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Abstract. In 2018, ImageCLEF proposed a task using CT (Computed
Tomography) scans of patients with tuberculosis (TB). The task was di-
vided into three subtasks: multi–drug resistance detection, TB type clas-
sification, and severity scoring. In this work we present a graph model of
the lungs capable of characterizing TB patients with different lung prob-
lems. The graph contains a fixed number of nodes with weighted edges
based on dissimilarity measures between texture descriptors computed in
the nodes. This model encodes the texture distribution along the lungs,
making it suitable for describing patients with different TB types. The
results show the strength of the technique, leading to high results in the
three subtasks.
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1 Introduction

ImageCLEF (the image retrieval and analysis evaluation campaign of the Cross–
Language Evaluation Forum, CLEF) has organized challenges on image classi-
fication and retrieval since 2003 [1]. Since 2004, a medical image analysis and
retrieval task has been organized [2, 3], usually based on tasks specifically re-
quested by radiologists [4] or making knowledge of visual data accessible [5].
The ImageCLEF 2018 [6] challenge included a task based on CT (Computed
Tomography) volumes of patients with tuberculosis (TB), the ImageCLEF 2018
TB task [7]. In this task, a dataset of lung CT scans was provided and 3 sub-
tasks were proposed. The 2017 edition of the ImageCLEF TB task [8] already
included 2 of the 3 subtasks: multi–drug resistance detection and TB type clas-
sification. However, the dataset was smaller than in 2018. We participated in the
2017 challenge with a texture–based graph model of the lungs [9]. For the 2018
edition we applied the lessons learned in 2017 and we participated in the three
subtasks with a refined approach. The new third subtask targeted the prediction



of a general severity score of the disease. Health professionals face this task by
mainly visual inspection of the CT volumes. However, they base their final score
on other clinical data as well as on the image.

When tuberculosis affects the lungs, several visual patterns can be seen in a
CT image. These patterns are usually characteristic of the underlaying TB type.
Moreover, their spread into parts of the lung is a good indicator of the severity
of the diseases. However, the final diagnosis usually required other analyses than
only the images [10]. Our approach is able to obtain a global texture–based
description of the lungs. It consists of creating a graph model of the lungs where
the nodes represent lung regions and the edges encode relations between the
texture inside the regions.

The following section contains a brief overview of the subtasks and datasets
of the ImageCLEF 2018 TB task. More detailed information on the task can be
found in the overview article [7]. Section 3 explains the process of building the
texture–based graph model of the lungs and all the variations tested for this task
in detail. The results obtained by this approach in the three subtasks are shown
in Section 4. Finally, Section 5 concludes our participation in this challenge.

2 Subtasks and Datasets

The ImageCLEF 2018 TB task proposed three subtasks: i) Multi–drug resistance
(MDR) detection, ii) Tuberculosis type (TBT) classification, iii) and severity
scoring (SVR). For the three subtasks, volumetric chest CT images and auto-
matic segmentations of the lungs were provided by the organization. No other
lung segmentation was attempted in this work and the masks provided were
used. These masks were obtained with the method described in [11].

The challenge was divided into two phases. In the first phase, the organizers
released for each subtask a set of patient CT volumes as training set along with
their lung masks, groundtruth labels and meta–data including age and gender
of the patients. In the second phase, the test set with the corresponding lung
segmentations and meta–data were provided. The groundtruth for the test data
was never released. In our approach we only used the CT images and no meta–
data. The evaluation on the test set was performed by the organizers after the
scheduled deadline for all runs that were submitted in time. The number of CT
volumes for each subtask are specified in Tables 1, 2, and 3.

Table 1. Dataset of the MDR detection subtask. DS means drug–sensible.

Patient set Train Test

DS 134 99
MDR 125 137

Total patients 259 236



Table 2. Dataset of the TBT classification subtask.

Num. Patients (CTs)
Patient set Train Test

Type 1 228 (376) 89 (179)
Type 2 210 (273) 80 (115)
Type 3 100 (154) 60 (86)
Type 4 79 (106) 50 (71)
Type 5 60 (99) 38 (57)

Total patients (CTs) 677 (1,008) 317 (505)

Table 3. Dataset of the SVR subtask.

