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Abstract. We present variant of simplification logic for reasoning with
if-then dependencies that arise in formal concept analysis of data with
graded attributes. The dependencies and the proposed logic are parame-
terized by systems of isotone Galois connections which allows us to han-
dle a large family of possible interpretations of data dependencies. We
describe semantics of the rules, axiomatic system of the logic, and prove
its soundness and completeness.
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1 Introduction and Problem Setting

In this paper, we contribute to the area of inference systems that emerge in for-
mal concept analysis [10] of data with graded attributes. By a graded attribute,
sometimes called a fuzzy attribute, we mean an attribute that may apply to an
object to degrees. Needless to say, there are basically two options to treat such
attributes: Either by binary scaling and exploiting the existing methods in FCA
or by providing a suitable formalization of structures of degrees and developing
FCA considering such structures in order to include “graded attributes” as fun-
damental notions. In this paper, we use the “approach by generalization” and
explore general inference systems related to graded attribute implications, i.e.,
if-then formulas describing dependencies between graded attributes.

1.1 Early Approaches

The first approach to FCA that contained results on graded attribute implications
was introduced by Silke Polandt in her somewhat unappreciated book [19]. The
approach is based on residuated lattices [28] considered as basic structures of truth
degrees [11,13] and introduces attribute implications as if-then formulas A⇒ B,
where A and B are graded collections of attributes (fuzzy sets of attributes), i.e.,
technically both A and B are maps A : Y → L and B : Y → L, where Y is a
set of attributes and L is a set of utilized degrees. The interpretation of A ⇒ B
in a given formal context with graded attributes is defined in terms of a graded
subsethood.
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The role of the graded subsethood in [19] as well as in the later approaches is
crucial, so let us clarify what we mean by that. The classic subsethood (or inclu-
sion) can be seen as a binary relation on the set of all subsets of a given universe,
e.g., the set of all attributes. When one thinks of a subsethood in presence of
graded attributes, it appears almost immediately that there seem to be multiple
reasonable choices for that. For instance, for maps A and B as above, we might
say that “B is fully included in A” whenever B(y) ≤ A(y) for each attribute
y ∈ Y , where ≤ is a partial order on the set of all degrees in L. As such, the full
inclusion is a classic binary relation on the set of all graded sets in the universe
Y , i.e., for each A,B, either B is fully included in A or not.

However straightforward, the full inclusion may be regarded as not natural by
some because it does not reflect closeness of degrees. For instance, when B(y) ≤
A(y) for all y except for some z ∈ Y for which we have B(z) = 0.63 and A(y) =
0.62 (when a real unit interval is used as the scale of truth degrees), then B is not
fully included in A, however, most observers would regard B to be almost fully a
subset of A. This issue can be resolved by introducing a graded subsethood. While
there are many approaches to define a graded subsethood, [19] and later works
use the one introduced by Goguen [11] which is based on residuated implication.
Using the notation of [2], a degree S(A,M) to which A is a subset of M (see [2,
p. 82]) is defined by

S(A,M) =
∧
y∈Y

(
A(y)→M(y)

)
, (1)

where A : Y → L, M : Y → L, → is residuum (a truth function of graded/fuzzy
implication), i.e., S(A,M) is the infimum of degrees A(y)→ M(y) for all y ∈ Y .
Since S(A,M) is a general degree from L, a high degree S(A,M) can naturally be
interpreted so that “A is almost included in M .” Interestingly, the two notions of
subsethood are related in the following sense: “A is fully included in M” if and
only iff S(A,M) = 1 (with 1 being the highest degree in L).

Using the graded subsethood (and the notation of [2,13]), the initial approach
to attribute implications [19] defined a degree to which A⇒ B holds for an object
x ∈ X by

||A⇒ B||Ix = S(A, Ix)→ S(B, Ix), (2)

where Ix : Y → L represents graded attributes of the object x ∈ X (i.e., Ix(y)
is a “degree to which object x has the attribute y.”) One can immediately see
that (2) is indeed a proper generalization of the classic notion of A ⇒ B (where
A,B ⊆ Y ) being true in Ix ⊆ Y . By a straightforward extension of the notion, we
can introduce a degree ||A ⇒ B||〈X,Y,I〉 to which a graded attribute implication
A⇒ B is true in a context 〈X,Y, I〉 with graded attributes:

||A⇒ B||〈X,Y,I〉 =
∧
x∈X ||A⇒ B||Ix .

