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Abstract In this paper, we evaluate seven author obfuscation approaches which
are supposed to automatically mask an author’s writing style in a given text to
render automatic author identification impossible. The approaches are evaluated
with regard to their safety, soundness, and sensibleness in terms of beating 44 au-
thor identification approaches, retaining the original meaning of the obfuscated
text, and producing inconspicuous, human-readable obfuscations, respectively.
Regarding the measurement of safety in particular, we introduce a set of new
performance measures which are designed to render the performance of obfusca-
tion approaches comparable as the numbers of author identification approaches
and evaluation datasets increases, incorporating their respective performance and
quality. Based on the new measures, we establish a world ranking of obfuscators.

1 Introduction

Author obfuscation is the adversary task to author identification. The goal of obfusca-
tion is to render the identification of authors based on their writing style impossible or
at least intractable. Consequently, an effective identification approach has to be robust
against obfuscation, or else it cannot be trusted. The fundamental question underlying
both tasks is whether writing style can be purposefully manipulated. We hypothesize
that this is indeed the case, and that style manipulations sufficient to counter identifica-
tion can be accomplished in a way indistinguishable from genuine writing. Our goal is
to foster the development of new technology in this respect, and its evaluation.

We consider three performance dimensions according to which an author obfusca-
tion approach must excel to be considered fit for practical use. Obviously, the obfusca-
tion performance should depend on the capability of fooling forensic experts—be it a
piece of software or a human. However, fulfilling this requirement in isolation will dis-
regard writers and their target audience, whose primary goal is to communicate, albeit
safe from deanonymization: the quality of an obfuscated text along with the fact that its
semantics is preserved are equally important to fool authorship identification. We hence
call an obfuscation software



1. safe, if its obfuscated texts cannot be attributed to their original authors anymore,

2. sound, if its obfuscated texts are paraphrases of their originals, and

3. sensible, if its obfuscated texts are well-formed and inconspicuous.

These dimensions are orthogonal; an obfuscation software may meet each of them to
a certain degree of perfection. Related work on operationalizing different measures for
these dimensions has been included in our recent overview [20]. In particular, for lack
of suitable alternatives, we developed our own evaluation measures for the safety di-
mension, which were employed to evaluate five author obfuscation approaches in the
past. In this paper, we build on this experience and redesign our suite of safety measures
from the ground up in an attempt to rectify issues with the existing ones. For example,
the new measures incorporate the notion of “case difficulty” of author identification
cases, the a priori quality of identification approaches, and they prevent some forms of
cheating.

We directly employ the new performance measures to evaluate the safety of seven
author obfuscation approaches against 44 author identification approaches. This in-
cludes two obfuscation approaches submitted to our this year’s shared task on author
obfuscation at PAN 2018, as well as five that have been submitted to the two corre-
sponding shared tasks in the past two years [10, 20]. The 44 authorship identification
approaches have been obtained from the shared tasks on authorship verification—a
specific variant of author identification where a pair of texts is checked for common
authorship—organized at PAN 2013–2015 [14, 23, 22]. As for the evaluation of sen-
sibleness and soundness, we stick to manual inspection and grading of examples as
before.

In what follows, Section 2 introduces the new safety performance measures for
author obfuscation, Section 3 reviews the two obfuscation approaches submitted this
year, and Section 4 evaluates their performance in comparison to the five previously
submitted ones. More detailed analyses of the new performance measure is found in the
appendix.

2 Towards a World Ranking for Author Obfuscators

We propose a formal model to implement a kind of “obfuscator world ranking” in or-
der to ease the comparison of new approaches to the state of the art in this growing
field. The central building block regarding the safety dimension is a set of effective au-
thorship verification algorithms, also called authorship verifiers for short. Authorship
verification is about deciding whether or not a document has been written by a cer-
tain author, given one or multiple texts that are known to be written by this author (a
one-class classification problem). Then, given a set of authorship verifiers and a corpus
of verification problems, a to-be-evaluated obfuscator is run on the positive problems
(those problems where the correct answer is “same author”), and it is checked whether
for the obfuscated texts the verifier decisions’ are “different authors”.

Thanks to the organizers and participants of the PAN 13, PAN 14, and PAN 15
shared tasks in authorship verification, 44 working authorship verifiers are at our dis-
posal for empirical analysis. For each combination of a positive verification problem



Table 1. Performance matrix for a single obfuscator o given a number of positive verification
problems p1, p2, . . . and a number of authorship verifiers av1, av2, . . . A table entry at position
(i, j) encodes the following information: “T→ _” (F→ _) indicates for authorship verifier avj
a true positive (false negative) decision on the i-th positive verification problem pi. Likewise,
_→ F indicates for the obfuscator in question that it could “force” the authorship verifier avj to
return a wrong decision (= different authors) on pi.

Obfuscator o av1 av2 av3 . . .

p1 T→ T T→ F F→ F
p2 F→ T F→ F T→ F

...
p3 T→ T F→ F T→ T
. . . . . .

and a verifier, we can check how a verifier decides before and after applying the to-
be-evaluated obfuscator, obtaining a performance matrix as given in Table 1. An entry
of the form T → F indicates that the obfuscator o successfully fooled the authorship
verifier associated to this column on the verification problem in the respective line.

Each successful entry in the performance matrix should increase the overall safety
score of the respective obfuscator, while entries of the form F → T should decrease
the score. The exact influence on the final score depends on the set of verifiers used
and the “difficulty” of the problem instance (e.g., how many verifiers can identify the
authorship before obfuscation).

Actually, Table 1 shows a simplified view of the real situation since an author-
ship verifier typically returns confidence scores instead of a plain binary decision. A
confidence score in [0, 0.5) indicates a (gradually) negative answer (= different au-
thors) whereas a confidence score in (0.5, 1] indicates a (gradually) positive answer. In
practice, however, a sensible interpretation of the confidence scores requires a verifier-
specific approach—or the computation of standard normally-distributed confidence
scores. Here we will choose an individual confidence threshold for each verifier, op-
timizing its accuracy on the original instances from the verification task. The same
threshold will then be used for the decisions on the obfuscated instances.