Patient set Train Test

Low severity 90 62
High severity 80 47

Total patients 170 109

3 Methods

This section details the process of building our graph–based model, the extrac-
tion of a descriptor vector from the CT images, and the classification algorithm
applied. The same technique was applied for describing the patients of the three
subtasks. Our method consists of creating a graph model of the lungs, with
nodes based on a geometrical atlas and weighted edges encoding dissimilarities
between 3D texture descriptors of each atlas region. Figure 1 shows the pipeline
to obtain the graph model.

Fig. 1. Construction pipeline of the graph model consisting of 3 steps: lung mask
division, regional feature extraction and graph entity formation.



3.1 Preprocessing

Our approach is based on 3D texture features that require having isometric vox-
els. We first made the 3D images and the lung masks isometric. After analyzing
the multiple resolutions and the inter–slice distances in the dataset, we opted
for a voxel size of 1 mm to capture a maximum of the available information.

3.2 Atlas of the Lung

To build a graph with a fixed structure over the lung anatomy we opted for a
geometric division of the lung witha fixed number of regions. We chose the atlas
developed by Depeursinge et al. in [12]. This atlas is only based on the mask
of the lungs and provides 36 geometric regions dividing the lungs as shown in
Figure 1.

3.3 3D Texture Features

Two state–of–the–art 3D texture features were selected to describe the texture
inside the lungs. The first method is a histogram of gradients based on the Fourier
transform HOG (FHOG) introduced in [13]. We used 28 3D directions for the
histogram obtaining a 28–dimensional feature vector per image voxel (fH ∈ R28).
The second approach is the locally–oriented 3D Riesz-wavelet transform intro-
duced by Dicente et al. in [14] and based on [15]. The parameters that obtained
the best results in the above mentioned article were used in our approach. These
are: 3rd–order Riesz transform, 4 scales and 1st–order alignment. This configura-
tion resulted in 40–dimensional feature vectors for each image voxel. The feature
vector for a single voxel was then reduced to be 10–dimensional containing the
energy of each filter along the 4 scales (fR ∈ R10).

Feature Vector of a Region: Several feature vectors can be extracted from a
region r using the above mentioned texture descriptors fH and fR. Given a region
ri, we extracted the mean (µi) and standard deviation (σi) of the features inside
the region, i.e.: µi(fH), σi(fH), µi(fR), and σi(fR). Hence, four feature vectors
were obtained for each atlas region.

3.4 Texture–based Graph Model of the Lungs

We used a weighted undirected graph G(N , E) with 36 nodes and 84 edges to
model the lung. Each node Ni ∈ N corresponds to a region ri in the geometric
atlas. The edges were based on the region adjacency defined by the atlas. In
this case, there is an edge Ei,j between nodes Ni and Nj if regions ri and rj are
neighbors in the atlas, i.e., if they are 3D adjacent. Moreover, it has 18 additional
edges connecting each pair of nodes representing opposite regions inside the atlas
with respect to the left/right division of the lungs. This configuration resulted
in 84 edges and is shown in Figure 1.



The weight wi,j of an edge Ei,j was defined using two dissimilarity mea-
sures between the regional features: the Euclidean and the correlation distances.
Depending on the measure selected, a different graph model was obtained.

3.5 Graph–based Patient Descriptor

The feature descriptor wp of a patient p was defined as the ordered list of
weights wi,j ∈ Gp. Since wi,j = wj,i, this descriptor was 84–dimensional for all
patients. These vectors were normalized using a Z–score normalization based on
the patients of the training set. The elements composing this vector can not be
seen independently since they encode the structure of the graph. In this case, the
normalization was applied to all the components simultaneously, i.e., the mean
and variance needed for the Z–score normalization were computed over all edge
weights from the training patients.

