
Species Prediction based on Environmental
Variables using Machine Learning Techniques

Stefan Taubert1, Max Mauermann1, Stefan Kahl1, Danny Kowerko2, and
Maximilian Eibl1

1 Chair Media Informatics,
Chemnitz University of Technology, D-09107 Chemnitz, Germany

2 Junior Professorship Media Computing,
Chemnitz University of Technology, D-09107 Chemnitz, Germany
{stefan.taubert, max.mauermann, stefan.kahl, danny.kowerko,

maximilian.eibl}@informatik.tu-chemnitz.de

Abstract. In our working notes we discuss different machine learning
approaches for the prediction of species for different geolocations based
on environmental variables. We used convolutional neural networks for
image classification as well as data extraction with tree boosting as mod-
els. Furthermore, we analyzed different approaches for data extraction,
as well as data augmentation and group forming to improve our models
performance.

Keywords: Species Prediction ·Machine Learning · Environmental Vari-
ables

1 Description of the dataset and task

The training dataset provided for the 2018 GeoLifeCLEF task [1] as part of
the LifeCLEF workshop [2] includes around 260.000 occurrences of plants from
different species. Each occurrence is associated with a 33-channel TIFF image.
Each channel represents a map of values for a different Environmental Variable
(EV), centered around the location of the occurrence. Additionally, a .csv-file
containing single values for each EV at the center of each occurrence is given.
Since each occurrence is associated with a species, the goal of the GeoLifeCLEF
task was to train a model, that is able to predict the species based on these EV.

2 Dataset Analysis and Pre-processing

In this section we will introduce the different analysis methods we applied to
assess the dataset. This provides an understanding of how the dataset was or-
ganized and structured. We also present various methods of pre-processing we
utilized to extract the data, that was used in our approaches.

2.1 Extracting single values from images

Since the dataset was given in two versions - images and a .csv-file containing
single values - we planned to develop approaches for both types. After some
analysis of the .csv-file, we noticed, a large amount of cells without values. These
cells render their respective rows unusable. To fill out the missing values, we first
tried to calculate them by averaging over the 4 centered pixels of the respective
images, since the single values are supposed to be the EV values at the exact
location of the occurrence. We also did this calculation for the images, for which
values existed in the .csv-file, but realized that it was not possible to reproduce
these values. Because of this discrepancy, we decided very early to not use the
given single values from the .csv-file, but rather to create our own .csv-file by
extracting the single values from the images like mentioned above.

Fig. 1. Comparing test- and training set: The value occurrences for the channels
chbio 5 and chbio 13 of the test set (top) and training set (bottom) show that test
and training set have different value occurrences. This could be one of the reasons, for
the great difference between our test- and validation scores we describe later.

We also used another variation of this extracting algorithm, were we averaged
the single values over the whole image instead of only using the 4 centered pixels.
Both variations were used in different submissions we made. We did not transfer
the values of each EV into their respective ranges, but rather kept them at the
range from 0 to 255, like in the images.

2.2 Most common values for each class

After this pre-processing step, we encountered a lot of raw numbers associated
with different classes. They were not intuitively understandable, since the num-
ber of classes was also very high. For this reason we tried to create a fingerprint
for each class. We did this by counting the single values for each class and cre-
ating a diagram, which shows how often each value occurs in every class. This
way we gained some insight which values are discriminative for a specific class.

2.3 Finding the most discriminative channels

The relatively high number of 33 different channels indicated that not all chan-
nels are equally useful. We decided it would be worth to cut some of them,
because they are not sufficiently discriminative. To achieve this, we searched for
combinations of channels based on the extracted single values, that were suf-
ficient to fully separate the training set as good as possible. We came across
multiple combinations, one of which was used later when training a multi-model
CNN.

2.4 Creating Heatmaps for all classes

Since the TIFF images of the dataset are no photographic images, it was hard
to grasp the features that identify a specific class. In order to get a better un-
derstanding of what characterizes different classes, we created an heatmap for
each class, which contains the average values of all images for that classes. Fur-
thermore, all values were normalized to the range between 0 and 1.

Fig. 2. Heatmaps for the 3 most common classes in the training set, for channel 12
(annual precipitation)

However, the heatmaps for the most common classes looked very similar,
which further proved our assumption that the given data is not distinctive
enough to predict classes properly.