As for safety evaluation, in previous years we assumed that the used verifiers are
deterministic in the sense that they always report the same answer for the same prob-
lem, regardless of the history of other problems they have seen. Note that the particular
design of the testing scenario used at PAN (all test cases are provided at once) allows
a verifier to consider all test documents when classifying an individual problem. E.g.,
a verifier could exploit global assumptions such as information about the ratio of pos-
itive versus negative problems in a setup. In such cases the entries of the performance
matrices (see Table 1) may change every time the verifier is run on another sequence of
problem instances.

It should be noted that the verifiers that participated in the PAN verification tasks are
obfuscation-unaware, i.e., they assume that no obfuscation has been applied and thus
take no measures to revert or reduce potential obfuscation effects. In the terminology
of Potthast et al. [20], the verifiers perform automated authorship identification, as op-



posed to de-obfuscation attacks. Being obfuscation-unaware is not necessary for safety
evaluation; however, in the long run, obfuscation technology should aim to defeat both
automated authorship identification and de-obfuscation attempts.

In the following we present three axioms that should be fulfilled by a measure that
quantifies the obfuscation safety of an obfuscation algorithm.

1. Fooling an effective verifier should be scored higher than fooling a less effective
one, where effectiveness may be measured as the verifier’s true positive rate.

2. Fooling a verifier on an unambiguous problem should be scored higher than fooling
it on an ambiguous one. Here, a problem is unambiguous if it is decided correctly
by many verifiers.

3. Fooling two dissimilar verifiers from a set of equally effective verifiers should be
scored higher than fooling two similar verifiers from this set. Here, two verifiers
are called similar if they often come to the same decision.

Axiom 1 relates to the verifier effectiveness, Axiom 2 relates to the problem unam-
biguity, and Axiom 3 relates to the verifier-problem coverage.

The first and third criterion together should help to prevent the creators of obfusca-
tion algorithms from “boosting” their score by submitting many variations of a partic-
ular verifier which is especially vulnerable to their obfuscation approach (or, similarly,
by submitting variants of approaches that would lower the scores of other obfuscators).
The second criterion puts emphasis on those problems for which many of the state-of-
the-art verification approaches perform well—in a nutshell: unambiguous implies “easy
for attribution, difficult for obfuscation”.

2.1 Definition of the New Safety Measure

For a formal treatment of authorship verification and obfuscation, we adopt the termi-
nology outlined in [20]. Generally, an authorship problem is a tuple 〈du, DA〉 consisting
of one document of unknown authorship du and a set of documents DA such that each
document has a known author in the set A of authors. If A consists of a single author a,
we call it authorship verification problem. We denote by γ(〈du, DA〉) ∈ A ∪ {∅} the
true author of du, if he/she is in A, and otherwise ∅.

Let D be the set of all authorship problems. An authorship analysis approach v is a
computable function v(〈du, DA〉) ∈ A ∪ {∅} which is an approximation for γ. v has
been trained on a subset of D, the training set, on which γ is known. v is evaluated
using a test set Dtest ⊂ D, which is disjoint from the training set. In the specific case
of authorship verification, we let D+

test ⊂ Dtest be the subset of verification problems
〈du, Da〉 where γ(〈du, Da〉) = a.

An obfuscator o is a mapping o(〈du, Da〉) = 〈d̃u, Da〉 which obfuscates the text du
of the author a, possibly using the other available files for that author Da. The aim of
the obfuscation is to change the result of verifiers to ∅.

With the basic terminology at hand, we turn to the construction of the new mea-
sure: Let V be the set of verifiers under consideration. For v ∈ V and d ∈ Dtest, let
c(v, d) = 1 indicate that v outputs the correct answer to the problem d (whether it is



“same author” or “different authors”) and let c(v, d) = 0 indicate a wrong answer. The
accuracy and effectiveness of a verifier v ∈ V on the problem set Dtest are defined as
follows:

accuracy(v,Dtest) =

∑
d∈Dtest

c(v, d)

|Dtest|
,

effectiveness(v,Dtest) = max(0, 2 · accuracy(v,Dtest)− 1).

These definitions work best with a balanced problem setDtest, where the set of positive
problemsD+

test and that of negative problemsDtest\D+
test have approximately the same

size. In a balanced situation, a verifier with effectiveness 0 does no better than guessing,
whereas a verifier with effectiveness 1 is always correct.

To measure the similarity between two verifiers v, w ∈ V , we do not directly com-
pare their answers but focus on the errors they make and assume that two verifiers are
similar if they tend to make the same errors. We compute the Pearson correlation coef-
ficient between the corresponding error-vectors c(v, ·) and c(w, ·):

ρ(v, w) =

∑
d∈Dtest

(c(v, d)− v)(c(w, d)− w)√∑
d∈Dtest

(c(v, d)− v)2
√∑

d∈Dtest
(c(w, d)− w)2

,

where v = accuracy(v) and w = accuracy(w).
There are edge cases with vanishing denominators: In case that c(v, d) = 0 for all

d ∈ Dtest or c(v, d) = 1 for all d ∈ Dtest (similarly for w), the above expression is
undefined and we set ρ(v, w) := 0 if v 6= w and ρ(v, v) = 1. Note that such verifiers
have not been observed in practice yet—it would imply the existence of a perfect verifier
for that particular set of problems. But in cases where dtest is small, it could easily
happen—however, such small scenarios are not our aim.

For each verifier v ∈ V , we define its coverage as a real number in (0, 1] with the
following intuition: If the verifier is unique of its kind (correlation with other verifiers
near zero), the coverage should be 1. If there are k > 0 other verifiers which give
answers almost equal to v, the coverage of v and its k related verifiers should be≈ 1

k+1 ,
such that these “redundant” verifiers together via their coverage scores will contribute
as much to an obfuscator’s performance as one verifier which is unique of its kind will.
This motivates the following definition, where τ ∈ [0, 1] is a fixed constant:

coverage(v) =

 ∑
w∈V :

ρ(v,w)≥τ

ρ(v, w)


−1

.