Patient Descriptor Concatenation: For a given distance between regional
features (corr or euc), four normalized patient descriptor vectors w̄p were ob-
tained. These were: w̄µH

, w̄σH
, w̄µR , and w̄σR . We ran a different experiment

for each of these patient descriptors. Moreover, we also tested five concatena-
tions of these descriptors in order to better describe each patient, resulting in
nine experiments. The tested concatenations were defined as:

– Mean and std of FHOG: ŵ = (w̄µH
||w̄σH

).
– Mean and std of Riesz: ŵ = (w̄µR ||w̄σR).
– Mean of FHOG and Riesz: ŵ = (w̄µH

||w̄µR).
– Std of FHOG and Riesz: ŵ = (w̄σH

||w̄σR).
– Mean and std of FHOG and Riesz: ŵ = (w̄µH

||w̄σH
||w̄µR ||w̄σR).

Feature Space Reduction: For some of the concatenations of patient de-
scriptors, the feature space dimension was significantly larger than the number
of patients in a single class. To avoid the known problems of using such large
feature spaces, we performed feature space reduction by selecting the dimensions
with higher correlation with respect to the groundtruth labels. This technique
reduced the size of the feature space by two approximately. The final experiments
were performed both using this feature space reduction and with no reduction.

Tested runs: We performed 36 experiments (or runs) in total per subtask,
generated by the different options explained. Table 4 summarizes all possible
options for each step.

3.6 Classification

Multi–class support vector machine (SVM) classifiers with RBF kernel were used
for each run in the three subtasks, particularly, 2–class for the MDR subtask, and



Table 4. Possible configurations for each algorithm step. With these options we run
36 experiments (or runs).

Algorithm property Options

Texture descriptors FHOG, Riesz, FHOG & Riesz
Regional features mean, std, mean & std
Distance measures corr, euc
Feature space reductions none, mostCorr

5–class for the TBT and SVR subtasks. Grid search over the RBF parameters
cost C and gamma γ was applied. Since the data were normalized, both C and
γ moved in {2−10, 2−9, . . . , 210}. The best C and γ combination for a run was
set as the one with highest cross–validation accuracy in the training set of each
subtask.

MDR subtask: The submission run for the this subtask had to contain the
probability for a patient of being multi–drug resistant. In this case, we used the
probabilities from the SVM algorithm.

TBT subtask: For this subtask, the dataset contained more than one CT scan
per patient in most of the cases. However, the classification had to be performed
at the patient level. In this case, we averaged the probabilities provided by
the SVM algorithm over all the images of the same patient. The overall most
probable class was assigned to the patient.

SVR subtask: In this subtask the submission file had to contain the severity
score (1 to 5) and the probability of belonging to the high severity class for
each patient. We considered the severity score as a class in the SVM algorithm,
assigning the most probable class as the predicted severity score. According to
the organizers, the high class corresponded to a severity score in [1, 3]. In this
case, for each patient, we obtained the probability of class high by adding the
SVM probabilities of belonging to classes 1 to 3.

4 Results

A total of 10 runs could be submitted in each ImageCLEF 2018 TB subtask.
We chose them based on the performance obtained in the training set. For this,
we used the same indicators as the ones used by the organizers. These were:
Accuracy (Acc) and Area Under the Curve (AUC) for the MDR subtask, Acc
and unweighted Cohen’s Kappa (Kappa) for the TBT subtask, and AUC and
Root Mean Square Error (RMSE) for the SVR task. Additionally, we base our
selection of the best runs on the cross–validation accuracy extracted from the
SVM classifier during the training phase. Tables 5, 6, and 7 show the results
obtained by each submitted run along with the best result obtained by other



participants with respect to each performance measure. All results were provided
by the organizers of the task. Our group participated as the MedGIFT group. In
the case of the MDR subtask, only 9 runs were evaluated since one submission
failed.

Table 5. MDR subtask results. We participated with 9 runs as the MedGIFT group.