In this setting, Polandt [19] investigated several important areas including char-
acterization of completeness in data and similarity issues.
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1.2 Approaches Using Hedges

The approach by Pollandt is sound but it turned out it lacks a certain level of
generality that can be found in the approach using hedges which initally started
by [3], cf. also [6,7] for comprehensive description. The approach uses a linguistic
hedge [29] as an additional parameter that influences the interpretation of graded
attribute implications and related notions from FCA [5]. Technically, instead of
considering (2), one considers ||A⇒ B||∗Ix defined by

||A⇒ B||∗Ix = S(A, Ix)∗ → S(B, Ix), (3)

where ∗ is an idempotent truth-stressing linguistic hedge [14]. By letting ∗ being
the identity map on L, (3) collapses into the Pollandt-style definition (2). The
interesting point about this particular general approach is that for other choices
of hedges, we obtain other interesting interpretations of graded dependencies. For
instance, when ∗ is the so-called globalization [22], then (3) becomes

||A⇒ B||∗Ix =

{
1, if S(A, Ix) < 1,
S(B, Ix), otherwise.

(4)

In particular, ||A ⇒ B||∗Ix = 1 iff S(A, Ix) = 1 (i.e., A is fully contained in Ix)
implies S(B, Ix) = 1 (i.e., B is fully contained in Ix). In general, (2) and (4)
are different and coincide only if the scale of degrees is a two-valued Boolean
algebra. Therefore, the approach by hedges can be seen as a generalization that
encompasses interpretation of graded if-then rules based on both the graded and
full inclusions and these two borderline cases result by different choices of hedges.
This is an important aspect from users’ point of view.

From the theoretical point of view, the generalization by hedges brought new
insights into the properties of several important notions depending on the choice of
a hedge. For instance, minimal bases and pseudo-intents in the general setting [3,7]
have almost the exact same characterization as in the classic case [12] when the
hedge is globalization which it is not the case for general hedges where several
incomparable systems of pseudo-intents may exist for a single dataset, see [24,25]
for details.

1.3 Parameterizations by Isotone Galois Connections

The present paper is closely related to general methods of parameterizing the
semantics of graded attribute implications proposed in [26]. Such parameteriza-
tions subsume the paramaterizations by hedges as well as other non-trivial alter-
native semantics of attribute implications. It may be motivated by two funda-
mental observations on properties of graded attribute implications paramaterized
by hedges [6,7]. First, we have [6, Theorem 3]

||A⇒ B||∗Ix =
∨{

c ∈ L; ||A⇒ c⊗B||∗Ix = 1
}
, (5)

where c⊗B denotes a map from Y to L such that (c⊗B)(y) = c⊗B(y), where ⊗
is the multiplication adjoint to → appearing in (1). Put in words, (5) shows that
the degrees to which graded attribute implications are true can be expressed just
by focusing on implications that are fully true, i.e., true to degree 1.
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Second, we have ||A ⇒ B||∗Ix = 1 (i.e., A ⇒ B is fully true in Ix) iff for any
truth degree c ∈ L, it holds that [6, Lemma 2]

S(c∗⊗A, Ix) = 1 implies S(c∗⊗B, Ix) = 1. (6)

By a slight abuse of notation and denoting the full inclusion by ⊆, the previous
condition can be restated as follows:

c∗⊗A ⊆ Ix implies c∗⊗B ⊆ Ix. (7)

Therefore, one may introduce a general interpretation of graded attribute impli-
cations A ⇒ B by defining A ⇒ B true in Ix whenever the following condition
holds: For any f ∈ S, it holds that f(A) ⊆ Ix implies f(B) ⊆ Ix. In order to
obtain a formalization which is sufficiently strong, [26] shows that it is sufficient
to consider S as a set of (lower) adjoints of isotone Galois connections that is
closed under composition. Using this formalism, [26] shows a standard agenda of
attribute implications, including a complete Armstrong-style [1] axiomatization
and characterization of completeness in data.