Since ρ(v, v) = 1, the coverage is always in (0, 1]. Choosing a larger value for τ dimin-
ishes the influence of many small correlations in contrast to a few bigger ones. We pick
τ = 0.5 to capture all real similarities while reducing the noise of correlations which
are rather coincidences on a finite set of test instances. For each verifier v ∈ V , we then
define its importance as

importance(v) = effectiveness(v) · coverage(v).



We now quantify the unambiguity of a problem d ∈ D+
test as a weighted average of the

verifiers giving the correct answer to d:

unambiguity(d) =

∑
v∈V c(v, d) · importance(v)∑

v∈V importance(v)
.

With the above definitions, we can now define our measure of obfuscator safety.
Thinking in terms of the performance matrix from Table 1, an entry of the form T→ F
(i.e., successful obfuscation), corresponding to a verifier v ∈ V and a problem d ∈
Dtest, gives points equal to

importance(v) · unambiguity(d).

For entries of the form F → T, the same amount describes the number of points sub-
tracted for a counter-productive obfuscation attempt. The world ranking score of the
obfuscator o is the sum of the points awarded or subtracted for each combination of
verifier and verification problem.

To put it differently, recall that o(d) denotes the obfuscated problem for d ∈ D+
test,

where the texts of known authorship are unchanged but the text of unknown authorship
is obfuscated. Denote by c(v, o(d)) the answer of the verifier v ∈ V to the obfuscated
problem (i.e., 1 if v correctly reports “same author” and 0 if not). Then the world ranking
score of the obfuscator o equals∑

d∈D+
test

∑
v∈V

(c(v, d)− c(v, o(d))) · importance(d) · unambiguity(d).

The measure is named world ranking score since it allows to incorporate all available
verifiers and verification problem corpora to produce a single numerical value evaluat-
ing the obfuscator’s safety with respect to the given verifiers and verification problems.

2.2 Theoretical Discussion of Fairness Properties

We give the following a-priori arguments why we hypothesize that the world ranking
score satisfies the three fairness axioms.

To the first axiom: We decided to quantify effectiveness using accuracy. An inef-
fective verifier will only obtain a small effectiveness score, such that the influence of
its decision changes on the final score are not as high as the influence of an effective
verifier. Moreover, it is reasonable to assume that an effective and an ineffective verifier
will have small correlation, such that adding ineffective verifiers will not change the
importance scores of the effective verifiers nor the unambiguity scores of the problems.
Therefore, an ineffective verifier has only little influence on the final world ranking
score of an obfuscator.

An ambiguous problem should get a small unambiguity score, such that the overall
influence of its obfuscated version on an obfuscator’s world ranking score should be
small. Adding ambiguous problems will, in general, reduce the effectiveness scores
and increase the coverage scores, as most verifiers will effectively guess their answer.



However, this should uniformly affect all verifiers and all obfuscators, such that the
world ranking scores with respect to a fixed corpus are comparable.

Adding a variant v′ of an existing verifier v ∈ V will not change the effectiveness
score of any existing verifier and not change the coverage scores of verifiers w ∈ V
which are not similar to v. This will likely leave both the problem unambiguity scores
and the overall obfuscator world ranking scores mostly unchanged, or at least affect
them in a way that preserves the general proportions (i.e., the most unambiguous prob-
lems should remain the most unambiguous ones, even though their actual ambiguity
scores may change).

2.3 Criticism and Shortcomings of the Impact Measure

Recall the definitions of recall and accuracy of a verifier v ∈ V :

acc(v,Dtest) =
|{d ∈ Dtest : v(d) = γ(d)}|

|Dtest|
,

rec(v,Dtest) = acc(v,D+
test) =

|{d ∈ D+
test : v(d) = γ(d)}|
|D+

test|
.

The performance of an obfuscator can therefore be measured by the change of recall:

∆rec(o, v,Dtest) = rec(v, o(Dtest))− rec(v,Dtest).

The impact of o is ∆rec normalized to [−1, 1]:

imp(o, v,Dtest) =


−∆rec(o,v,Dtest)

rec(v,Dtest)
if ∆rec(o, v,Dtest) < 0,

−∆rec(o,v,Dtest)
1−rec(v,Dtest)

otherwise,
.

If V denotes the set of available verifiers, the average impact of an obfuscator o is

avg imp(o, V,Dtest) =
1

|V |
∑
v∈V

imp(o, v,Dtest).

The average impact is the measure used for the obfuscation shared tasks in PAN 16
and PAN 17 to automatically evaluate an obfuscator’s safety. This measure does not
satisfy the earlier defined fairness criteria: We will later see that the performance of
the verifiers used here differ enormously. For an obfuscator o and a verifier v such that
obfuscation by o decreases the recall of v (which is usually the case), the impact is, by
definition,

imp(o, v,Dtest) =
rec(v,Dtest)− rec(v, o(Dtest))

rec(v,Dtest)
= 1− rec(v, o(Dtest))

rec(v,Dtest)

=1−
∣∣{d ∈ D+

test | v(o(d)) = γ(d)}
∣∣∣∣{d ∈ D+

test | v(d) = γ(d)}
∣∣ .



If, e.g., o flips half of the correct decisions of v and leaves the wrong decisions as
they were, the impact factor is 1

2 . Achieving an impact factor of ≥ 1
2 is therefore easier

for weak verifiers (change few decisions of an ineffective verifier) than for more effec-
tive ones (change many decisions of an effective verifier). This is counter-intuitive and
directly contradicts our first fairness principle above (the verifier effectiveness axiom).
Of course, one has to be careful when using only recall (and not precision) to describe
“effective verifiers”, but a high recall is not a good indicator for ineffective verifiers.

Moreover, there are examples of similar verifiers: Jankowska et al. submitted a ver-
ifier in 2013 [12], and an improved variation of it in 2014 [13]. These are treated as
independent verifiers, such that the influence of that single approach in the final impact
score is inappropriately high. This is not so much of a problem for the set of veri-
fiers available at the time of writing (there are few such examples), but opens the door
for simple manipulation of certain obfuscators’ scores by re-submitting a verifier mul-
tiple times, possibly in slight variations. However, submission of variations of already
present verifiers need not be an attempt of score manipulation, it could simply be an im-
provement of previous work (e.g. incorporating more features, or a different machine
learning algorithm). Therefore it is not fair to disallow submissions of such variants
(since we want to reflect the state of the art), nor can it be fair to consider them as
entirely independent of one or more related verifiers when averaging the scores. When
using the average impact measure, however, one has to decide for one of these options.

