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Abstract

The notion of descent set is classical both for permutations and for
standard Young tableaux (SYT). Cellini introduced a natural notion of
cyclic descent set for permutations, and Rhoades introduced such a no-
tion for SYT, but only of rectangular shapes. In this paper, we describe
cyclic descents for SYT of various other shapes. Motivated by these
findings, we define cyclic extensions of descent sets in a general con-
text, and we show that they exist for SYT of almost all shapes. Finally,
we introduce the ring of cyclic quasisymmetric functions and apply it
to analyze the distributions of cyclic descents over permutations and
SYT.

1 Introduction

The notion of descent set, for permutations as well as for standard Young tableaux (SYT), is classical. Cellini
introduced a natural notion of cyclic descent set for permutations, and Rhoades introduced such a notion for
SYT — but only for rectangular shapes.

In [ER17a] and [AER18] we defined cyclic descent set maps for SYT of various shapes; see Theorem 3.2 below
and the remark following it. Motivated by these results, cyclic extensions of descent sets have been defined in
a general context and shown to exist for SYT of almost all shapes [ARR17]; see Theorem 4.1 below. The proof
applies nonnegativity properties of Postnikov’s toric Schur polynomials, providing a new interpretation of certain
Gromov-Witten invariants. Finally, the ring of cyclic quasisymmetric functions has been introduced and studied
in [AGRR+18], and further applied to analyze the resulting cyclic Eulerian distributions.
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2 Background

The descent set of a permutation π = [π1, . . . , πn] in the symmetric group Sn on n letters is defined as

Des(π) := {1 ≤ i ≤ n− 1 : πi > πi+1} ⊆ [n− 1],

where [m] := {1, 2, . . . ,m}. For example, Des([2, 1, 4, 5, 3]) = {1, 4}. Its cyclic descent set was defined by
Cellini [Cel98] as

cDes(π) := {1 ≤ i ≤ n : πi > πi+1} ⊆ [n], (1)

with the convention πn+1 := π1. For example, cDes([2, 1, 4, 5, 3]) = {1, 4, 5}. This cyclic descent set was further
studied by Dilks, Petersen, Stembridge [DPS09] and others. It has the following important properties. Consider
the two actions of the cyclic group Z, on Sn and on the power set of [n], in which the generator p of Z acts by

[π1, π2, . . . , πn−1, πn]
p7−→ [πn, π1, π2, . . . , πn−1],

{i1, . . . , ik}
p7−→ {i1 + 1, . . . , ik + 1} mod n.

Then for every permutation π, one has the following three properties:

cDes(π) ∩ [n− 1] = Des(π) (extension) (2)

cDes(p(π)) = p(cDes(π)) (equivariance) (3)

∅ ( cDes(π) ( [n] (non-Escher) (4)

The term non-Escher refers to M. C. Escher’s drawing “Ascending and Descending”, which paradoxically depicts
the impossible cases cDes(π) = ∅ and cDes(π) = [n].

There is also an established notion of descent set for a standard (Young) tableau (SYT) T of a skew shape
λ/µ:

Des(T ) := {1 ≤ i ≤ n− 1 : i+ 1 appears in a lower row of T than i} ⊆ [n− 1].

For example, the following SYT T of shape λ/µ = (4, 3, 2)/(1, 1) has Des(T ) = {2, 3, 5}:

1 2 7

3 5

4 6

For the special case of an SYT T of rectangular shape, Rhoades [Rho10, Lemma 3.3] introduced a notion of
cyclic descent set cDes(T ), possessing the above properties (2), (3) and (4) with respect to the Z-action in which
the generator p acts on tableaux via Schützenberger’s jeu-de-taquin promotion operator. A similar concept of
cDes(T ) and accompanying action p was introduced for two-row shapes and certain other skew shapes (see
Subsection 3.2 for the list) in [AER18, ER17a], and used there to answer Schur positivity questions.

3 Cyclic descents: definition and examples

3.1 Definition

Let us begin by formalizing the concept of a cyclic extension. Recall the bijection p : 2[n] −→ 2[n] induced by
the cyclic shift i 7→ i+ 1 (mod n), for all i ∈ [n].

