
Sets For Foundational Representations?  
A Design Case Study With Probability And Distributions 

Peter C-H. Cheng[0000-0002-0355-5955] 

Department of Informatics, University of Sussex, Brighton, BN1 9QJ, UK 
p.c.h.cheng@sussex.ac.uk 

Abstract.  Ideas about sets are foundational to our understanding of many 
knowledge domains.  And cognitive science tells us that the representation (no-
tation or visualization) we use to encode the knowledge of a domain substantially 
determines what we can think and how easily we can reason about that domain.  
Therefore, how a representation encodes ideas about sets may substantially de-
termine how readily we can comprehend, solve problems and learn about its do-
main.  So, how should we design representations for knowledge rich domains to 
ensure that concepts about sets are readily accessible and also effectively inte-
grated with the domain’s other concepts?  A case study is presented in which a 
representation for sets (Set Space Diagrams) is taken as a foundation for a repre-
sentation for probability theory (Probability Space Diagrams) and then further 
extended as a representation for statistical distributions (Distribution Space Dia-
grams).  Together the three representations constitute a unified framework that 
conceptually integrates knowledge across the three domains.   

Keywords: Sets, probability, statistical distributions, notations, visualization, 
diagrams, knowledge recodification. 

1 Introduction 

Ideas about sets play a fundamental role in the knowledge of very many domains.  If a 
topic includes notions about categories, groupings, classes, divisions, assemblies, par-
titions and so forth, sets are relevant to the comprehension and interpretation of that 
topic.  Bakery production managers are thinking about sets when they assemble differ-
ent products into shipments to fulfil a supermarket order.  Biologists deal with sets 
when they attempt to classify the discovery of yet another new type of beetle in to the 
taxonomic hierarchy of insect species.  You make set-based decisions as you type que-
ries in to your favourite search engine.  We hope that our doctor understands the impli-
cations of the full range of possible outcomes, true and false, positive and negative, 
when advising us about the results of a test for a life-threatening condition.  A statisti-
cian considering whether values in two samples come from the same population is yet 
another example.  Even pondering whether examples of this kind are boundless adds 
another example to the set.  
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Cognitive science has established that the representation (notation or visualization) 
we use for solving a problem fundamentally affects not just how easily we can solve 
the problem [14] but what we can understand and discover [19] and also what and how 
we learn [1].  For instance, alternative representations for the same problem, but which 
are isomorphic in structure, can make problem solving an order of magnitude more 
demanding [14]. 

Link the ideas of the previous two paragraphs together: In the design of a represen-
tation for a given domain, will how we choose to encode information about sets sub-
stantially impact our thinking and learning about that domain?  In the Representational 
Epistemic method for representation design [1, 2], I argue that notation and visualiza-
tion design should begin with an analysis of the fundamental conceptual structure of 
the target topic.  In particular, we should identify the underpinning concepts that per-
meate all ideas in the domain: concepts which make the domain that domain rather than 
some other.  That conceptual structure should be the basis for the design of representa-
tions.  In many domains, sets constitute a major conceptual foundation, so should an 
effective representation closely integrate set information with other core concepts of 
the domain?  Put another way, given the importance and ubiquity of sets, knowing how 
to effectively encode information about sets could comprise a general approach to en-
hance higher cognition across diverse subject areas.   

This sixth workshop dedicated to Euler diagrams and the visualizations of sets attests 
to the importance of the question of how to represent sets.  Diverse representations have 
been examined in these workshops and the literature more widely.  Euler diagrams [8] 
and Venn diagrams [18] are, of course, classic graphical notations for sets, which rely 
upon degrees of spatial containment as their primary means of encoding relations.  
Node-link graphs can serve as representations of sets; Venn and Euler diagrams can be 
systematically redrawn as trees.  These notations have been extended and formalized 
in order to serve as general graphical languages for the specification of complex sys-
tems (e.g., Spider diagrams [12]).  Other notations have been developed that rely less 
on 2D spatial arrangements, including: Linear Diagrams [7]; Set Space Diagrams [10], 
(later also called Linear Diagrams [11]), which originated in Probability Space Dia-
grams [2]; Categorical Pattern Diagrams [3].  The development of all these graphical 
forms of set representations is, in part, a reaction to the inherent difficulties of reasoning 
with linear symbolic formulations of set theory.   