Finally, we will present evidence that there are very ambiguous as well as very
unambiguous problems in the test corpora, an important distinction not reflected by the
average impact measure. The idea is that fooling a certain verifier in an unambiguous
problem is supposed to be more difficult than fooling it in an ambiguous one, so that
success in the more difficult task should get a better reward than success in the easier
one. However, one could make the non-trivial, yet reasonable assumption that each
obfuscator which successfully (against a particular verifier) obfuscates problems up to
some degree of unambiguity will also successfully (against the same verifier) obfuscate
more ambiguous problems. Under this assumption, it is not necessary unfair to simply
count the number of flipped decisions independent of each problem’s ambiguity (though
it also would not be unfair to take the ambiguity into account). This assumption can,
however, be questioned, e.g. by pointing out that there are random effects involved such
that an obfuscator may by chance fail to fool a verifier in some ambiguous problems
although the obfuscation is successful in some more unambiguous cases. It is therefore
desirable to have a measure whose fairness can be justified without relying on this or a
similar assumption.

3 Survey of Submitted Obfuscation Approaches

The two approaches submitted to this year’s edition of our shared task are of a more
rule-based flavor, but with different aggressiveness. The rather conservative rule-based
replacements of Kocher and Savoy’s approach [16] aim for sensible and sound obfusca-
tions, while the more aggressive strategy of Rahgouy et al.’s approach [21] was inspired
by Mihaylova et al.’s approach [18].



Table 2. Characteristics of the used corpora and the number of verifiers we were able to run on a
corpus.

Corpus Problem instances Verifiers

Same author Different author Total

PAN13 14 16 30 41
PAN14 EE 100 100 200 38
PAN14 EN 100 100 200 39
PAN15 250 250 500 40

Kocher and Savoy The approach of Kocher and Savoy [16] is based on a set of 20 rules.
The rules replace contractions (e.g., ’ll → will) or shorten words to contracted forms,
replace adjectives (e.g., very good→excellent), exchange conjunctive terms (e.g., in
fact→ actually), or introduce spelling errors by repeating a repeated letter.

As for the resulting texts, the rather conservative strategy does not change a lot and
aims to keep the original text quality. A rather problematic issue of the approach is that
it seems as if the sentences in the obfuscated text were re-ordered (the whole second
paragraph is often directly inserted after the first sentence while the second sentence
comes rather late). It is unclear how reordering a text changes its style, so that this
issue might be due to some implementation error, and is the main cause for the rather
sub-optimal scores for soundness. A more detailed analysis of the text quality of this
approach follows in the evaluation (cf. Section 4).

Rahgouy et al. The approach of Rahgouy et al. [21] mainly focuses on changing the
signals of sentence length (splitting at conjunctive terms or combining sentences), us-
age of contractions (either contracting two words or extending contractions), and word
usage in general (replacement candidates from WordNet or a word2vec model), where
a potential replacement term is scored based on the similarity to the original word, the
likelihood of seeing it in the author’s documents, and the word mover distance of the
sentence variant.

The resulting text will usually be changed more than with Kocher and Savoy’s ap-
proach. Depending on the word similarities and the “correctness” of splitting / combin-
ing sentences, some obfuscated text passages read very well while others are changed
to often even a contrary meaning. Again, the text quality of this approach is discussed
in Section 4.

4 Evaluation

As in the past two years, we automatically evaluate the safety of the submitted obfus-
cation approaches against 44 authorship verifiers that participated in the previous three
shared tasks on authorship identification at PAN 2013–2015. We employ the new scor-
ing scheme to obtain the first “world ranking” for obfuscation and contrast it with the
previous way of evaluating safety. Sensibleness and soundness of the obfuscated texts
are assessed manually via human inspection in the same way as before.



Table 3. World ranking of seven obfuscators, including those submitted to PAN 2016 and
PAN 2017, against sets of 44 authorship verification approaches submitted to PAN 2013 through
PAN 2015. In addition, we provide the scores achieved with our legacy measures.

Obfuscator Verifier Dataset Legacy Measures World Ranking

Team [Reference] |Y | Dtest |D+
test| ∆acc ∆rec avg imp Score

Castro et al. [6] 44 all corpora 464 -0.1281 -0.2387 0.4495 474.24
Mihaylova et al. [18] 44 all corpora 464 -0.1104 -0.2099 0.3901 466.18
Keswani et al. [15] 44 all corpora 464 -0.1071 -0.1990 0.3736 296.64
Rahgouy et al. [21] 44 all corpora 464 -0.0940 -0.1771 0.3531 355.18
Bakhteev et al. [1] 44 all corpora 464 -0.0726 -0.1322 0.2491 291.01
Mansoorizadeh et al. [17] 44 all corpora 464 -0.0378 -0.0738 0.1523 208.62
Kocher and Savoy [16] 44 all corpora 464 -0.0549 -0.1003 0.2180 107.85

4.1 Safety

The evaluation setup is based on the cloud-based evaluation platform TIRA [9, 19],1

which is being developed as part of our long-term evaluation-as-a-service initiative [11].
By using TIRA, it is possible to run 44 of the 49 authorship verification approaches
which have been submitted to the shared tasks at PAN 2013–2015 on the outputs of
the 7 obfuscation approaches submitted to the shared tasks at PAN 2016–2018 using
the authorship verification corpora PAN13, PAN14 EE, PAN14 EN, and PAN15 (cf.
Table 2 for respective corpus characteristics).