Definition 3.1. Let T be a finite set. A descent map is any map Des : T −→ 2[n−1]. A cyclic extension of
Des is a pair (cDes, p), where cDes : T −→ 2[n] is a map and p : T −→ T is a bijection, satisfying the following
axioms: for all T in T ,

(extension) cDes(T ) ∩ [n− 1] = Des(T ),
(equivariance) cDes(p(T )) = p(cDes(T )),

(non-Escher) ∅ ( cDes(T ) ( [n].

The non-Escher axiom is used to prove the (essential) uniqueness of the cyclic extension.
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3.2 Examples

Cyclic extensions of descent maps have been given previously in several cases:

• For T = Sn, the descent set Des(π) of a permutation π was described in Section 2, as was Cellini’s original
cyclic extension (cDes, p). Note that n ≥ 2 is required for the non-Escher property.

• Let T = SYT(λ) where λ = (ab) has rectangular shape, e.g.

λ = (53) =

Consider the usual notion of descent set Des(T ) on standard tableaux, as in Section 2. As mentioned earlier,
Rhoades [Rho10, Lemma 3.3] showed that Schützenberger’s jeu-de-taquin promotion operation p provides a
cyclic extension (cDes, p). Again, we require a, b ≥ 2 for the non-Escher property.

New examples are given in [AER18].

Theorem 3.2.

1. Let T = SYT(λ) where λ is a hook plus internal corner, namely λ = (n − 2 − k, 2, 1k) for 0 ≤ k ≤ n − 4;
e.g.,

λ = (8, 2, 1, 1, 1) =

There is a unique cyclic descent map cDes on T , defined as follows: by the extension property, it suffices
to specify when n ∈ cDes(T ), and one decrees this to hold if and only if the entry T2,2 − 1 lies strictly west
of T2,2 (namely, in the first column of T ); see [AER18] for more details. Note that for most shapes in this
family there are several possible shifting bijections p, so that the cyclic extension (cDes, p) is not unique.

2. Let T = SYT(λ) with λ of two-row shape, namely λ = (n− k, k) for 2 ≤ k ≤ n/2; e.g.,

λ = (8, 3) =

There exists a cyclic extension of Des defined as follows; see [AER18]. Decree that n ∈ cDes(T ) if and only
if both

− the last two entries in the second row of T are consecutive, and

− for every 1 < i < k, T2,i−1 > T1,i.

Other examples involve direct sums of shapes. Given t (skew) shapes ν1, . . . , νt, the direct sum ν1⊕ν2⊕· · ·⊕νt
is the skew shape consisting of t diagrams of shapes ν1, . . . , νt, for each i the diagram of νi+1 is strictly northeast
of the diagram of νi, with no rows or columns in common.

• Given any (strict) composition α of n, that is, an ordered sequence of positive integers α = (α1, . . . , αt) with∑
i αi = n, consider the associated horizontal strip skew shape

α⊕ := (α1)⊕ (α2)⊕ · · · ⊕ (αt)

whose rows, from southwest to northeast, have sizes α1, . . . , αt. For T in T = SYT(α⊕), we define

cDes(T ) := {1 ≤ i ≤ n : i+ 1 is in a lower row than i},

where n + 1 is interpreted as 1, as well as a bijection p : SYT(α⊕) → SYT(α⊕) which first replaces each
entry j of T by j + 1 (mod n) and then re-orders each row to make it left-to-right increasing. One can
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check that this (cDes, p) is a cyclic extension of Des, with t ≥ 2 required for the non-Escher property. For
example, when α = (3, 4, 2) (and n = 9), one has the following standard tableaux T of shape α⊕:

T =

3 9

1 5 7 8

2 4 6

p7−→ p(T ) =

1 4

2 6 8 9

3 5 7

cDes(T ) = {1, 3, 5, 9} p7−→ cDes(p(T )) = {1, 2, 4, 6}

This generalizes the case of (cDes, p) on Sn, since for α = (1n) = (1, 1, . . . , 1) one has a bijection Sn →
SYT(α⊕) which sends a permutation w to the tableau whose entries are w−1(1), . . . , w−1(n) read from
southwest to northeast; e.g., for n = 5,

w = [5, 3, 1, 4, 2] 7−→

1

4

2

5

3

This bijection maps Cellini’s cyclic extension (cDes, p) on Sn to the one on SYT(α⊕) for α = (1, 1, . . . , 1)
defined above1.