Moving beyond expressing ideas purely about sets, we see many representations for 
knowledge rich domains that adopt (a) degrees of spatial containment or (b) graphs as 
devices to encode set based ideas.  In Mendeleev’s periodic table of the elements the 
columns and rows stand for chemical groups and periods, respectively.  Taxonomies in 
biology and beyond are often shown as trees.  Both devices were used in two systems 
I designed using the Representation Epistemic approach.  In the ROLLOUT system for 
bakery production management and scheduling, rectangles standing for products are 
assembled into blocks that comprise shipments [5].  In STARK-Exam, a system for the 
problem of university examination time tabling, four nested layers of rectangles capture 
information about the allocation of students to exams, exams to rooms in particular time 
and daily slots, and interconnecting lines (edges) define preference constraints among 
components across the levels [4].  Jones [13] investigated whether Euler diagrams could 
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be used to specify search queries but found they were less effective than expressions 
with symbolic connectives.  Spiegelhalter and colleagues [17] examined visualizations 
of risks about the future – many of which use the two devices – and concluded that 
many alternative representations are required to satisfy the needs of users with different 
levels of domain expertise and sophistication in graphical displays. 

All this suggests that designing representations that coherently integrate set infor-
mation with other information for knowledge rich domains will be a valuable activity.  
However, such a task will be challenging, because many set related concepts will likely 
need to be encoded.  These include: elements within a group; empty sets and universal 
sets; relations among subsets, such as complements, union and intersection, within a 
trial; relations between trials, such as joint or disjointedness of subsets, or conditionals, 
which may be consistent or contrary to the order of occurrence of the trials; combina-
tions of two (or more) trials with sets formed by Cartesian products; sophisticated rela-
tions such as De Morgan’s laws.  How can a representation of sets encode most of these 
ideas and yet be compatible with all the other ideas of a given domain?  Further, is it 
possible to create a methodology for the design of such representations for any domain 
in general?  This could be an interesting, and major, challenge for the SetVR and Dia-
grams research community to address.   

The aim of this paper is to demonstrate the potential value of designing representa-
tions for complex domains starting with sets.  Specifically, we will consider how rep-
resentations that unifies probability theory and statistical distributions can be created 
by acknowledging the fundamental role of sets in both of those topics and then finding 
a graphical format for sets that extends naturally to probability and then extends natu-
rally to distributions.  The next section introduces the Diagrammatic Statistics Frame-
work, DS Framework, which encompasses the three representations.  Then to begin to 
demonstrate the coherence and efficacy of representations in the DS Framework, the 
subsequent three sections presents a detailed example in each domain.  The final section 
draws out the wider implications of the design of the set-based representations.   

2 Diagrammatic Statistics Framework 

Fig. 1 shows the basic format of the representations for sets, probability and distribu-
tions.  These are: Set Space Diagrams, SSDs, Fig. 1A; Probability Space Diagrams, 
PSDs, Fig. 1B; Distribution Space Diagrams, DSDs, Fig. 1C.  The left side of Fig. 1 
show situations with one trial and the right shows situations involving two trials.   

A SSD defines a space within which labelled line segments (lines for short) are 
drawn to represent sets.  Labels denotes the names or properties of the sets.  Clusters of 
lines at the same altitude stand for a particular trial (universal set), Fig. 1Ai.  Clusters 
at different altitudes represent different trials, Fig. 1Aii.  The width of lines is arbitrary 
but their horizontal arrangement relative to each other encodes set relations (A1=black, 
A2=large).  Under the clusters of lines in Fig. 1a, examples of elements with different 
properties are displayed to make concrete the relations among the sets.  For example, 
the overlap of two lines is an intersection of their sets and the full horizontal extent of 
several lines represents the union of all the sets.  A line split into parts horizontally with 
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the same label represents a single subset with that property (e.g., Fig. 1Aii, two lines of 
B1).  This permits the expression of complex relations among many subsets.   

 
Fig. 1.  Diagrammatic Statistics Framework 

To compute the Cartesian product of two trials, all the lines of one set are drawn 
under each and every line of the other trial, Fig. 1Aii.  Each column is a combination 
(e.g., A1B1).  Complex contingencies among sets are expressed by omitting or adding 
lines to either of the two trials as needed (not shown).   

Probability theory builds upon set theory, so the SSDs incorporates information 
about quantities of chance by imposing a metric interpretation of the length of each 
line, Fig. 1Bi.  The bottom half of Fig. 1Bi shows the equi-space arrangements of dif-
ferent numbers of elements of two alternative properties, A1 and A2.  The length of the 
lines may be read as either the number of elements in the set or the probability of sam-
pling elements with the particular property in one trial, depending on one’s overall in-
terpretation of the diagram.  Further, the ratio of the length of line A1 to A2, in Fig. 1Bi, 
is a measure of the odds, A1:A2.  Probabilities of relations among conditions can be read 
from the diagrams; e.g., A1 and A2 are disjoint so P(A1 & A2)=0 and P(A1 or A2)=1, in 
Fig. 1Bi. 