The parameterizations by systems of isotone Galois connections can be used
not only in case of graded attribute implications but for other formalisms for
reasoning with if-then rules. For instance, attribute implications developed in
context of linear temporal logic [23] fall in this category as well. The properties of
this family of parameterizations and related closure structures are studied in [27].

1.4 Our Contribution

As an alternative to the well-known Armstrong inference system [1] which is not
very suitable for automated reasoning, [9] proposed a simplification logic and
novel algorithms for if-then rules based on simplification equivalence. Further
results derived from this work include automated methods based directly on the
simplification logic [17,18,8,16,15]. The simplification logic was later introduced
for graded attribute implications parameterized by hedges in [4].

In this paper, we outline a general simplification logic for graded if-then rules
whose semantics is parameterized by systems of isotone Galois connections. In
Section 2, we present the underlying algebraic structures that are involved in the
simplification logic as well as the parameterizations. We emphasize that, we utilize
the co-residuated lattices in order to have a reasonable truth-function of logical
difference upon which the simplification logic is based. The role of the classic
multiplications and residua in the ordinary residuated lattices is substituted by
the general parameterizations. In Section 3, we outline the logic including the
semantics of its formulas, we present an inference system and show its soundness.
Furthermore, in Section 4 and Section 5, we present a further properties of the
inference system and outline the completeness result.

2 Preliminaries

Throughout this paper we consider, as the structure of degrees, a complete co-
residuated lattice, that is, an algebra L = 〈L,≤,⊕,	, 0, 1〉 satisfying the following
conditions:
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– 〈L,≤, 0, 1〉 is a complete lattice where 0 is the least element and 1 is the
greatest element. As usual, we use the symbols ∨ and ∧ to denote suprema
(least upper bounds) and infima (greatest lower bounds), respectively.

– 〈L,⊕, 0〉 is a commutative monoid.
– The pair 〈⊕,	〉 satisfies the following adjointness property:

For all a, b, c ∈ L, a ≤ b⊕ c if and only if a	 b ≤ c. (8)

Notice that (8) is equivalent to the following condition:

(a⊕ b)	 a ≤ b ≤ a⊕ (b	 a), for all a, b ∈ L. (9)

Any complete Brouwerian algebra [21,20] (also known as complete co-Heyting
algebra) is a complete co-residuated lattice. Thus, as an example of complete co-
residuated lattice, one has the unit interval with the operations ⊕ and 	 such
that a⊕ b = max{a, b}, a	 b = a when b < a, and a	 b = 0 otherwise. We also
take advantage of the following properties:

a ≤ b if and only if a	 b = 0, (10)

a	 0 = a, (11)

a	 b ≤ a ≤ a⊕ b, (12)

b ≤ c implies a⊕ b ≤ a⊕ c, b	 a ≤ c	 a and a	 c ≤ a	 b, (13)

a ∨ b ≤ a⊕ (b	 a) ≤ a⊕ b, (14)

a⊕ ((a⊕ b)	 c) = a⊕ (b	 c), (15)

a⊕ (b ∧ c) = (a⊕ b) ∧ (a⊕ c). (16)

For illustration, we use a running example based on a particular structure of
degrees. The structure is shown in the next example.

Example 1. Consider L = 〈L,≤,⊕,	, 0, 1〉 where L = { i10 | i ∈ N, 0 ≤ i ≤ 10},
the relation ≤ is the usual order, and ⊕ and 	 are defined as follows:

a⊕ b =

{
a+ b, if a+ b ≤ 1

2 ,
max{ 12 , a, b}, otherwise,

a	 b =





0, if a ≤ b,
1− b, if 0 ≤ b < a ≤ 1

2 ,
max{a, b}, otherwise.

It is easy to see that L is a complete co-residuated lattice.

Using L, we use the notion of L-fuzzy sets, i.e., maps from non-empty universe
sets to L. The collection of all L-fuzzy sets in universe Y is denoted by LY . Also,
in the examples we use the usual notation {. . . , y/A(y) . . .} for writing L-fuzzy
sets in finite universes.

Operations in L can be extended pointwise to L-fuzzy sets in the usual way:
For A,B ∈ LY the L-fuzzy sets A ⊕ B and A 	 B are defined by (A ⊕ B)(y) =
A(y)⊕B(y) and (A	B)(y) = A(y)	B(y) for all y ∈ Y .

