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1 Introduction

First-order logic with equality is one of the most widely used logics. While there is a
large number of different approaches to theorem proving in this logic, the field has been
dominated by saturation-based systems using some variant of the superposition calcu-
lus [BG90, BG94, BG98, NR01], i.e. systems that employ paramodulation, restricted
by ordering constraints and possibly literal selection, as the main inference mechanism,
and rewriting and subsumption as the main redundancy elimination techniques. Many
systems complement equational reasoning with explicit resolution for non-equational
literals. Examples of provers based on the combination of paramodulation, rewriting
and (possibly) resolution include SPASS [WBH+02], Vampire [RV01], Otter [MW97],
its successor Prover9, and E [Sch02, Sch04b].

The power of a saturating prover depends on four different, but interrelated aspects:

• The calculus (What inferences are necessary and possible?)

• The inference engine (How are they implemented?)

• The search organization (How is the the proof state organized and which invariants
are maintained?)

• The heuristic control of the search (Which subset of inferences is performed and
in what order?)

In this talk I will discuss the basic concepts of the given clause saturation algorithm
and its implementation. In particular, I will describe the behaviour of the DISCOUNT
loop version of this algorithm on practical examples, and discuss how this affected the
choice of algorithms and data structures for E. I will try point out some low-hanging
fruit, where a lot of performance can be gained for relatively modest investment in code
complexity, as well as some more advanced techniques that have a significant pay-off.



2 Rewrite-Based Theorem Proving

Superposition is a refutational calculus. It attempts to make the potential unsatisfiabil-
ity of a formula (consisting of axioms and negated conjecture) explicit using saturation.
The search state is represented by a set of first-order clauses (disjunctions of literals
over terms). The proof search employs two different mechanisms. First, new clauses are
added to the proof state by generating inference rules, using existing clauses as premises.
Secondly, simplifying or contracting inference rules are used to remove clauses or to re-
place them by simpler ones. The proof is successful if this process eventually produces
the empty clause, i.e. an explicit contradiction.

While the generating inferences are crucial to establish the theoretical completeness
of the calculus, extensive use of contracting inferences has turned out to be indispensable
for actually finding proofs.

The practical difficulty of implementing a high-performance theorem prover results
mostly from the fact that the proof state grows extremely fast with the depth of the
proof search. A successful implementation has to be able to handle large data sets,
efficiently find potential inference partners, and in particular, be able to quickly identify
clauses that can be simplified or removed.

While the number of inference and simplification rules can be much larger, in nearly
all cases only three rules are critical from a performance point of view:

• Superposition (including resolution as a special case) or a similar restricted form
of paramodulation is by far the most prolific generating inference rule. Typically,
between 95% and 99% of clauses in a non-trivial proof search are generated by
a paramodulation inference. Paramodulation can essentially be described as a
combination of instantiation (guided by unification) and lazy conditional rewriting.
For superposition, this inference is further restricted by ordering constraints (a
smaller term cannot be replaced by a larger term) and literal selection (only certain
literals need to be considered as applicable or as targets of the application).

• Unconditional rewriting allows the simplification of a clause by replacing a term
with an equivalent, but simpler term. In contrast to superposition, no instantiation
of the rewritten clause takes place, and a term is always replaced by a smaller
one. As a consequence, this is a simplifying inference, and the original of the
rewritten clause can be discarded. Practical experience has shown that in most
cases rewriting drastically improves the search behaviour of a prover.

• Subsumption allows the elimination of clauses if a more general clause already is
known. As such, it helps to reduce the search space explosion typical for saturating
provers. However, finding subsumption relations between clauses can be very
expensive.

For completeness, it is necessary to eventually consider all combinations of non-
redundant clauses as premises for generating inferences. To avoid the overhead of keep-
ing track of each possible combination, the given-clause algorithms splits the proof
state into two distinct subsets, the set P of processed (or active) clauses, and the set
U of unprocessed (or passive) clauses, and maintains the invariant that all necessary



inferences between clauses in P have been performed. On the most abstract level, the
algorithm picks a clause from U , performs all inferences with this clause and clauses
from P (adding the resulting newly deduced clauses to U), and puts it into P . This
process is repeated until either the empty clause is deduced, the set U runs empty (in
which case there is not proof), or some time or resource limit has been reached (in which
case the prover terminates without a useful result). The major heuristic decision in this
algorithm is in which order clauses from U are picked for processing.