Situations with more than one trial similarly enforce a metric interpretation of SSD 
line lengths to give PSDs for multi-trial situations.  Fig. 1Bii shows the typical PSD 
model for situations involving tests.  Trial H gives the base rates of some cases, such 
as a person’s health status: well (W) or unwell (U).  Trial T applies a test, which may 
give a positive (+ve) or a negative (-ve) result.  The third lines give the status, S, of the 
test in relation to whether the person was genuinely healthy or not, which may be a 
correct (√) or incorrect (X) diagnosis.  A doctor could use this PSD to discuss the like-
lihood that the diagnosis is in error, given the prevalence of the illness in the population. 
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Statistical distributions build upon probability theory, with the idea that each element 
is an equally likely outcome of a trial, and that multiple elements that are the same 
according on some measure will appear more frequently in a sample.  So, to encode the 
idea of measuring a property of the elements of the population (total set), DSDs use (a) 
the vertical axis of the space to represent magnitudes of the property and (b) arrange 
the elements in rank order of those magnitudes.  In Fig. 1Ci, measures of property X of 
trial A are shown, which happens to include two elements with the same value.  This 
method of encoding magnitudes gives common distributions specific shapes in DSDs.  
For instance: uniformly distributed values are linear with a positive slope (e.g., left and 
right parts of curve A in Fig. 1Ci); constant values produce a straight flat line (middle 
of part of A in Fig. 1Ci); normal distributions have a rotational symmetric ‘S’ shape 
(Fig. 1Cii, curve B); skewed normal distributions distort the tails of the normal curve 
and kurtotic distributions either flatten the middle of the curve or exaggerate its slope.  
Measures of the centre and dispersion of distributions are encoded by simple spatial 
and geometric relations; for instance, the median is found by a simple bisection of the 
space, and quartiles by bisections of those bisections. 

Together the SSDs, PSDs and DSDs representations constitute the DS Framework.  
SSDs encode information about sets using simple graphical constraints based on a 2D 
space where horizontal and vertical dimensions serve different representational func-
tions.  Recognizing that many concepts in the domain of probability are basically ideas 
grounded in notions about sets, the design of PSDs extended SSDs by simply placing 
an additional interpretive constraint on SSDs; specifically, the metric interpretation of 
horizontal line length as magnitudes of probability.  Recognizing the many concepts in 
the nature of statistical distributions depend on ideas about probability, the design of 
DSDs extend PSDs (and SSDs) by adding additional constraints, with the interpretation 
of vertical space as magnitudes of domain variables and ordering data points (elements) 
by magnitude.   

To demonstrate the potential of each representation the follow three sections con-
sider selected examples in detail.   

3 SSDs: Comparison to Euler Diagram  

To form a solid foundation on which to build representations for the knowledge rich 
domains of probability and statistical distributions, the representation must be an effec-
tive representation for sets, in general.  Among other things, such a representation must: 
support different forms of problem solving involving sets; enable displays of different 
configurations of sets to be straightforwardly drawn; allow such configurations to be 
readily distinguish from each other.  The author has applied SSDs to a variety of prob-
lems, for example: SSDs can be used to demonstrate the validity of theorems, such as 
de Morgan’s laws; they may be used to find formulas that summarize a given list of 
subsets; a variant of SSDs can be used to perform syllogistic inferences.  (These will 
be described elsewhere.)  SSDs appear to satisfy the first of the three requirements.  The 
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rest of this section will compare SSDs to Euler diagrams, because they are widely con-
sidered to be effective visualizations and are used as foundational components for var-
ious representations systems (e.g., [12]).   

 
Fig. 2. Comparison of SSDs and Euler diagrams.  (A) All subsets – Venn Diagram.  (B) Sets C, 
B, AB.  (C) Sets C, BC, ABC.  (D) Sets C, B, BC, AB, ABC.  (E) Sets C, B, A, BC, AB, ABC. 