The parameterizations [26] we use in out paper are defined in terms of isotone
Galois connections in 〈LY ,⊆〉. Specifically, we consider pairs of self-maps 〈f , g〉,
i.e., f : LY → LY and g : LY → LY , such that,

for all A,B ∈ LY , f(A) ⊆ B iff A ⊆ g(B). (17)
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In this pair, each mapping is uniquely determined by the other, because f(A) =⋂{B ∈ LY | A ⊆ g(B)} and g(B) =
⋃{A ∈ LY | f(A) ⊆ B}. It is well-known

that (17) is equivalent to postulating that both of the following conditions hold:

1. f and g are isotone, i.e., A ⊆ B implies f(A) ⊆ f(B) and g(A) ⊆ g(B) for
all A,B ∈ LY .

2. g ◦ f is inflationary (extensive) and f ◦ g is deflationary (intensive), i.e.,
A ⊆ g(f(A)) and f(g(A)) ⊆ A for all A ∈ LY .

In fact, g◦f is a closure operator and f ◦g is a kernel operator (interior operator).
For any isomorphism f in 〈LY ,⊆〉, the pair 〈f ,f−1〉 is an isotone Galois

connection. Thus, the identity mapping IY : LY → LY , with IY (A) = A for all
A ∈ LY , provides an isotone Galois connection. Another important example is
〈0Y ,1Y 〉 where 0Y (A)(y) = 0 and 1Y (A)(y) = 1, for any A ∈ LY and y ∈ Y .

In addition, given two isotone Galois connections 〈f1, g1〉 and 〈f2, g2〉, their
composition 〈f1 ◦ f2, g2 ◦ g1〉 is also an isotone Galois connection.

Definition 1. A family of isotone Galois connections S in 〈LY ,⊆〉 is said to be
an L-parameterization [26] if it is closed for composition and contains the identity.

In other words, S is an L-parameterization iff S =
〈
S, ◦, 〈IY , IY 〉

〉
is a monoid.

Example 2. Consider the algebra L introduced in Example 1, an arbitrary non-
empty set Y and, for each ` ∈ L, an isotone Galois connection 〈f `, g`〉 in 〈LY ,⊆〉
defined as follows: for all A ∈ LY and y ∈ Y ,

f `(A)(y) = max{0, A(y)− `} and g`(A)(y) = min{1, A(y) + `}.
In particular, f1 = 0Y , g1 = 1Y , and f0 = g0 = IY .

The family S = {〈f i
5
, g i

5
〉 | i ∈ N, 0 ≤ i ≤ 5} is an L-parameterization.

3 Parameterized Simplification Logic

Given a non-empty alphabet Y , whose elements are named attributes, the set of
well-formed formulas of the language is:

LY = {A⇒ B | A,B ∈ LY }.
These well-formed formulas will be named implications and, in each implication,
the first and the second component will be named premise and conclusion respec-
tively. Finally, the sets of implications Σ ⊆ L will be named theories.

We have just introduced the syntax of our logic. In the rest of the section we
complete its formal presentation. Thus, first we introduce the semantics of the
logic, second we present an axiomatic system and, finally, we show that both the
semantic and the syntactic points of views coincide proving the soundness and
completeness of the axiomatic system.

3.1 Semantics

Before we define the interpretation of formulas, we introduce S-additive L-fuzzy
sets that will play the role of models.
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Definition 2. Let Y be a non-empty set and S be an L-parameterization. An
L-fuzzy set A ∈ LY is said to be S-additive if f(B) ⊆ A and f(C) ⊆ A imply
f(B ⊕ C) ⊆ A, for all B,C ∈ LY and 〈f , g〉 ∈ S.

The following proposition follows directly from Definition 2 and (17).

Proposition 1. Let Y be a non-empty set and S be an L-parameterization. An
L-fuzzy set A ∈ LY is S-additive if and only if g(A)⊕ g(A) = g(A).

Example 3. Let L be the algebra introduced in Example 1, S be the L-paramete-
rization introduced in Example 2, and Y be an arbitrary non-empty set. A set
A ∈ LY is S-additive if and only if, for all y ∈ Y , A(y) = 0 or A(y) ≥ 1

2 .

