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Abstract In formal concept analysis, 2-dimensional formal contexts are
bipartite graphs. In this work, we generalise the notions of context and
concept to graphs that are not bipartite. We then study the complexity
of the enumeration and identify the structure of the set of such concepts.

1 Introduction

Formal concept analysis (FCA) is a mathematical framework centered on the
notions of formal context (data) and formal concept (significant patterns). Most
of the simpler real-life data sets take the form of formal contexts and the in-
teresting patterns are often variations on the theme of formal concepts, making
FCA well-suited for applications in any field that deals with data [3,10,6,12].
However, it has its limitations. With the increasing complexity of data, FCA
requires extensions and generalisations such as fuzzy or multi-dimensional ap-
proaches [2,1,7,13].

Formal contexts in their basic form are binary tables – i.e. bipartite graphs
for which a bipartition into independent sets is given. One of the most important
generalizations of FCA, Polyadic Concept Analysis (PCA) [13], deals with the
same notions of context and concept when said context is an n-uniform1 n-
partite2 hypergraph – modeling the majority of multidimensional data sets. In
PCA, again, an n-partition of the hypergraph is given. This trend can be found
in all variants of FCA : the number of dimensions is the size of the data tuples.

We believe that it would be interesting, ultimately, to generalise FCA to n-
partite hypergraphs that are not n-uniform in order to create new opportunities
of applications involving exotic data. In this work, as a first step toward this
goal, we focus on the case of n-partitioned graphs (2-uniform hypergraphs) with
n > 2. We define the corresponding “concepts”, briefly study the complexity of
their enumeration and show that they form a complete n-lattice, implying that
known algorithms can be used to compute them.

1 i.e. hypergraph such that all its hyperedges have size n
2 i.e. the set of graph vertices is decomposed into n disjoint sets such that no two

graph vertices within the same set are adjacent

c© paper author(s), 2018. Proceedings volume published and copyrighted by its editors.
Paper published in Dmitry I. Ignatov, Lhouari Nourine (Eds.): CLA 2018, pp. 59–67,
Department of Computer Science, Palacký University Olomouc, 2018. Copying
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2 Basics

This section briefly presents the basic notions in formal concept analysis and
polyadic concept analysis. For a deeper look into the 2-dimensional case, we
refer the reader to [5].

2.1 Binary Formal Concept Analysis

Definition 1 A (formal) context is a triple (S1, S2, R) in which S1 and S2 are
sets of what is commonly referred to as objects and attributes and R is a binary
relation between objects and attributes representing the fact that an object is
described by an attribute.

A formal context is usually represented by a crosstable.

R a b c d e

1 × ×
2 × × ×
3 × × ×
4 × ×
5 × ×

Figure 1. A formal context ({1, 2, 3, 4, 5}, {a, b, c, d, e}, R)

Definition 2 Let C = (S1, S2, R) be a context. A (formal) concept of C is a pair
(E ⊆ S1, I ⊆ S2) such that E × I ⊆ R and both E and I are maximal for this
property.

In other words, a concept is a maximal rectangle full of crosses up to per-
mutation of objects or attributes, also called in graph theory: a full bipartite
subgraph or a biclique.

In our Fig. 1 example, (1, ab) and (23, bd) are concepts.

The set of concepts can be ordered by the inclusion relation on both objects
and attributes and then forms a complete lattice (i.e. graph of concepts). Every
complete lattice is isomorphic to the concept lattice of some context [5].
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2.2 Multidimensional Formal Concept Analysis

The notions of formal contexts and concepts have been extensively studied and
are successfully used in various fields such as data mining, data analysis, infor-
mation retrieval, source code error correction, machine learning and for build-
ing taxonomies and ontologies [9]. The multidimensional generalization of FCA,
polyadic concept analysis [13], has received comparatively less attention but is a
promising theoretical as well as applicative field. Let us present here the basics.

Definition 3 An n-context is a tuple (S1, . . . , Sn, R) in which Si, i ∈ {1, . . . , n},
is a set called a dimension and R ⊆∏i∈{1,...,n} Si is an n-ary relation.

An n-context can be represented by an n-dimensional crosstable.

a b c a b c a b c

1 × × × ×
2 × × × ×
3 × × × ×

α β γ

Figure 2. A 3-context ({1, 2, 3}, {a, b, c}, {α, β, γ}, R)

Definition 4 Let C = (S1, . . . , Sn, R) be an n-context. An n-concept of C is
an n-tuple (T1, . . . , Tn) such that Ti ⊆ Si,

∏
i∈{1,...,n} Ti ⊆ R and there is no

d ∈ {1, . . . , n} and k ∈ Sd \ Td such that (T1, . . . , Td ∪ {k}, . . . , Tn) respects this
property.

In other words, an n-concept is a maximal n-dimensional box full of crosses
in C up to permutations inside dimensions.