• Furthermore, for any nonempty partition λ ` n− 1, the partition λ⊕ (1), e.g.

λ = (4, 3, 1)⊕ (1) =

has an explicit cyclic extension of Des described in [ER17a]. This case was, in fact, our original motivation,
and the question of existence of a cyclic extension of Des on SYT(λ/µ) appears there as [ER17a, Problem
5.5].

4 Cyclic descents for standard Young tableaux

Our first main result is a necessary and sufficient condition for the existence of a cyclic extension cDes of the
descent map Des on the set SYT(λ/µ) of standard Young tableaux of shape λ/µ, with an accompanying Z-action
on SYT(λ/µ) via an operator p, satisfying properties (2), (3) and (4). In this story, a special role is played by
the skew shapes known as ribbons (connected skew shapes containing no 2×2 rectangle), and in particular hooks
(straight ribbon shapes, namely λ = (n− k, 1k) for k = 0, 1, . . . , n− 1). Early versions of [AER18] and [ER17a]
conjectured the following result.

Theorem 4.1. [ARR17, Theorem 1.1] Let λ/µ be a skew shape. The descent map Des on SYT(λ/µ) has a
cyclic extension (cDes, p) if and only if λ/µ is not a connected ribbon. Furthermore, for all J ⊆ [n], all such
cyclic extensions share the same cardinalities #cDes−1(J).

Our strategy for proving Theorem 4.1 is inspired by a result of Gessel [Ges84, Theorem 7] that we recall here.
For a subset J = {j1 < . . . < jt} ⊆ [n− 1], the composition (of n)

α(J, n) := (j1, j2 − j1, j3 − j2, . . . , jt − jt−1, n− jt) (5)

defines a connected ribbon having the entries of α(J, n) as row lengths, and thus an associated (skew) ribbon
Schur function

sα(J,n) :=
∑

∅⊆I⊆J
(−1)#(J\I)hα(I,n) (6)

1This cyclic descent map can be further generalized to strips, which are the disconnected shapes each of whose connected
components consists of either one row or one column; see [AER18].
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with the following property: for any skew shape λ/µ, the descent map Des : SYT(λ/µ) −→ 2[n−1] has fiber sizes
given by

#Des−1(J) = 〈sλ/µ, sα(J,n)〉 (∀J ⊆ [n− 1]), (7)

where 〈−,−〉 is the usual inner product on symmetric functions.

By analogy, for a subset ∅ 6= J = {j1 < j2 < . . . < jt} ⊆ [n] we define the corresponding cyclic composition
of n as

αcyc(J, n) := (j2 − j1, . . . , jt − jt−1, j1 + n− jt), (8)

with αcyc(J, n) := (n) when J = {j1}; note that αcyc(∅, n) is not defined. The corresponding affine (or cyclic)
ribbon Schur function is then defined as

s̃αcyc(J,n) :=
∑

∅ 6=I⊆J
(−1)#(J\I)hαcyc(I,n). (9)

We then collect enough properties of this function to show that there must exist a map cDes : SYT(λ/µ)→ 2[n]

and a Z-action p on SYT(λ/µ), as in Theorem 4.1, such that fiber sizes are given by

#cDes−1(J) = 〈sλ/µ, s̃αcyc(J,n)〉 (∀ ∅ ( J ( [n]). (10)

The nonnegativity of this inner product when λ/µ is not a connected ribbon ultimately relies on relating s̃αcyc(J,n)

to a special case of Postnikov’s toric Schur polynomials, with their interpretation in terms of Gromov-Witten
invariants for Grassmannians [Pos05].

5 Cyclic quasisymmetric functions

5.1 The ring of cyclic quasisymmetric functions

Recall from [Ges84] the following basic definitions: A quasi-symmetric function is a formal power series f ∈
Z[[x1, x2, . . .]] of bounded degree such that, for any t ≥ 1, any two increasing sequences i1 < · · · < it and
i′1 < · · · < i′t of positive integers, and any sequence (m1, . . . ,mt) of positive integers, the coefficients of xm1

i1
· · ·xmt

it
and xm1

i′1
· · ·xmt

i′t
in f are equal. Denote by QSym the set of all quasi-symmetric functions, and by QSymn the

set of all quasi-symmetric functions which are homogeneous of degree n.

