin

University of Edinburgh

1 Introduction

The Structured Query Language (SQL) has been an international standard for
more than three decades, and it is now supported in all major RDBMSs. While
it is well known that database vendors typically implement custom extensions of
SQL that are not part of the ISO Standard, it is reasonable to expect statements
that use only “standard” features of the language to behave the same regardless
of which system they are executed on; after all, this is the whole point of having
a standard. However, the reality is that even simple statements may compile in
some systems and not in others, or produce different results.

To illustrate how puzzling and counterintuitive things may get, let us consider
a base table R with one column named A, and the query

Q = SELECT R.A, R.A FROM R

In all of the most popular RDBMSs on the market today – Oracle, SQL Server,
DB2, MySQL and PostgreSQL – Q will give the same answer. But now consider

Q′ = SELECT * FROM (Q) R1

where the expression for Q is plugged in as a subquery. All of the above systems,
except PostgreSQL, will report a compilation error, even though Q′ simply asks
to print the result of the query Q that, on its own, runs without problems. Post-
greSQL, on the other hand, compiles Q′ and outputs the same answer produced
by Q. Then it gets even more interesting. Consider

Q′′ = SELECT * FROM R WHERE EXISTS (Q′ )

where we plug in the expression for Q′ that did not compile on all systems except
PostgreSQL. Now this query suddenly works, even on those systems that did not
compile Q′, with the sole exception of MySQL that keeps reporting error.

Understanding what is going on here is not straightforward. Part of the issue
is due to the fact that the only official specification of SQL is the ISO Standard,
which is a massive document entirely written in natural language. Aside from it,
there are no other tools, such as a reference implementation or a standardized set
of test cases, to assess the level of compliance of an RDBMS w.r.t. the Standard.

In this short paper, we describe some of the discrepancies that exist between
different SQL implementations, and we discuss our recent and ongoing efforts [1]
towards a formal semantics of the SQL language, arguing how this could be used
to improve the current state of affairs.



2 Compliance with the Standard

The simplest discrepancies between SQL implementations are due to operators
or constructs missing from the language, or having different syntactic forms than
in the Standard. While still important for portability, such kind of differences
are typically well documented and relatively easy to deal with.

More problematic are the cases in which a feature is supported by a system,
but it does not behave as expected. Examples are integer division in MySQL and
Oracle, which produces a decimal number in place of an integer, and division by
zero in MySQL, which returns NULL instead of throwing a runtime error. Some-
times, this can be partly mitigated by modifying the system’s configuration; for
instance, MySQL has a “strict mode” that forces a runtime error for division by
zero in data-modification statements but has no effect in queries, and an “ANSI
mode” that restores some sanity by enforcing standard quotation marks, pipes for
string concatenation, and fully-specified GROUP BY clauses. On the other hand,
this also means that the behavior w.r.t. the Standard depends on the particular
mode the system runs in, which further complicates things.

Some behaviors are deeply built into individual systems as a result of poor or
fundamentally flawed design choices, which cannot be changed via configuration
parameters. One instance of this is Oracle’s astonishing choice of implementing
NULL as the empty string. For example, in Oracle, the query

SELECT * FROM R WHERE 'a' <> ''

produces an empty table even if R is non-empty, because '' is NULL and every
comparison involving NULL evaluates to the truth value unknown, so no rows are
returned. In a world where text processing is very common and SQL statements
are often machine-generated, it is not hard to imagine scenarios where this could
have devastating effects: e.g., a large, complex transaction may be aborted simply
because it attempted to insert the result of a string operation – which happened
to produce the empty string – into a column declared as NOT NULL.

A similar shortsighted implementation choice can be found in MySQL, which
construes TRUE and FALSE as the integers 1 and 0, respectively. But the world’s
most popular open source database truly surpasses itself with its type checking
system and implicit casting rules, which result in meaningless queries like

SELECT * FROM R WHERE TRUE + 4 - '5'

to successfully compile and execute: TRUE is 1, the string '5' is implicitly con-
verted to the integer 5, hence the WHERE condition above evaluates to 0, which
is FALSE, and so no rows are returned.

There are then cases when RDBMSs deviate from the Standard for sensible
reasons. To illustrate this point, let us go back to the queries Q′ and Q′′ given in
the introduction. According to the Standard, the behavior of SELECT * depends
on the context in which it occurs: under EXISTS, the star amounts to having an
arbitrary constant in its place, while everywhere else it is the same as explicitly
listing all attributes. This means that the semantics of SQL is non-compositional
(the same query can behave differently in different contexts) and it is why DB2,



Oracle and SQL Server – which follow the Standard in this respect – report error
for Q′ but not for Q′′. Indeed, replacing * in Q′ with an explicit list of attributes
results in a reference to A that is ambiguous, because there are two columns with
that name in R1. This does not happen in Q′′, where * is replaced by a constant.