Fixed S being an L-parameterization, the models of the logic are defined in
terms of S-additive L-sets as follows:

Definition 3. Let A ⇒ B ∈ LY . An S-additive set M ∈ LY is said to be a
model for A⇒ B if f(A) ⊆M implies f(B) ⊆M , for all 〈f , g〉 ∈ S.

The set of models for A ⇒ B is denoted by Mod(A ⇒ B). As usual, we say
that an S-additive set M is model for a theory Σ ⊆ LY if it is model for all the
implications A⇒ B ∈ Σ, that is, Mod(Σ) =

⋂
A⇒B∈ΣMod(A⇒ B).

As it is usual for graded attribute implications, we can interpret our formulas
in L-contexts. An L-context I = 〈X,Y, I〉 consists of a non-empty sets X (and Y )
of objects (and attributes—as before) and a map I : X × Y → L. For x ∈ X,
we consider Ix ∈ LY such that Ix(y) = I(x, y) for all y ∈ Y . An L-context
I = 〈X,Y, I〉 is called a model of A⇒ B whenever {Ix | x ∈ X} ⊆ Mod(A⇒ B).

Example 4. Consider the algebra L introduced in Example 1 and the L-paramet-
erization S introduced in Example 2. For the following L-contexts

I1 y1 y2 y3

x1
3
5

3
5 1

x2 1 1 0

x3 0 4
5

4
5

I2 y1 y2 y3

x1
7
10

7
10 1

x2 1 1 0

x3 0 1
2

1
2

we have that I1 is model for {y1/ 9
10} ⇒ {y2/1}. In contrast, I2 is not model for

this implication: f 1
5
({y1/ 9

10}) = {y1/ 7
10} ⊆ Ix1 and f 1

5
({y2/1}) = {y1/ 4

5} 6⊆ Ix1 .

Definition 4. Let A⇒ B ∈ LY and Σ1, Σ2 ⊆ LY .

– The implication A⇒ B is said to be semantically derived from the theory Σ1

if Mod(Σ1) ⊆Mod(A⇒ B). It is denoted by Σ1 |= A⇒ B.
– Both theories Σ1 and Σ2 are said to be semantically equivalent ifMod(Σ1) =
Mod(Σ2). It is denoted by Σ1 ≡ Σ2.
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3.2 Inference System

We look for a syntactic inference system capable of characterizing the semantic
entailment |= as defined before. In this subsection, we introduce the inference
system and prove its soundness.

Definition 5. For all A,B,C,D ∈ LY and 〈f , g〉 ∈ S, the inference system
consists of following axiom scheme:

Reflexivity : Infer A⇒ A, (Ref)

together the following inference rules:

Composition : From A⇒ B and A⇒ C infer A⇒ B ⊕ C, (Comp)

Simplification : From A⇒ B and C ⇒ D infer A⊕ (C 	B)⇒ D, (Simp)

Extension : From A⇒ B infer f(A)⇒ f(B). (Ext)

The notion of syntactic derivation, or inference, is introduced in the standard way.

Definition 6 (Syntactic derivation). An implication A ⇒ B ∈ LY is said to
be syntactically derived or inferred from a theory Σ ⊆ LY , denoted by Σ ` A⇒ B,
if there exists a sequence σ1, . . . , σn ∈ LY such that σn is the implication A⇒ B
and, for all 1 ≤ i ≤ n, one of the following conditions holds:

– σi ∈ Σ;
– σi is an axiom obtained from (Ref);
– σi is obtained by applying any of the inference rules (Comp), (Simp), or (Ext)

to formulas in {σj | 1 ≤ j < i}.

Theorem 1 (Soundness). For any implication A ⇒ B ∈ LY and any theory
Σ ⊆ LY , it follows that Σ ` A⇒ B implies Σ |= A⇒ B.

Proof. Assume that Σ ` A⇒ B, i.e. there exists a sequence σ1, . . . , σn ∈ LY such
that the conditions in Definition 6 hold. We prove that any model M ∈Mod(Σ)
is model for σi for all 1 ≤ i ≤ n and, therefore, M ∈Mod(A⇒ B).

It is straightforward that, if σi is an axiom or belongs to Σ, the set M is a
model for σi. Assume now that M ∈ Mod{σj | 1 ≤ j < i} and prove that M is
model for any formula that is obtained by applying (Comp), (Simp) or (Ext).