Table 3 contrasts our new “world ranking” scheme described in Section 2 with the
“legacy” safety measure we employed in the previous two years. It can be seen that
the ranking of the approaches does not change from one measure to the other with
Castro et al.’s approach [6] being the safest on both measures. Although the ranking of
the so far seven submitted approaches does not change, the new measure seems a lot
fairer since an obfuscator cannot simply gain a lot of average impact by fooling a few
rather bad verifiers to each change one of their maybe only two correct “same author”
decisions (impact of 0.5). Moreover, the point difference between of the world ranking
provides for an intuitive idea of “how far” one obfuscator is ahead of another. Thus we
will further employ the new “point-based” world ranking for safety evaluation since
it takes the strengths (and weaknesses) of the participating verifiers and corpora into
account.

Interestingly, the two obfuscator approaches from this year’s shared task (green en-
tries in Table 3) are not able to break into the top-3 safety ranks overall. But their
characteristic is also a less aggressive obfuscation with sometimes no changes in a sen-
tence, so that the resulting text quality is not changed too much from the original (cf.
next section for the respective evaluation of sensibleness and soundness). It should also
be noted that even the “safest” of the approaches submitted so far still leaves a lot of
room for safety improvements alone. The perfect obfuscator (i.e., the one that would
be able to change every correct “same author” decision of each of the 44 verifiers in
the evaluation) would obtain a world ranking score of 1093.49—thus Castro et al.’s
best approach so far has not even made “half the way” to perfect obfuscation. A more

1 www.tira.io



fine-grained analysis of the old and new safety scores per corpus can be found in Ap-
pendix B while Appendix A gives some more experimental details on the robustness of
the new world ranking.

4.2 Sensibleness and Soundness

As in the previous two shared task, a human assessor conducted a manual assessment
on problem instances 6, 135, and 430. Spot checks on other instances indicated that
the overall characteristics of the output texts are similar on other instances. The human
assessor started by reading the obfuscated texts without knowing which was the output
of what approach. During this reading phase, the assessor marked up errors (typos,
grammar) and assigned school grades (on a scale from 1 (excellent) to 5 (fail)) for the
sensibleness of each of the sample problem instances. The sensibleness scores obtained
in the previous years were a grade 2 for Mansoorizadeh et al.’s approach [17], grade 2-3
for Castro et al.’s approach [6], grade 4 for Mihaylova et al.’s [18] and Bakhteev’s and
Khazov’s [1] obfuscators, and a grade 5 for Keswani et al.’s obfuscator [15]. Kocher and
Savoy’s approach [16] approach obtains a grade 1-2, since there are hardly any changes,
though spurious uppercase letters occurred in the middle of a sentence (probably due
to some suboptimal “stitching” of text passages). Rahgouy et al.’s approach [21] had
a much wider range with one text rather left intact and obtaining grade 1, while for
another a grade 4 was assigned due to a lot of punctuation problems; on average, with
the additional grade 3 on the third text, grade 3 overall is assigned.

After grading the sensibleness of the obfuscated texts, the assessor read the original
texts and judged the textual differences in various ways to evaluate the soundness of
the obfuscated texts on a three-point scale as either “correct”, “passable”, or “incor-
rect”. The obfuscated texts of Mihaylova et al.’s, Keswani et al.’s, Bakhteev’s and Kha-
zov’s, and Castro et al.’s previous years’ approaches were all judged “incorrect”, while
Mansoorizadeh et al.’s very conservative approach from 2016 achieved “correct” and
“passable” scores. This year’s approaches (Kocher and Savoy’s and Rahgouy et al.’s)
both got “passable” as their average judgments—but for different reasons: With regard
to Kocher and Savoy’s approach, almost everything was left as it was with the main
problem that the ordering of the sentences was changed which in some passages caused
a rather odd reading “flow” resulting in a “‘passable” for all three checked texts. With
regard to Rahgouy et al.’s approach, the judgments are again more wide-spread with
one text being “incorrect” since almost all sentences were wrongly split into parts, one
document being “passable” and one being “correct” since hardly anything was changed.

5 Conclusion and Outlook

In the third year of evaluating author obfuscation approaches in terms of their safety
against the state of the art in authorship verification, two new approaches were added
to the five approaches from the previous years. The best-performing obfuscator today
achieves about 43% of the score a “perfect” obfuscator can achieve on our testbed with
44 authorship verifiers on the PAN authorship verification corpora from 2013–2015.



Such a perfect obfuscator would be able to flip any correct decision for “same author”
by any verifier towards choosing “different author”.

We have developed a new “world ranking of obfuscators” in terms of safety. The
idea is that an obfuscator obtains points per flipped correct “same author” decision,
dependent on how unambiguous a problem is (i.e., the more unambiguous the more
verifiers solve it correctly before obfuscation) and on the effectiveness of a verifier on
unobfuscated problems (more points if a more effective verifier is fooled). This new
safety measure is fairer than the previous impact measure, where scores were computed
independent of a problem’s unambiguity and a verifier’s effectiveness.

Still, even with the new scoring scheme, the actual safety ranking does not change
but the relative differences between the verifiers are more pronounced in the sense that
they now include information about the actual problem unambiguity. The safety-wise
best-performing approach of Castro et al. from 2017 was not beaten by the two new
obfuscators, whose main focus seems to rather be text quality (i.e., soundness and sen-
sibleness). As in the previous years, text quality was measured by manual inspection. It
became clear that sometimes even small changes can “destroy” a particular sentence or
text passage (distorting its meaning or decreasing readability). Unsurprisingly, the least
safe approach of Kocher and Savoy from this year’s shared task obtains the best scores
among all approaches with respect to soundness and sensibleness—it simply does not
change a lot. While still being readable, the obfuscated texts of the safest approach
(Castro et al.) are rather poor when it comes to soundness.

It is still an open problem to develop obfuscation technology that is safe (even the
best one is not half the way to a perfect obfuscation safety) while not harming para-
phrase soundness or readability too much. Paradigmatically, there are still more or less
only two groups of obfuscation approaches: (1) the ones that are somewhat safe but
that produce rather unreadable text or text that is neither sound nor sensible, and (2) the
ones that produce sound and sensible texts but that are not really safe against authorship
verification.

As hinted in the previous shared task editions, a significant improvement of current
obfuscation technology might require a much better consideration and integration of
the surrounding context when, for example, replacing, adding, or removing words, and
better ways of reordering clauses in sentences. Ideas in that direction could be to apply
constrained paraphrasing [24] or paraphrasing rules from the PPDB [8].