The two main variants of the given clause algorithm differ in how they integrate
simplification into this basic loop. The Otter loop maintains the whole proof state in
a fully simplified (or interreduced) state. It uses all unit equations for rewriting and
all clauses for subsumption attempts. The DISCOUNT loop, on which E is built, only
maintains this invariant for the set P of processed clauses. It simplifies newly generated
clauses once (to weed out obviously redundant clauses and to aid heuristic evaluation,
but it does not use them for rewriting or subsumption until they are actually selected
for processing. It thus trades reduced simplification for a higher rate of iterations of the
main loop. Opinions differ on which of the two designs is more efficient (see e.g. [RV03]).

3 Representing the Proof State

Analysis of the behavior of provers over a large set of examples has shown that the size of
U typically grows about quadratically with the size of P . Therefore for non-trivial proof
problems, the vast majority of clauses is in U , and unprocessed clauses are responsible
for most of the resources used by the prover. The overall proof state can easily reach
millions clauses, with a corresponding number of literals and terms as their constituents.

Surprisingly, with naive implementations much of the CPU time can be taken up
with seemingly trivial operations. In the first version of DISCOUNT [ADF95, DKS97]
we found to our surprise that assumedly complex operations like first-order unification
were negligible, while linear time operations like the naive insertion of clauses into U

(organized as a linear list sorted by heuristic evaluation) took up around half of the
total search time.

The first and most basic data type for a first-order prover is the term. Simple,
direct implementations realize terms as ordered trees, with each node labeled by a
function or variable symbol, and with the subterms of a term as successor nodes in
the tree. Alternatives to this basic design are either increasingly optimized for size, as
flat-terms, string terms, and eventually implicit terms (reconstructed on demand) as in
the Waldmeister prover [GHLS03], or they try to store more and more precomputed
information at the term nodes to speed up repetitive operations. This is particularly
successful if sets of terms are not represented as sets of trees, but as a shared directed
acyclic graph, with repeated occurrences of any given term or subterm only represented
once. This approach has been followed in E. We found sharing factors varying from 5-15
in the unit equational case, up to several 1000 in the general non-Horn case.



4 Rewriting

Shared terms do not only allow a reduction in memory consumption, they also allow
the sharing of (some) term-related inferences. In particular, they allow the sharing of
rewrite operations and, even more importantly, normal form information among terms.
For any rewritten term, we can add a link pointing to the result of the rewrite operation.
If we encounter the same term again in the future, we can just follow this link instead
of performing a real search for matching and applicable rewrite rules. Less glorious, but
not less effective, is the sharing of information about non-rewritability. In either version
of the given clause algorithm, the set of potential rewrite rules changes over time, and
the strength of the rewrite relation grows monotonically. If a term is in normal form
with respect to all rules at a given time, no older rule has to be ever considered again for
rewriting this term. This criterion can be integrated into indexing techniques to further
speed up normal form computation.

5 Subsumption

A single rewriting step is usually cheap to perform. The high cost of rewriting comes
from the large number of term positions and rules to consider. For subsumption, on
the other hand, even a single clause-clause check can be very expensive, as the problem
is known to be NP-complete [KN86]. Unless reasonable care is taken, the exponential
worst case can indeed be encountered, and with clauses that are large enough that this
hurts performance significantly1.

To overcome this problem, a number of strategies can be implemented. First, pre-
sorting of literals with a suitable ordering stable under substitutions can greatly reduce
the number of permutations that need to be considered. Secondly, a number of required
conditions for subsumption can be tested rather cheaply. If any of these tests fail, the
full subsumption test becomes superfluous.

Feature vector indexing [Sch04a] arranges several of these tests in a way that they
can be performed not only for single clauses, but for sets of clauses at a time.

6 Conclusion

Engineering a modern first-order theorem prover is part science, part craft, and part
art. Unfortunately, there is no single exposition of the necessary knowledge available at
the moment - something that the community should aim to rectify.
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