MySQL and PostgreSQL take different routes that deviate from the Standard
but restore compositionality: the former always turns the star into an explicit list
of attributes, even under EXISTS; the latter interprets it as “return all columns
without referencing them by name” (which in our opinion is the most reasonable
choice). This is why MySQL reports error for both Q′ and Q′′, while PostgreSQL
executes them successfully.

3 Formal Semantics of SQL Queries

The SQL Standard is written in natural language, which is inherently ambiguous,
and to think that it may be the source of misunderstandings among developers,
implementers, as well as database researchers, is not implausible. Moreover, from
a practical point of view, a natural language specification is harder to implement
and maintain, and it does not lend itself to formal reasoning, which is necessary
to derive language equivalences and optimization rules.

The need for a formal semantics of SQL is witnessed by the fact that several
attempts at providing one have been made in the past (see [1] for relevant refer-
ences). However, all of the approaches found in the literature make at least one
of the following unrealistic assumptions: set semantics (that is, rows in tables do
not repeat) and absence of null values. Recently, we proposed a formal semantics
of a significant fragment of SQL, by taking into account bag semantics and nulls,
and working with the real language, rather than a theoretical reconstruction of
it. To illustrate the salient points of our formal semantics, we refer again to the
behavior of SELECT * discussed in the previous sections.

In SQL, queries Q and conditions θ are defined by mutual recursion: queries
have conditions in the WHERE clause, and a condition may involve a query within
EXISTS or IN. The semantic function J·K we define takes different inputs depend-
ing on the syntactic construct under consideration: for conditions, the inputs are
a database D and an environment η that binds attribute references to actual val-
ues; for queries we additionally need a Boolean flag x that indicates whether we
are within an EXISTS predicate. Then, the behavior of * in SELECT is given by:

u

v
SELECT *
FROM τ

WHERE θ

}

~

D,η,x

=


JSELECT c AS N FROM τ WHERE θKD,η,x if x = 1

JSELECT `(τ) FROM τ WHERE θKD,η,x if x = 0

where c is an arbitrary constant and N is an arbitrary name, while ` is a labeling
function producing the list of attributes in (the Cartesian product of) the tables
in the FROM clause. The Boolean flag x is set to 1 in EXISTS conditions as follows:

JEXISTS QKD,η =

{
t if JQKD,η,1 6= ∅
f if JQKD,η,1 = ∅



and it is reset to 0 in other rules of the semantics (see [1] for details).
Our formal semantics can also be easily adapted from one system to another.

For example, in PostgreSQL and MySQL, the semantic function for queries will
be defined only w.r.t. a database D and an environment η, while the flag x is no
longer needed, because in these two systems the behavior of * is independent of
the context. Then, the semantics of SELECT * queries in MySQL is given by

JSELECT * FROM τ WHERE θKD,η = JSELECT `(τ) FROM τ WHERE θKD,η
while for PostgreSQL we have

JSELECT * FROM τ WHERE θKD,η = JFROM τ WHERE θKD,η
Observe that the absence of SELECT in the r.h.s. of the above equation is not a
typo; refer to [1] for details.

The semantics was experimentally validated with PostgreSQL and Oracle on
a large number of randomly generated queries. Its immediate applications were
theoretical: providing the first formal proof that basic SQL queries and relational
algebra have the same expressive power, and showing that – contrary to common
belief – three-valued logic is not really necessary for handling nulls.

4 Outlook

The goal of the SQL Standard is to guarantee interoperability between RDBMSs,
but the discrepancies existing in current implementations are significant enough
to severely affect the portability of SQL code. The problems we discussed here are
just the tip of the iceberg, as we have not even touched on grouping, aggregation,
constraints, transactions, data definition statements, recursive queries, common
table expressions, updates, and many other features of the language.

Our ambitious goal is to make the Standard more clear, formal and accessible,
in the interest of researchers and practitioners alike. The semantics we presented
in [1], and briefly outlined here, is a first important step towards this goal and we
expect it to lead to a cluster of tools aimed at assessing the level of compliance
of an RDBMS w.r.t. the Standard in a transparent way. Examples of such tools
are a reference implementation and a technology compatibility kit for SQL.

This work has already yielded very positive outcomes. First, it has led to our
cooperation with Neo4j, a world-leading company in field of graph databases, to
formalize the semantics of the graph query language Cypher [2]. Second, we are
currently negotiating with the standardization committee ISO/IEC JTC1/SC32
the possibility of including a formal specification of SQL to the Standard, in the
form of a (non-normative) technical report.

References
1. Guagliardo, P., Libkin, L.: A formal semantics of SQL queries, its validation, and

applications. PVLDB 11(1) (2017) 27–39
2. Francis, N., et al.: Cypher: An evolving query language for property graphs. In:

SIGMOD’18 – Industrial Track, ACM (2018) To appear.