The remaining challenge of evaluating author obfuscation approaches properly and
at scale does not seem to be safety. The new “world ranking” provides for a fair and
robust tool that incorporates future verifiers, obfuscators, and corpora. What is missing
are new and improved technologies for recognizing paraphrases, textual entailment,
grammaticality, and style deception—the existing technology is not mature enough to
easily replace manual inspection for evaluating soundness and sensibleness.
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A Robustness of the World Ranking

We empirically test whether the parameters underlying the new world ranking are dis-
tributed as expected and how robust the new world ranking is against the addition of
“random” verifiers or verifiers that are very similar to already existing ones.

A.1 Variation of the Measures Underlying the World Ranking

First, to ensure that the considerations underlying our new safety evaluation approach
make sense in the given setup, we confirm that the main verifier and problem character-
istics of effectiveness, coverage, and unambiguity vary sufficiently among the consid-
ered verifiers and datasets. We confirmed our findings on all PAN verification datasets
but only give plots and explanations on the basis of the PAN 15 data since the observa-
tions on the other datasets are similar.
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Figure 1. Left: Distribution of accuracy and coverage for the 40 verifiers that we were able to run
on the PAN 15 corpus. Right: Distribution of the unambiguity scores for the PAN 15 corpus (by
definition, only of the positive problems). The x-axis gives the internal IDs of the problems.

Figure 1 (left) shows the accuracy and coverage scores of the 40 verifiers that we
were able to run on the original PAN 15 data. Many of the verifiers seem to follow
rather unique approaches such that 19 of the 40 verifiers have a coverage score of 1.
Note that some verifiers perform so poorly on the test data that our “best threshold”
method chooses a threshold of +∞ or −∞, forcing them to always respond “differ-
ent authors” or “same author”, respectively. This behavior is mainly due to employing
verification models that were trained on a different PAN corpus that are now tested on
PAN 15 data (we did not re-train models that were submitted in another year), leading
to multiple verifiers giving identical answers, which in turn then have very low cover-
age scores (between 0.11 and 0.123, with accuracies between 0.5 and 0.55). The two
implementations of Jankowska et al. [12, 13] also seem to be similar to each other and
have a coverage score of 0.59.

Figure 1 (right) exemplify the unambiguity scores for the PAN 15 test data. Follow-
ing the definition of unambiguity, a clear problem (i.e., easy to identify the author) has
a high unambiguity score whereas an obscure one has a low score. The observation that
clear and obscure problems are rather evenly spread does not only hold for PAN 15 but
also for the other datasets.

Our inspection of the different PAN authorship verification corpora shows that the
effectiveness, similarity, and unambiguity scores vary in the expected scope such that
the definitions reasonably capture differences.

A.2 Influence of Random or Copied Verifiers on the World Ranking

Since the PAN shared tasks are intended to continue even after the respective confer-
ences, everyone can submit new approaches for authorship verification at any time. The
measures underlying the “world ranking” are directly able to incorporate any such new
approaches and thus are able to always include the state of the art in authorship verifica-
tion. Also creators of obfuscation approaches, of course, may submit new verifiers. This



possibility could in principle also be exploited to submit verifiers with the intention of
boosting a specific obfuscator’s world ranking score:

– One could let the obfuscator leave a certain “watermark” in the text that a newly
submitted verifier could then detect to turn all its decisions on such watermarked
cases to “different authors”.

– Somewhat similarly, one could develop a verifier just focused on those aspects of
the texts that the desired obfuscator will manipulate (e.g., counting the occurrences
of “it’s” vs. “it is”). Such a verifier might work with some success on unobfuscated
texts but then not at all on the obfuscated texts of the specific obfuscator since the
obfuscator probably will have removed most of the features used by the verifier.

– One could also submit a slight variation of an existing verifier which is particularly
vulnerable to the to-be-boosted obfuscation approach by altering the answers only
in low-confidence cases. The verifier variant then should easily be fooled by the
obfuscator while retaining reasonable performance on unobfuscated texts.

Such and similar deliberate attempts to boost an obfuscator’s score should be considered
“unfair play” and unscientific. In case of being detected—probably rather difficult to
do automatically—, such verifiers should probably be removed entirely instead of just
being ignored in the world ranking.

The second option could still yield a reasonable and well-performing approach in
authorship verification, in which case it is a valid contribution. If the verifier, however,
does not perform better than guessing, its effectiveness score should become too low
to make any difference. If the verifier significantly resembles an existing one (as in the
third option), the corresponding coverage scores would be lowered accordingly such
that the overall score of all obfuscators ultimately should remain stable.

These assertions can be tested (effectiveness and coverage for some potentially ad-
versarial submissions). We perform two experiments, in which we add 40 mock verifiers
to the existing ones and look how the characteristics of the verifiers and the problems
behave, and whether the overall scores for the different obfuscators and test corpora
change. In the first experiment, the guessing attack, the mock verifiers just choose their
confidence scores randomly in [0, 1] (uniformly distributed). We expect that those mock
verifiers get poor effectiveness and high coverage scores, whereas the characteristics of
the original verifiers and the problems remain stable, as well as the obfuscators’ scores.
In the second experiment, the variation attack, each mock verifier is obtained from an
existing verifier, replacing 10% of its decisions (on the original and the obfuscated prob-
lems) by random confidence scores in [0, 1]. We expect that the effectiveness scores of
the new verifiers are a bit lower than those of their originals, that these mock verifiers
get low coverage scores in general, and that the coverage scores of the existing verifiers
decrease overall, in particular for those which have been copied. Note that in both ex-
periments, the effectiveness scores of the original verifiers remain stable by definition.