Euler diagrams are an alternative to Venn Diagrams for the presentation of infor-
mation about sets and sometimes simpler to interpret and construct, because they omit 
zones that are empty.  Fig. 2 shows selected Euler diagrams and corresponding SSDs. 
The caption lists the (non-empty) subsets displayed by each pair of diagrams.  The thick 
lines in the SSDs stand for subsets with members and the thin lines stand for those that 
are empty.  Fig. 2A shows diagrams for three sets, in which all possible subsets have 
members; the Euler diagram is (almost) a Venn diagram. This SSD is created by re-
peating the Cartesian product process that generated Fig. 1Aii, but twice over for B’s 
two pairs of lines.  So, the far right column of the SSDs in Fig. 2A is the intersection of 
subsets all with members, the far left column is the intersections of all empty subsets, 
and the fourth from the left is ¬A∩B∩C, for instance.  The construction of the SSDs is 
systematic and straightforward: for each non empty minimal subset draw a column with 
thick lines for sets that include members in that subset.  Alternatively, we could draw 
Fig. 2A and just delete those subsets that are not in the given list.  Fig. 2B shows a SSD 
in which one set does not intersect any of the others.  Fig. 2C shows that SSDs can be 
drawn with a distinctive pattern for nested subsets, like Euler Diagrams.  Fig. 2D shows 
that the number of segments for each set in a SSD equals the number of zones encom-
passed by the circle for the set in the Euler diagram (A=2, B=4, C=3).  In some versions 
of Euler diagrams shading is used to show empty zones, such as Fig. 2E, in order to 
avoid complex constructions.  However, the format and drawing method of SSDs does 
not change for any of the 218 diagrams that are configurations of three sets.  Drawing 
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all those diagrams is a simple but tedious task with SSDs, which can be readily auto-
mated (e.g., using a spread sheet), but generating well-formed Euler diagrams is suffi-
ciently demanding to have warranted a line of research in its own right [9].   

Although, empirical studies will be required to test whether SSDs are easier to inter-
pret than, say, Euler diagrams, the examples show that they are not particularly complex 
to draw.  Thus, SSDs could potentially serve as an underpinning representation for 
knowledge rich domains.  

4 PSD: Probability puzzle 

The benefits of the PSD encoding of probability theory, in comparison to conventional 
notations, are described elsewhere and include empirical evaluations that show they can 
significantly improve students’ comprehension and ease of learning [2].  A particularly 
compelling argument for the efficacy of PSDs is their ability to explain notorious prob-
ability puzzles and paradoxes, such as the Monty Hall Dilemma or Simpson’s paradox 
[6].  So, let us consider the Two Envelopes Problem [16].   

In this puzzle we consider two identical envelopes: we are told that one contains 
twice the amount of money than the other.  The puzzle argues that it is always better to 
pick one, any one, then swap to the other envelop in order to maximize your chances 
of winning a larger amount on average, even if your initial choice of envelop is random.  
The argument goes like this: You pick one envelope and let’s suppose that it actually 
contains $20.  You swap, so there is an equal chance that you will pick the envelop with 
double the money, $40, or half the money, $10, so the expectation for swapping is 
$40*0.5+$10*0.5=$25, which is greater than $20 for sticking with your first choice!  
The outcome of argument is the same even if other amounts are chosen.  The conclusion 
is clearly false, but why?   

 
Fig. 3. PSD solution to the two envelop problem 

Although the correct explanation is subject to debate [16], the PSD solution to the 
problem shows that the framing of a puzzle deliberately leads the problem solver into 
an elementary error of interpretation, Fig. 3.  The argument assumes that the enveloped 
initially chosen contains $20 and other envelop could contain either a smaller or larger 
amount.  These options are shown in the middle of the PSD.  However, the argument 
ignores the possibilities that $20 might not have been the initial selection: the $10 op-
tion might have been chosen, left column; or $40 might have been chosen, right column.  
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The argument has selectively picked just one case from each scenario when there are, 
in fact, two cases.  So, to compute the benefit of switching it is necessary so examine 
all four cases.  Inspection of the top and bottom rows of Fig. 3 shows the amounts are 
equivalent, so on average there is no benefit of switching.   

The PSD resolves the puzzle by encouraging the problem solver to model fully all 
of the possible outcomes.  If we draw just the middle of Fig. 3 from the argument, our 
suspicion is immediately aroused that something is amiss, because of the lack of alter-
natives (both cases are $20) even though the problem talked about an initial random 
selection between two different options.  This feature of PSDs is present, because it is 
based on SSDs, whose structure demands that all cases are enumerated in order to val-
idly encode the underpinning set relations.   

 

Fig. 4. Some DSD plots of pairs of independent data. 

5 DSDs: Relations Between Distributions 

The author has applied DSDs to a wide variety of problems involving statistical distri-
butions, such as: visualizing large datasets; supporting the analysis of experimental re-
sults; interpreting statistical tests; explaining concepts that students find challenging to 
comprehend, such as the central limit theorem and the impact of distribution shape on 
statistical test validity.  They will be described elsewhere: here we will use DSDs to 
examine relations between distributions.  