Group Configuration AUC
Rank
AUC Acc

Rank
Acc

VISTA@UEvora Not applicable 0.6178 1 0.5593 8
San Diego VA HCS/UCSD Not applicable 0.6114 2 0.6144 1
MedGIFT Riesz / std / corr / mostCorr 0.5237 22 0.5593 12
MedGIFT FHOG / std / euc / mostCorr 0.5205 23 0.5932 2
MedGIFT FHOG & Riesz / std / corr / none 0.5095 25 0.4873 33
MedGIFT FHOG & Riesz / std / euc / mostCorr 0.5039 27 0.5424 19
MedGIFT FHOG / mean / corr / mostCorr 0.4941 30 0.5551 14
MedGIFT Riesz / mean & std / corr / mostCorr 0.4855 31 0.5212 22
MedGIFT Riesz / mean / euc / mostCorr 0.4824 33 0.5297 21
MedGIFT FHOG / mean and std / euc / mostCorr 0.4693 36 0.5720 6
MedGIFT FHOG & Riesz / mean & std / corr / mostCorr 0.4568 38 0.5085 27

Table 6. TBT subtask results. We participated with 10 runs as the MedGIFT group.

Group Configuration Kappa
Rank
Kappa Acc

Rank
Acc

UIIP BioMed Not applicable 0.2312 1 0.4227 1
MedGIFT FHOG & Riesz / std / euc / mostCorr 0.1706 3 0.3849 2
MedGIFT Riesz / mean & std / euc / mostCorr 0.1674 4 0.3849 3
MedGIFT FHOG & Riesz / mean & std / corr / mostCorr 0.1531 8 0.3691 7
MedGIFT FHOG & Riesz / mean / euc / none 0.1517 9 0.3628 8
MedGIFT Riesz / std / euc / mostCorr 0.1494 10 0.3722 6
MedGIFT FHOG & Riesz / mean & std / corr / none 0.1356 13 0.3628 9
MedGIFT FHOG / mean & std / euc / mostCorr 0.0949 19 0.3344 14
MedGIFT FHOG / std / corr / none 0.0855 21 0.3218 18
MedGIFT FHOG & Riesz / std / corr / mostCorr 0.0787 23 0.3281 17
MedGIFT FHOG / std / corr / mostCorr 0.0589 26 0.3060 21

Considering the accuracy, the proposed method ranked 2nd in the MDR and
TBT subtasks. However, considering the AUC in the MDR subtask, the best
result achieved ranked 22nd. In the case of the TBT subtask, our best run with
respect to the accuracy is also the best with respect to the Kappa measure,
obtaining the 3rd place. For the SVR subtask, our method ranked 1st according
to the AUC and 2nd considering the RMSE. Overall, the results are good when
compared with other participants. However, they are still far from perfect in
the three subtasks because for real clinical applications a higher accuracy seems
necessary. Moreover, they reflect that the optimization of the SVM parameters
was based on the cross–validation accuracy.



Table 7. SVR subtask results. We participated with 10 runs as the MedGIFT group.

Group Configuration RMSE
Rank

RMSE AUC
Rank
AUC

UIIP BioMed Not applicable 0.7840 1 0.7025 6
MedGIFT FHOG / std / euc / mostCorr 0.8513 2 0.7162 5
MedGIFT FHOG & Riesz / mean & std / euc / none 0.8883 4 0.6733 10
MedGIFT FHOG & Riesz / mean & std / corr / mostCorr 0.8934 5 0.7708 1
MedGIFT FHOG / mean / euc / mostCorr 0.8985 6 0.7443 3
MedGIFT FHOG / mean / corr / mostCorr 0.9237 7 0.6450 18
MedGIFT FHOG / mean & std / euc / none 0.9433 8 0.7268 4
MedGIFT FHOG / mean & std / corr / mostCorr 0.9433 9 0.7608 2
MedGIFT Riesz / mean & std / corr / none 0.9626 11 0.5535 34
MedGIFT FHOG & Riesz / mean / euc / none 0.9954 15 0.6644 12
MedGIFT Riesz / std / corr / mostCorr 1.0492 20 0.5841 29

5 Conclusions

This work presents an updated version of our previously developed graph model
of the lung based on regional 3D texture features for describing lungs affected by
tuberculosis. The participation in the ImageCLEF 2018 TB task allows for an
objective comparison between methods since the evaluation was performed by
the organizers. The results proved the suitability of our approach for detecting,
classifying and scoring patients with TB. However, the results show that there
is still room for improvement, particularly in the MDR subtask were results
were relatively close to random for all participants. We believe that the results
could have been better if the optimization of the classifier parameters would
have been done based on other performance measures rather than only on the
SVM cross–validation accuracy.
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