The left column of Figure A.2 (Experiment 1: Guessing Attack) shows how the
characteristics change after attacking the ranking by adding 40 mock verifiers which
only guess their responses. The effectiveness scores of the mock verifiers are very low—
as expected since they are just guessing. Note that the effectiveness scores of the original
verifiers remain stable (by definition). The coverage scores of the badly performing
verifiers, which, after choosing optimal thresholds, give constant answers, shrink a bit
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Experiment 2: Variation Attack
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Figure 2. Results of two robustness experiments with regard to effectiveness, coverage, and un-
ambiguity. The x-axes of the plots show IDs of verifiers and problems, respectively. Circles (◦)
denote scores of the original verifiers or problems, crosses (+) denote scores of original verifiers
or problems after adding 40 mock verifiers, and diamonds (♦) denote scores of the 40 mock veri-
fiers. Since effectiveness is unaffected by adding verifiers and since no mock problems have been
added, there are no crosses in the first row of plots, and no diamonds in the last one. Dependent
on the experiments, the 40 mock verifiers guess at random (verifier IDs 40-79 in the left plots) or
are variants of the original ones (IDs 0-39 in the right plots shared with their respective original
verifiers). The problem IDs refer to the subset of positive problems of the PAN 15 dataset.



since also some of the mock verifiers also perform very badly. The other coverage scores
remain mostly stable—as expected. The problem unambiguity scores move towards 0.5
since about half of the guessing verifiers guess the correct answer—if every verifier
guessed its answers on an instance, half of them will guess correctly, resulting in a
unambiguity score of exactly 0.5 for that instance.

The right column of Figure A.2 (Experiment 2: Variation Attack) shows the behav-
ior of the three characteristics after attacking the ranking by copying (with a 10% ran-
dom change) the 40 original verifiers. Similar to the first experiment, the observations
are close to our expectations. The mock verifiers have roughly the same effectiveness as
their originals, sometimes diminished due to the 10% random choices. Those verifiers
which have not been copied mostly have the same coverage scores (except some few
side effects), whereas those which have been copied have significantly reduced cover-
age scores. Except some few random outliers, these reduced coverage scores are also
observed for the copies of the verifiers (often slightly higher which may be explained by
the “unpredictable” 10% random choices). Similar to the first experiment, the random
10% choices explain the slight drift of the unambiguity scores towards 0.5.

The obfuscators’ scores in the two experimental setups from above (random mock
verifiers and verifier variants) are given in Table 4. It can be seen that adding the mock
verifiers does change the obfuscators’ scores, though most changes are small compared
to the actual differences between the obfuscators under consideration. In particular, the
ordering of the obfuscators for each dataset remains stable, with the two exceptions that
Keswani et al. and Castro et al. change their ranks for PAN13 and that Mansoorizadeh
et al. and Castro et al. change their ranks for PAN14-EE for the setup with the 40 ran-
dom mock verifiers. In both experiments, some scores are increased whereas some are
reduced; however, a general trend towards higher scores is observable in both experi-
ments. This trend may be explained statistically, noting that those random verifiers with
an accuracy � 0.5 on the original training data will still have an expected accuracy
of 0.5 on the obfuscated data, thus changing probably some correct positive decisions
to negative ones while having a moderate effectiveness score. Those random verifiers
which perform poorly on the original data (i.e., that have an accuracy of ≈ 0.5), are
more likely to correct wrong decisions by chance, but get a smaller effectiveness score
such that their final influence is not as high.

Other than that, the changes in the obfuscators’ scores are probably best explained
as just random effects, since adding 40 random mock verifiers to≈ 40 real verifiers will
induce them. The remarkable thing here is that our proposed measure retains relatively
stable output under such heavy modifications of the input data.

B Safety Evaluation According to the Legacy Evaluation Measures

Table 5 shows the results of our safety evaluation of the two obfuscators from this
year compared to the five obfuscators from the last two years against 44 authorship
verification approaches on the aforementioned four PAN evaluation datasets. Although
we combined the rankings into an overall score to arrive a our ranking of obfuscation
approaches, a per-dataset inspection allows for a more in-depth interpretation of the
results of this year’s participants in context.



Table 4. World ranking of seven obfuscators, including those submitted to PAN 2016 and
PAN 2017, against sets of 34–39 authorship verification approaches submitted to PAN 2013
through PAN 2015. We note the scores for the original data and for the two experiments, each
with additional 40 mock verifiers.

Obfuscator Verifier Dataset Experiments World Ranking

Team [Reference] |Y | Dtest |D+
test| Guessing Variation Score

Castro et al. [6] 36 PAN13 14 28.92 21.56 15.96
Mihaylova et al. [18] 36 PAN13 14 28.66 22.58 15.70
Keswani et al. [15] 36 PAN13 14 20.97 18.84 13.84
Rahgouy et al. [21] 36 PAN13 14 22.25 15.71 9.63
Bakhteev et al. [1] 36 PAN13 14 21.00 15.19 8.74
Kocher and Savoy [16] 36 PAN13 14 12.72 5.86 4.43
Mansoorizadeh et al. [17] 36 PAN13 14 13.92 9.10 3.83

Castro et al. [6] 34 PAN14 EE 100 63.71 69.59 61.80
Mihaylova et al. [18] 34 PAN14 EE 100 57.02 60.34 54.47
Keswani et al. [15] 34 PAN14 EE 100 49.90 48.87 46.40
Rahgouy et al. [21] 34 PAN14 EE 100 41.47 39.90 35.98
Bakhteev et al. [1] 34 PAN14 EE 100 30.77 31.65 28.62
Mansoorizadeh et al. [17] 34 PAN14 EE 100 27.51 25.82 23.00
Kocher and Savoy [16] 34 PAN14 EE 100 22.20 18.44 17.44

Mihaylova et al. [18] 37 PAN14 EN 100 99.83 119.93 102.29
Castro et al. [6] 37 PAN14 EN 100 73.50 90.83 72.90
Keswani et al. [15] 37 PAN14 EN 100 56.83 58.51 56.20
Rahgouy et al. [21] 37 PAN14 EN 100 55.89 60.97 52.47
Bakhteev et al. [1] 37 PAN14 EN 100 40.35 47.23 44.32
Mansoorizadeh et al. [17] 37 PAN14 EN 100 33.35 38.43 36.10
Kocher and Savoy [16] 37 PAN14 EN 100 25.67 19.31 17.41