In our Fig. 2 example, ({1, 2, 3}, {a}, {α, β}) and ({2}, {a, b}, {γ}) are 3-
concepts.

The set of all the n-concepts in an n-context, together with the n quasi-
orders induced by the inclusion relation on the subsets of each dimension, forms
an n-lattice and each complete n-lattice is isomorphic to the concept lattice of
an n-context, as stated in the basic theorem of polyadic concept analysis [13].
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Figure 3. Graph that will be used as running example.

2.3 Graphs

A graph is a pair G = (V,E) in which V is a set of elements called vertices and
E ⊆ V 2 a set of edges.

A set X ⊆ V of vertices is a clique if there is an edge between any two
of its elements. A clique is maximal if it is not contained in another clique.
An independent set is a set of vertices that does not contain any edge. An
independent set is maximal if it is not contained in any independent set. A
vertex cover is a set of vertices that contains at least one vertex from every edge.
A vertex cover is minimal if it does not contain any vertex cover. A (maximal)
independent set in a graphG is a (maximal) clique in the complementary graphG
and reciprocally. The complement of a (maximal) independent set is a (minimal)
vertex cover and reciprocally.

We will use M(G) to denote the set of maximal cliques in a graph G.

A graph G = (V,E) is k-partite iff V can be partitioned into k independent
sets.

a
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1
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SgreekSlatin

Snumbers

Figure 4. Partition of our example graph into three independent sets Snumbers, Slatin

and Sgreek.
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A complete k-partite graph is a k-partite graph such that there is an edge
between every pair of vertices that do not belong to the same independent set.

In our running example, the subgraphs induced by the vertices sets {1, b, α}
and {1, a, b} are, respectively, complete tripartite and bipartite graphs.

Bidimensional formal contexts (S1, S2, R) are bipartite graphs (S1∪S2, R) for
which a bipartition is given. In graph terminology, 2-concepts are thus maximal
complete bipartite subgraphs of the context.

3 k-Partite Graphs as Contexts

FCA offers tools to find and manipulate patterns in bipartite graphs. What
happens to these patterns and tools when the input graph is not bipartite ?

3.1 Defining the Concepts

Let us start by defining the objects we are looking for. The central patterns
in FCA are concepts : maximal complete bipartite subgraphs of the context.
When the context is k-partite, a natural generalisation can then be expressed as
follows.

Definition 5 Let G = (V,E) be a graph and S = (S1, . . . , Sk) a partition of V
into k independent sets. Let {j1, . . . , jm} ⊆ {1, . . . , k}. An m-2concept of (S,E)
is a tuple C = (Cj1 , . . . , Cjm), Cjx 6= ∅, Cjx ⊆ Sjx , such that

⋃
x∈{1,...,m} Cjx in-

duces a maximal completem-partite subgraph of G and there is no (Cj1 , . . . , Cjm , Cjm+1
)

with this property.

In “m-2concept”, the m means that we consider an m-partite graph as “con-
cept” (m dimensions are involved in the pattern) and the 2 means the pattern is
found in a 2-uniform graph. We have chosen to define them as m-tuples instead
of k-tuples with m ≤ k in order to avoid having to consider the m − k empty
components and confusion with k-concepts from PCA.

We will now suppose, for the remainder of this paper, that our running
example is partitioned as in Fig. 4. In this case, (1, b, α) is a 3-2concept and
(1, ab) and (23, βγ) are 2-2concepts. The tuple (3, c, βγ) is not a 3-2concept
because the induced subgraph is complete bipartite, not complete tripartite3.
The tuple (1, α) is not a 2-2concept because (1, b, α) is a 3-2concept.

When the graph is bipartite and the partition provided is binary, the
2-2concepts are the formal concepts with non-empty intents and extents. It is
important to note that Si, i ∈ {1, . . . , k}, is a complete 1-partite subgraph –
though (Si) is not necessarily a 1-2concept.

We will use T ((S,E)) to denote the set of m-2concepts, 1 < m ≤ |S|, of a
k-partite graph (V,E) together with a partition S of V into k independent sets.

3 Two sets are considered {3} and {c,βγ} without relations between {c} and {βγ}
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Proposition 1 Let (V,E) be a graph and S = (S1, . . . , Sk) a partition of V into
k independent sets.

T ((S,E)) =M((V,E ∪X))

with X =
⋃
i∈{1,...,k}

(
Si

2

)

Proof. In G = (V,E
⋃
i∈{1,...,k}

(
Si

2

)
), we have that ∀i ∈ {1, . . . , k}, Si is a clique.

Let C = (Cj1 , . . . , Cjm) with Cji ⊆ Sji be such that
⋃
i∈{1,...,m} Cji is a maximal

clique in G. By definition, any two vertices x ∈ Cja and y ∈ Cjb , a 6= b are
neighbours in G. As such, they are neighbours in (V,E) too. Clearly, that makes
C an m-partite complete subgraph of (V,E). The maximality property holds
from one graph to the other so C is an m-2concept of (V,E).