The fundamental quasi-symmetric function corresponding to a subset J ⊆ [n− 1] is defined by

Fn,J :=
∑

xi1 · · ·xin ,

where the sum extends over all sequences (i1, . . . , in) of positive integers such that j ∈ J ⇒ ij < ij+1 and
j 6∈ J ⇒ ij ≤ ij+1. The set {Fn,J : J ⊆ [n− 1]} forms a basis for the additive abelian group QSymn.

The cyclic analogues of these concepts are introduced in [AGRR+18].

Definition 5.1. A cyclic quasi-symmetric function is a formal power series f ∈ Z[[x1, x2, . . .]] of bounded degree
such that, for any t ≥ 1, any two increasing sequences i1 < · · · < it and i′1 < · · · < i′t of positive integers, any
sequence m = (m1, . . . ,mt) of positive integers, and any cyclic shift m′ = (m′1, . . . ,m

′
t) of m, the coefficients of

xm1
i1
· · ·xmt

it
and x

m′1
i′1
· · ·xm

′
t

i′t
in f are equal.

Denote by cQSym the set of all cyclic quasi-symmetric functions, and by cQSymn the set of all cyclic quasi-
symmetric functions which are homogeneous of degree n.

Observation 5.2. QSym, cQSym and the set Sym of symmetric functions (sometimes denoted Λ) are graded
abelian groups satisfying

Sym ( cQSym ( QSym (11)

It is not too difficult to check that they are also rings, that is, closed under the multiplication operation on power
series. For Sym,QSym this is well-known; the proof for cQSym is given in [AGRR+18].
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5.2 Fundamental cyclic quasisymmetric functions

Definition 5.3. For each subset J ⊆ [n] denote by P cyc
n,J the set of all pairs (w, k) consisting of a word w =

(w1, . . . , wn) ∈ Nn and an index k ∈ [n] which satisfy

(i) The word w is “cyclically weakly increasing” from index k, namely wk ≤ wk+1 ≤ . . . ≤ wn ≤ w1 ≤ . . . ≤
wk−1.

(ii) If j ∈ J then wj 6= wj+1, where indices are computed modulo n. (This condition is vacuous for J = ∅.)

Remark 5.4. The index k is uniquely determined by the word w, unless all the letters of w are equal; in which
case, any index k ∈ [n] will do. These “constant words” are relevant only for J = ∅, and the definition implies
that each of them is counted n times (and not just once) in P cyc

n,∅.

Example 5.5. Let n = 5 and J = {1, 3}. The pairs (12345, 1), (23312, 4) and (23122, 3) are in P cyc
5,{1,3} (see

Figure 1), but the pairs (12354, 1), (22312, 4) and (23112, 3) are not.

1

2

3

4

5

∧

2

3

3

1

2

∧

2

3

1

2

2

∧

Figure 1: The pairs (12345, 1), (23312, 4) and (23122, 3) in P cyc
5,{1,3}.

Let Dn,J := {i ∈ Z/nZ : J + i ≡ J (mod n)} be the stabilizer of J under the action of Z/nZ by cyclic shifts,
and let dn,J := #Dn,J .

Definition 5.6. The fundamental cyclic quasisymmetric function corresponding to a subset J ⊆ [n] is defined
by

F cyc
n,J := d−1n,J

∑
(w,k)∈P cyc

n,J

xw1xw2 · · ·xwn .

Let 2
[n]
0 be the set of all nonempty subsets of [n], and let c2

[n]
0 be the set of orbits of elements of 2

[n]
0 under

cyclic shifts. If J and J ′ are in the same orbit then F cyc
n,J = F cyc

n,J′ .

Theorem 5.7. The set {F cyc
n,J : J ∈ c2[n]0 } is a Z-basis for cQSymn.