Castro et al. [6] 39 PAN15 250 318.07 335.58 323.58
Mihaylova et al. [18] 39 PAN15 250 295.14 305.07 293.72
Rahgouy et al. [21] 39 PAN15 250 253.17 271.10 257.09
Bakhteev et al. [1] 39 PAN15 250 208.16 218.35 209.32
Keswani et al. [15] 39 PAN15 250 177.68 194.26 180.04
Mansoorizadeh et al. [17] 39 PAN15 250 149.44 151.66 145.70
Kocher and Savoy [16] 39 PAN15 250 74.85 72.94 68.58

The best-performing approach this year was submitted by Rahgouy et al., which
achieves 4th rank overall across the three years as per average impact; the average im-
pact quantifies the averaged ratio of true positive decisions turned false negative. How-
ever, this result must be taken with a grain of salt since this approach basically removed
large parts of the original text. The approach of Bakhteev and Khazov [1] performs
second-best this year, and ranks fourth out of five overall. The ranking induced by av-
erage impact is inconsistent with those induced by AUC difference or C@1 difference
on some datasets. The penultimate approach of Kocher and Savoy [16] achieves best
performance for these measure on the PAN 13 and the PAN 14 EN datasets. We hy-
pothesize that is is due to the ability of this approach to effectively lower confidence
values without actually bringing them below the threshold. Nevertheless, the approach
of Mihaylova et al. [18] still performs best in most situations.



Table 5. Safety evaluation of seven obfuscators, including those submitted to PAN 2016 and
PAN 2017, against sets of 26-36 authorship verification approaches submitted to PAN 2013
through PAN 2015. The column group “PAN measures” shows the average performance delta
on the evaluation measures ROC AUC, C@1, and the final score AUC · C@1 applied at PAN.
The four row groups belong to the four English PAN test datasets; the rows within the row groups
are ordered by average impact (avg imp, see the last column).

Obfuscator Verifier Dataset PAN Measures Legacy Measures

Team [Reference] |Y | Dtest |D+
test| ∆AUC ∆C@1 ∆final ∆acc ∆rec avg imp

Mihaylova et al. [18] 36 PAN13 14 -0.1066 -0.0759 -0.1030 -0.1389 -0.2778 0.4690
Keswani et al. [15] 36 PAN13 14 -0.0908 -0.0695 -0.0940 -0.1148 -0.2361 0.4245
Castro et al. [6] 36 PAN13 14 -0.1106 -0.0545 -0.0920 -0.1248 -0.2449 0.4175
Rahgouy et al. [21] 36 PAN13 14 -0.1116 -0.0640 -0.0800 -0.1088 -0.2248 0.3952
Bakhteev et al. [1] 36 PAN13 14 -0.0518 -0.0547 -0.0631 -0.0796 -0.1667 0.2881
Kocher and Savoy [16] 36 PAN13 14 -0.1353 -0.1149 -0.0912 -0.0452 -0.1020 0.1910
Mansoorizadeh et al. [17] 36 PAN13 14 -0.0422 -0.0254 -0.0392 -0.0463 -0.0933 0.1442

Mihaylova et al. [18] 26 PAN14 EE 100 -0.1305 -0.1088 -0.1144 -0.1229 -0.2304 0.4891
Castro et al. [6] 26 PAN14 EE 100 -0.1287 -0.1093 -0.1142 -0.1217 -0.2273 0.4328
Keswani et al. [15] 26 PAN14 EE 100 -0.1085 -0.0870 -0.0960 -0.0975 -0.1873 0.4058
Rahgouy et al. [21] 26 PAN14 EE 100 -0.1221 -0.1090 -0.1002 -0.0954 -0.1756 0.3859
Bakhteev et al. [1] 26 PAN14 EE 100 -0.0518 -0.0453 -0.0509 -0.0631 -0.1177 0.2558
Mansoorizadeh et al. [17] 26 PAN14 EE 100 -0.0514 -0.0463 -0.0473 -0.0577 -0.1038 0.2512
Kocher and Savoy [16] 26 PAN14 EE 100 -0.1152 -0.1071 -0.0749 -0.0457 -0.0783 0.1646

Mihaylova et al. [18] 36 PAN14 EN 100 -0.1613 -0.1050 -0.1260 -0.1456 -0.2456 0.4750
Rahgouy et al. [21] 36 PAN14 EN 100 -0.1269 -0.0967 -0.0988 -0.1032 -0.1788 0.3945
Castro et al. [6] 36 PAN14 EN 100 -0.1335 -0.0793 -0.1014 -0.1149 -0.1900 0.3811
Keswani et al. [15] 36 PAN14 EN 100 -0.1020 -0.0704 -0.0845 -0.1074 -0.1783 0.3769
Bakhteev et al. [1] 36 PAN14 EN 100 -0.0700 -0.0475 -0.0599 -0.0776 -0.1129 0.2354
Mansoorizadeh et al. [17] 36 PAN14 EN 100 -0.0579 -0.0408 -0.0493 -0.0665 -0.0958 0.2345
Kocher and Savoy [16] 36 PAN14 EN 100 -0.1509 -0.1320 -0.0871 -0.0289 -0.0561 0.1867

Mihaylova et al. [18] 35 PAN15 250 -0.1074 -0.0927 -0.1090 -0.1050 -0.2009 0.3649
Castro et al. [6] 35 PAN15 250 -0.0899 -0.0647 -0.0793 -0.1018 -0.1973 0.3087
Rahgouy et al. [21] 35 PAN15 250 -0.0721 -0.0592 -0.0744 -0.0912 -0.1736 0.2899
Keswani et al. [15] 35 PAN15 250 -0.0599 -0.0468 -0.0612 -0.0645 -0.1298 0.2543
Bakhteev et al. [1] 35 PAN15 250 -0.0593 -0.0572 -0.0651 -0.0701 -0.1314 0.2172
Mansoorizadeh et al. [17] 35 PAN15 250 -0.0375 -0.0339 -0.0420 -0.0502 -0.0994 0.1952
Kocher and Savoy [16] 35 PAN15 250 -0.0704 -0.0661 -0.0508 -0.0304 -0.0676 0.1137