Let C = (Cj1 , . . . , Cjm) be an m-2concept of (V,E). By definition, any two
vertices x ∈ Cja and y ∈ Cjb , a 6= b are neighbours in (V,E). As such, they are
neighbours in G. As, ∀i ∈ {1, . . . , k}, Si is a clique,

⋃
i∈{1,...,m} Cji is a clique

in G. The maximality property once again holds from one graph to the other so⋃
i∈{1,...,m} Cji is a maximal clique in G. ut
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γ

Figure 5. Our example graph with its partitions made into cliques.

This proposition states that m-2concepts are maximal cliques in a graph
that can be constructed in polynomial time from the context. This implies that
T ((S,E)) can be computed from (S,E) in output-polynomial time [11].

3.2 Structuring the Concepts

We now have to characterise the structure of the set T ((S,E)). We will show
that it forms a k-lattice when put together with the appropriate quasi-orders.
The best way to do this is to show that T ((S,E)) is isomorphic to the concept
k-lattice of a k-context.

Let K((S,E)) = (S1∪{s1}, . . . , Sk∪{sk}, R) be a k-context such that si 6∈ Si
and

(x1, . . . , xk) ∈ R⇐⇒ ∀xi 6= si, xj 6= sj ,∃e ∈ E such that xi, xj ∈ e
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Note that, potentially, xi = xj . In the context K((S,E)) each cross corresponds
to a clique of the graph (V,E), including 1-element ones, with the elements
si representing the fact that a clique does not intersect the set Si. Figure 6
illustrates the 3-context corresponding to our running example..

Clearly, if (X1, . . . , Xk) is a k-concept of K((S,E)), then ∀i ∈ {1, . . . ,m},
si ∈ Xi.

a b c s2 a b c s2 a b c s2 a b c s2
1 × × × × ×
2 × × × ×
3 × × × ×
s1 × × × × × × × ×

α β γ s3

Figure 6. The 3-context ({1, 2, 3, s1}, {a, b, c, s2}, {α, β, γ, s3}, R) corresponding to our
running example.

Theorem 1. Let (V,E) be a graph and S a k-partition of (V,E) into k inde-
pendent sets. The set of m-2concepts of (S,E), together with the k quasi-orders
induced by the inclusion relation on each independent set, forms a k-lattice.

Proof. Let (X1, . . . , Xk) be a k-concept of K((S,E)) = (S1 ∪ {s1}, . . . , Sk ∪
{sk}, R). By definition,

∏
i∈{1,...,k}(Xi \ {si}) ⊆ R. From the construction of

K((S,E)), we get that ∀xi ∈ Xi\{si}, xj ∈ Xj\{sj}, ∃e ∈ E such that xi, xj ∈ e.
This means that the tuple (Xj1 \ {sj1}, . . . , Xjm \ {sjm}), such that the different
Xji \ {sji} are the non-empty components of (X1 \ {s1}, . . . , Xk \ {sk}), is an
m-2concept of (S,E).

Let (Cj1 , . . . , Cjm) be anm-2concept of (S,E). By definition, ∀A ∈∏i∈{1,...,m} Cji ,
∀x, y ∈ A, ∃e ∈ E such that x, y ∈ e. As such, the tuple (X1, . . . , Xk) such that

Xi =

{
Ci ∪ {si} if i ∈ {j1, . . . , jm}
{si} otherwise

is a k-concept of K((S,E)). ut
This implies that algorithms [4,8] for computing n-concepts can be used to

compute m-2concepts.

In Fig. 6, the 3-concepts are

(1s1, bs2, αs3) (23s1, s2, βγs3)
(1s1, abs2, s3) (12s1, bs2, s3)
(3s1, cs2, s3) (123s1, s2, s3)
(s1, abcs2, s3) (s1, s2, αβγs3)
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which yield the m-2concepts of our running example once the si and empty
sets are removed.

4 Conclusion

In this paper, we have extended the notions of formal context and concept to
graphs that are not bipartitioned in order to allow the handling of a different kind
of data. We have shown that, given a k-partition of the graph into independent
sets, the set of such m-2concepts forms a k-lattice. This allows the use of any
k-lattice algorithm to compute m-2concepts.

The next step would be to generalise the notion of n-concept to hypergraphs
that are not n-partite n-uniform. This, however, is not as straightforward as
m-2concepts. Indeed, the k-lattice structure of m-2concepts comes from the fact
that a clique with n vertices can freely be converted into 2n hyperedges (the
subsets of vertices). Converting an edge (a, b) into two singletons (a) and (b) does
not add complexity. However, converting an hyperedge (a, b, c) into a triangle
(a, b), (b, c), (a, c) can potentially create new triangles that do not correspond
to existing hyperedges of size 3.
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