We only show the proof for (Simp) because the cases of (Comp) and (Ext) are
straightforward from the facts that the models are S-additive and S is closed
under compositions, respectively.

Consider U1 ⇒ V1, U2 ⇒ V2 ∈ {σj | 1 ≤ j < i}. Since M is model for these
implications, we have that f(Uk) ⊆M implies f(Vk) ⊆M , for all 〈f , g〉 ∈ S and
k ∈ {1, 2}. We must prove that M is model for U1 ⊕ (U2 	 V1)⇒ V2.

Consider 〈f , g〉 ∈ S such that f(U1 ⊕ (U2 	 V1)) ⊆M . Since f is isotone and
U1 ⊆ U1 ⊕ (U2 	 V1), we have that f(U1) ⊆M and, therefore, f(V1) ⊆M . Now,
from the S-additivity of M , f(V1 ⊕ U1 ⊕ (U2 	 V1)) ⊆ M . From (9), we have
U2 ⊆ V1 ⊕ (U2 	 V1) ⊆ V1 ⊕ U1 ⊕ (U2 	 V1) and, therefore, f(U2) ⊆ M . Finally,
since M is model for U2 ⇒ V2, we have that f(V2) ⊆M . ut
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4 Basic Properties

In this section we show equivalences that are derived from the primitive inference
rules and allow us to remove redundant information, i.e., simplify theories. In the
following proposition we introduce some derived inference rules.

Proposition 2. The following rules are derived from the axiomatic system:

Generalized Reflexivity : ` A⇒ B when B ⊆ A (GRef)

Transitivity : A⇒ B,B ⇒ C ` A⇒ C (Tran)

Generalization : A⇒ B ` C ⇒ D when A ⊆ C and D ⊆ B (Gen)

Generalized Composition : A⇒ B,C ⇒ D ` A ∪ C ⇒ B ⊕D (GComp)

Augmentation : A⇒ B ` A ∪ C ⇒ B ⊕ C (Augm)

Generalized Transitivity : A⇒ B,B ∪ C ⇒ D ` A ∪ C ⇒ D (GTran)

Proof. All (GRef)–(GTran) can be verified using properties of ⊕ and 	 in L. ut

One outstanding characteristic of Simplification logic is that their inference
rules induces a set of equivalences, providing a way to design automated prover
methods strongly based in the axiomatic system presented in Definition 5. In the
following proposition we present these equivalences.

Proposition 3. The following equivalences hold:

Decomposition : {A⇒ B} ≡ {A⇒ B	A} (DeEq)

Composition : {A⇒ B,A⇒ C} ≡ {A⇒ B⊕C} (CoEq)

Simplification : if A ⊆ C, {A⇒ B,C ⇒ D}≡{A⇒ B,C	B ⇒ D	B} (CoEq)

Proof. These equivalences, read from left to right, follow directly from (GRef),
(Comp), and (Simp). For limitations of space we will prove the opposite direction
only for (DeEq): In order to see that {A⇒ B	A} ` A⇒ B holds, observe that

(i) A⇒ B	A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .by Hypothesis.
(ii) A⇒ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by (Ref).
(iii) A⇒ A⊕(B	A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by (i), (ii) and (Augm).
(iv) A⇒ B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by (iii) and (Gen).

In the last step, we have utilized the fact that B ⊆ A⊕B ⊆ A⊕ (B 	A). ut

5 Syntactic Closure and Completeness

In this section, we prove the completeness of the axiomatic system in the case of
both L and Y are finite. First, we consider, in this framework, the generalization
of the notion of syntactic closure of an L-set.

Theorem 2. Let Σ ⊆ LY be a theory. If LY is finite, the mapping cΣ : LY → LY

defined as follows: for each A ∈ LY ,

cΣ(A) =
⋃{B ∈ LY | Σ ` A⇒ B}
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is a closure operator in 〈LY ,⊆〉. In addition,

Σ ` A⇒ B if and only if B ⊆ cΣ(A) for all A,B ∈ LY .

Proof (Sketch). From (Ref) and (Tran), we easily obtain that cΣ is extensive and
isotone. Now, since LY is finite, applying (Comp) and (Gen) a finite number of
times we get Σ ` A⇒ cΣ(A). The rest is obvious. ut

Definition 7 (Syntactic closure). Given Σ ⊆ LY and A ∈ LY , the set cΣ(A)
is called syntactic closure of A with respect to Σ.