Fig. 4 shows various pairs of datasets, blue and red, which happen to have the same 
number of data points but are sampled from unrelated measures (not matched).  The 
data points (elements) are arranged in order of their magnitudes, with equal horizontal 
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spacing.  Plotting multiple samples in DSDs allows us to easily compare distributions, 
because the shape of DSD data curves provides useful information.  It is obvious that 
all the samples in Fig. 4 have uniform distributions as all their points have a largely 
linear arrangement. The amount of noise associated with each one is approximately 
equal; imagine a best fit straight line for each curve, the deviations of points from the 
line are similar for each sample.  The difference between successive values is similar 
in all the samples in Figs. 4A and 4B, and for all the blue data in Fig. 4C and D.  But 
the difference between values in the red datasets in Fig. 4C and D is about half the 
others.   

We can also see that there is little overall difference between the red and blue sam-
ples in Fig. 4A, but there is a 20 unit difference in Fig. 4B.  To judge whether this is 
likely to be a statistically significant difference, we can estimate what proportion of 
data points in one distribution is greater (or less) than the data points in the other distri-
bution.  Heuristically, this is akin to finding sums of ranks in a non-parametric Mann-
Whitney U test [15].  In Fig. 4A, the first two blue data points are less than all the red 
values, but as we consider successive data points the number blue and red data points 
below a given value are nearly equal.  This is true across most of the range of the dis-
tributions.  In contrast, in Fig. 4B, consider the number of points below a given magni-
tude, there are always more blue points than red (until the very top of the distributions), 
so the apparent systematic difference between the samples is relatively unlikely to be 
due to chance, consistent with the outcomes of the tests shown in Fig. 4.  Although, the 
proportion of red to blue points changes over the range of distributions Fig. 4C, it is 
obvious from the central intersection and the symmetry of the two curves that neither 
the red nor the blue points will overall tend to be larger than the other.  Fig. 4D is 
interesting as the difference in means is the same as in Fig. 4B, but the reduced disper-
sion of the red data increases the overall difference, and hence it is most likely that the 
blue and red points come from different populations.   

DSD curves for normal distributions are more complex (Fig. 1CiiB) than the linear 
forms in Fig. 4, but similar inferences are nevertheless easily made with normal curves.  
Further, an argument can be made that comparisons between normal distributions is 
easier with DSDs than probability density functions, because: (i) DSD normal curves 
have just two points of inflection, but bell curves have three; and (ii) probabilities are 
simply lengths in DSDs, whereas areas under non-linear segments of curves must be 
computed in probability density function plots.  Moreover, the combination of the rel-
ative graphical simplicity and good expressive power mean that DSDs can perform the 
functions of myriad visualizations that are currently used to analyze distributions. 

6 Discussion 

The three specific examples presented above are suggestive of the potential of SSDs, 
PSDs and DSDs for supporting comprehension and problem solving in their respective 
domains.  Like the author, readers may test the benefits and limitations of the represen-
tations by applying them to a variety of tasks and using them to recode information 
presented by other notations and visualizations. 
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DSDs use PSDs as a foundation, and in turn PSDs use SSDs as a foundation, so ideas 
about sets permeates the whole DS Framework.  The ready access that these represen-
tations give to information about partitions and collections of elements, and relations 
between groups of elements, underpins the apparent benefits of PSDs and DSDs.  For 
the probability puzzle the incompleteness of the space of options was made clear by 
drawing the PSD.  For the comparison of distributions within and between the DSDs, 
in Fig. 4, inferences were supported both by the space for values (vertical dimension) 
and by the space of likelihoods of selected groups of data points (horizontal dimension).  
As such, PSDs and DSDs support the claim made in the introduction about the design 
of representations for knowledge rich domains: systematically capturing information 
about sets and closely integrating it with the other information from the domain can be 
a productive way to design representations that are generally effective.  Knowledge 
about sets is fundamental, so starting with sets may be a good starting point for design.   

The key to the successful design of the three representations resides in the simplicity 
of SSDs, which primarily used horizontal spatial arrangements of line segments to en-
code set relations.  This left open the metric interpretation of lines to encode measures 
of chance in PSDs, and further left open the use of vertical space for magnitudes of 
domain properties and horizontal positioning for ranking of domain properties in DSDs; 
all without any substantive changes to the basic syntax and semantics of SSDs.   

To finish, here are some open questions.  Could representations for sets based on 
degrees of spatial containment, such as Euler diagrams, be used as coherent founda-
tional representations for another encoding of probability and statistical distributions?  
How would it compare to the representations in the DS Framework?  Could SSDs pro-
vide a foundational representation for other knowledge rich domains, such as timeta-
bling, production planning and scheduling, or system specification, for which notations 
based on Euler diagrams have already been devised [4,5,12]?  
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