Furthermore, letting sλ/µ be the skew Schur function indexed by a non-ribbon shape λ/µ, we have∑
T∈SYT(λ/µ)

F cyc
n,cDes(T ) = sλ/µ. (12)

6 Cyclic Eulerian distributions

The distribution of descents on sets of permutations and other combinatorial objects, known as the Eulerian
distribution, has been studied extensively; see, e.g., [BBS09], [Pet15, p. 91] and references therein. In this section
we study the distribution of cyclic descents over SYT and compare it to its distribution over permutations.
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6.1 Univariate generating functions

The descent number is the size of the descent set. For any skew shape λ/µ of size n there is a known expression
[Sta99, equation (7.96)] for the generating function of the descent number, des, on standard Young tableaux of
shape λ/µ: ∑

T∈SYT(λ/µ)

tdes(T ) = (1− t)n+1
∑
m≥0

sλ/µ(1m+1)tm. (13)

Here sλ/µ(1m) is the specialization of the skew Schur function sλ/µ(x1, x2, . . .) given by x1 = . . . = xm = 1
and xm+1 = . . . = 0. Note that when µ = ∅ this becomes even more explicit, through the hook-content
formula [Sta99, Cor. 7.21.4] for the specialization sλ(1m). In particular, for the skew shape (1)⊕n this gives the
well-known Carlitz formula for the Eulerian distribution on Sn:

Sdes
n (t) :=

∑
w∈Sn

tdes(w) = (1− t)n+1
∑
m≥0

(m+ 1)ntm (14)

An analogous expression for the cyclic descent number cdes is proved in [ARR17].

Corollary 6.1. For any skew shape λ/µ of size n which is not a connected ribbon,∑
T∈SYT(λ/µ)

tcdes(T ) = n(1− t)n
∑
m≥1

sλ/µ(1m)
tm

m
. (15)

In particular, for the skew shape (1)⊕n this gives

Scdes
n (t) :=

∑
w∈Sn

tcdes(w) = n(1− t)n
∑
m≥1

mn−1tm = ntSdes
n−1(t) (n ≥ 2). (16)

For two-row shapes, [ARR17, Lemma 2.4] is applied in [AER18] to deduce the following.

Theorem 6.2. For any 2 ≤ k ≤ n/2,

∑
T∈SYT((n−k,k))

tcdes(T ) =

k∑
d=1

n

d

[(
k − 1

d− 1

)(
n− k − 1

d− 1

)
−
(
k − 2

d− 1

)(
n− k
d− 1

)]
td.

6.2 Multivariate generating functions

Next we compare the distribution of cDes on SYT(λ) to the distribution of cDes on Sn. Recall [Sag01, Theorem
3.1.1 and §5.6 Ex. 22(a)] that the Robinson-Schensted correspondence is a bijection between Sn and the set of
pairs of standard Young tableaux of the same shape λ (and size n), having the property that if w 7→ (P,Q) then
Des(w) = Des(Q). Consequently ∑

w∈Sn

tDes(w) =
∑
λ`n

fλ
∑

T∈SYT(λ)

tDes(T ).

Here tS :=
∏
i∈S ti for S ⊆ {1, 2, . . .}, while λ ` n means λ is a partition of n, and fλ := #SYT(λ).

Note that Theorem 4.1 implies that any non-hook shape λ, as well as any disconnected skew shape λ/µ, will
have

∑
T∈SYT(λ/µ) tcDes(T ) well-defined and independent of the choice of cyclic extension (cDes, p) for Des on

SYT(λ/µ). Recall from Section 3 the notation ⊕ for direct sum of shapes.
By Equation (12), or alternatively by Equation (10), we deduce the following second main result.

Theorem 6.3. For any n ≥ 2

∑
w∈Sn

tcDes(w) =
∑

non-hook
λ`n

fλ
∑

T∈SYT(λ)

tcDes(T ) +

n−1∑
k=1

(
n− 2

k − 1

) ∑
T∈SYT((1k)⊕(n−k))

tcDes(T ),

where cDes is defined on Sn by Cellini’s formula (1) and on standard Young tableaux (of the relevant shapes)
as in Theorem 4.1.
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The explicit description of the unique cyclic descent map on near-hook SYT given in [AER18], is applied there
to deduce the following.

Proposition 6.4. 1. For any n ≥ 2

n−1∑
k=1

∑
T∈SYT((1k)⊕(n−k))

tcDes(T ) =

n∏
i=1

(1 + ti)− 1− t1 · · · tn.