Theorem 3. If LY is finite, for any theory Σ ⊆ LY , we have that

Mod(Σ) = {cΣ(A) | A ∈ LY }.

Proof. First, for all A ∈ LY , we prove that cΣ(A) is S-additive: given 〈f , g〉 ∈ S,
if f(B) ⊆ cΣ(A) and f(C) ⊆ cΣ(A), from Theorem 2, Σ ` A ⇒ f(B) and
Σ ` A ⇒ f(C). The following sequence prove that Σ ` A ⇒ f(B ⊕ C) and,
therefore, f(B ⊕ C) ⊆ cΣ(A).

(i) A⇒ f(B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by Hypothesis.
(ii) A⇒ f(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by Hypothesis.

(iii) A⇒ f(B)⊕ f(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . by (i), (ii) and (Comp).
(iv) f(B)⊕ f(C)⇒ f(B ∪ C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by (GRef).
(v) A⇒ f(B ∪ C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . by (iii), (iv) and (Tran).

(vi) B ⇒ B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by (Ref).
(vii) B ∪ C ⇒ B ⊕ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by (vi) and (Augm).

(viii) f(B ∪ C)⇒ f(B ⊕ C) . . . . . . . . . . . . . . . . . . . . . . . . . . by (vii) and (Ext).
(ix) A⇒ f(B ⊕ C) . . . . . . . . . . . . . . . . . . . . . . . . . . . .by (v), (viii) and (Tran).
In (iv), we have considered that f(B ∪C) = f(B)∪f(C) ⊆ f(B)⊕f(C)
because 〈f , g〉 is an isotone Galois connection and (14) holds.

Second, we prove that cΣ(A) is model for Σ: for all 〈f , g〉 ∈ S, if U ⇒ V ∈ Σ
and f(U) ⊆ cΣ(A), then Σ ` A ⇒ f(U) and, by (Ext), Σ ` f(U) ⇒ f(V ).
Therefore, by (Tran), Σ ` A⇒ f(V ) and f(V ) ⊆ cΣ(A).

Finally, it is straightforward that cΣ(M) = M for any M ∈Mod(Σ). ut

We already have the necessary results to ensure that everything that can be
semantically derived can also be syntactically inferred.

Theorem 4 (Completeness). If LY is finite, Σ |= A⇒ B implies Σ ` A⇒ B,
for any Σ ⊆ LY and A⇒ B ∈ LY .

Proof. If Σ 6` A ⇒ B, then, from Theorem 3, cΣ(A) ∈ Mod(Σ) but, from
Theorem 2, cΣ(A) 6∈ Mod(A⇒ B). Therefore, Σ 6|= A⇒ B. ut

Returning to the graded attribute implications parameterized by hedges, it
can be easily seen that our inference system and the complete logic presented
in our paper generalizes the simplification logic for (FASL) from [4]. Indeed, one
may put ⊕ = ∨ and let 	 be the adjoint operation satisfying (8). Furthermore,
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given a hedge ∗, one can consider an L-parameterization S which consists of all
〈fc∗⊗, gc∗→〉 where (fc∗⊗(A))(y) = c∗ ⊗A(y) and (gc∗→(A))(y) = c∗ → A(y) for
any A ∈ LY , c ∈ L, and y ∈ Y . In this setting, our inference system coincides
with the inference system of FASL. In particular, the rule of multiplication (from
A⇒ B infer c∗⊗A⇒ c∗⊗B), cf. also [6,26], coincides with (Ext).

6 Conclusions

In this work, we have proposed a parameterized simplification logic for reasoning
with graded implications in formal concept analysis. To achieve this goal, we have
used systems of isotone Galois connections to handle a large family of possible
interpretations in data dependencies. As it is usual, the logic was described in
terms of a formal language, the semantics, and the axiomatic system. We proved
its soundness and completeness. We showed how FASL proposed in [4] is a partic-
ular case of the parameterized simplification logic proposed in the present paper.
In addition, different logics can be seen as particular cases of the general setting
established here. Future research will focus on efficient algorithms based on the
proposed logic.
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