2. For any n ≥ 4

n−2∑
k=2

∑
T∈SYT((n−k,2,1k−2))

tcDes(T ) = 1 + t1 · · · tn +

n∏
i=1

(1 + ti) ·

−1 +

n∑
j=1

tj
(1 + tj−1)(1 + tj)

 .
6.3 Cyclic Eulerian distribution on Sn

We now focus on λ/µ = (1)⊕n, where we can take T = Sn and use the extra symmetry to get more refined
results. Consider the multivariate generating functions

SDes
n (t) = SDes

n (t1, . . . , tn−1) :=
∑
w∈Sn

tDes(w)

and
ScDes
n (t) = ScDes

n (t1, . . . , tn−1, tn) :=
∑
w∈Sn

tcDes(w).

Note that SDes
n (t) and ScDes

n (t) are, respectively, the flag h-polynomials for the type An−1 Coxeter complex and
for the reduced Steinberg torus considered by Dilks, Petersen, and Stembridge [DPS09]. The two are related by
an obvious specialization [

ScDes
n (t)

]
tn=1

= SDes
n (t). (17)

On the other hand, ScDes
n (t) and SDes

n−1(t) are also related in a slightly less obvious way. Define an action
of the cyclic group Z/nZ = 〈c〉 = {e, c, c2, · · · , cn−1} on Z[t1, . . . , tn] by shifting subscripts modulo n, i.e.
c(ti) = ti+1 (mod n).

Proposition 6.5. For n ≥ 2, one has

ScDes
n (t) =

n∑
i=1

ci
(
tnS

Des
n−1(t)

)
(18)

and also
ScDes
n (t) = g(t) + t[n]g(t−1), (19)

where

g(t) = g(t1, . . . , tn−1) :=
[
ScDes
n (t)

]
tn=0

=

n−1∑
i=1

ti ·
[
ciSDes

n−1(t)
]
tn=0

. (20)

Remark 6.6. Formulas (17) and (18) imply the following interesting (and seemingly new) recurrence for the
ordinary multivariate Eulerian distribution SDes

n (t):

SDes
n (t) =

[
n∑
i=1

ti · ciSDes
n−1(t)

]
tn=1

.

One can specialize ScDes
n (t) to a bivariate generating function

Scdes
n (t, u) :=

∑
w∈Sn

tdes(w)ucdes(w)−des(w)

by setting t1 = t2 = · · · = tn−1 := t and tn := u. The following result generalizes an observation of Fulman [Ful00]
and Petersen [Pet05].
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Proposition 6.7. For n ≥ 2 one has

Scdes
n (t, u) =

(
nt+ (u− t) d

dt
t

)
Sdes
n−1(t). (21)

Remark 6.8. The coefficients of f(t) = d
dt tS

des
n−1(t) appear as OEIS entry A065826.

The preceding calculations lead to an exponential generating function for Scdes
n (u, t), generalizing work of

Petersen [Pet15, Proposition 14.4]. For more details see [ARR17, §6].

7 Final remarks and open problems

Detailed proofs of Theorems 4.1 and 6.3 may be found in the full version paper [ARR17]. Our proof of the
existence of (cDes, p) in Theorem 4.1, whose strategy was sketched above, is indirect and involves arbitrary
choices.

Problem 7.1. Find a natural, explicit map cDes and cyclic action p on SYT(λ/µ) as in Theorem 4.1.

Problem 7.2. Find a Robinson-Schensted-style bijective proof of Theorem 6.3.

For J = {j1, · · · , jt} ⊆ [n] let −J := {−j1, . . . ,−jt} (interpreted modulo n).

Corollary 7.3. Let λ/µ be a skew shape of size n which is not a connected ribbon. For any J ⊆ [n] and any
cyclic extension cDes of the usual descent map on SYT(λ/µ), the fiber size

#cDes−1(J) = #cDes−1(−J).

Problem 7.4. For a solution of Problem 7.1, find an involution on SYT(λ/µ) which sends the cyclic descent
set to its negative.

Problem 7.5. For non-ribbon shapes λ/µ, can one choose the operator p in Theorem 4.1 and a polynomial X(q)
to obtain a cyclic sieving phenomenon (CSP) ?

This problem was solved by Rhoades [Rho10] for rectangular shapes and by Pechenik [Pec14] for shapes
(k, k, 1n−2k). Recalling from [ER17a] the cyclic descent extension for SYT(λ⊕ (1)), Equation (10) in the current
paper has been applied in [ARS+18] to obtain a refined CSP on SYT of these skew shapes.
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