2.5 Splitting a validation set

We used 10% of the training set, to create a separate validation set. We used this
split to estimate, how well our models and different approaches performed and to

generate intermediate checkpoints for some of our models. We have ensured, that
the validation set contained no species which were not included in the remaining
train set.

3 Submissions

In this section, we will comment on our submissions made during the challenge.
For each submission, we will describe the approach we used and we will discuss
why some approaches produce better results then others.

3.1 Random Guessing

The most basic model we used was based on random guessing. We extracted all
3336 possible species and assigned 100 of them randomly to each occurrence of
the test set so that every occurrence has a set of 100 different species. The score
of this submission (ST 2) was 0.0016.

3.2 Probability Model

For the probability model, we first counted the occurrences of each species in the
training set. Then we assigned the species with descending probabilities to each
test occurrence (so every occurrence had the same prediction). That means that
the most common species was at rank one, the second most common species at
rank two and so on. The score of this submission (ST 7) was 0.0134.

3.3 Vector Model

The vector model calculated the differences between the occurrences of the train-
ing set and the test set and predicted each test occurrence with the species of the
training occurrence with the smallest difference. Therefore we took all 33 features
and shaped a 33-dimensional vector V out of each occurrence. We calculated the
difference D as followed:

»

Vn = Vector of n-th training occurrence
»

Vm = Vector of m-th test occurrence
»

Vnm =
»

Vn −
»

Vm

Dnm = || # »

Vnm||2

Then we sorted all Dnm values in descending order and looked which species
Snm were assigned. As the species occurred multiple times for each m we always
kept the first occurrence in Snm. The result was a sorted list of 3336 species
for each occurrence m. At the end we took the first 100 species of the lists and
ranked them ascending for the final submission. The score of this submission
(ST 5) was 0.0271.

3.4 Convolutional Neural Networks

When using the TIFF-images directly for training, we decided to use convo-
lutional neural networks (CNN). In this section we will discuss the different
approaches we tried during the challenge. We used the Keras framework [5] to
implement all models that were used.

VGG-like-models The first approach was a simple feed forward CNN, similar
to the popular VGG model [7], which won the ImageNet contest in 2014. We
choose this relatively simple structure to better understand how the model works
with the given data.

The exact architecture we used consisted of five convolutional layers followed
by a global average pooling layer and the classification layer. We implemented
max pooling after the first two and every second convolutional layer, which
divides the spatial dimensions of the image by half. Additionally, we doubled
the number of filters in the convolutional layers after each pooling layer .

During training we also recognized, that our model was suffering from severe
overfitting. We decided to use regularization in form of L2-normalization in the
convolutional layers and dropout after each global pooling layer.

We also used two approaches for this architecture. One model that is trained
with all 33 channels of the image and one ensemble, which consists of 6 indi-
vidually trained models, each one using one of 6 channels we assumed to be the
most discriminative ones (1, 5, 13, 14, 21 and 22). These channels were found
by using the method we described earlier (2.3).

To further improve our models, we tested classic affine transformations as
data augmentation on the images that were used for training. First, we only
used random flipping (vertical or horizontal) and random rotations. We later
added random crops to the range of possible augmentations, to see if they would
lead to further improvements. When doing the crops we selected a random area
inside the image. Since the crops are random the all have different sizes, so we
resized them to the original 64x64 pixels.

DenseNet We also included the more complex DenseNet [6], despite the low
scores of our CNN approach. We decided to not use any pre-trained weights. We
assumed that this would not be helpful, since the images of our dataset did not
share any features with the photographic images from ImageNet. We submitted
a single DenseNet which was trained without any of the augmentations that were
mentioned above. Additionally, we trained the DenseNet as a single model, not
using the ensemble approach we used with the VGG-like models.

Training the CNN All of our CNN were trained with checkpoint learning
(or early stopping). This means that we used the validation set to calculate
a validation loss after each epoch of training. Every time the validation loss
decreased, we saved the models weights. This way, we only used the best possible
weights, that occurred during the training, to create our submissions.

Results of the CNN The following table shows the results of our submissions
that were accomplished with the CNN. The table shows the results for the single
model and the multi-model approach for the VGG-like network. Rows indicate
which data augmentations were used.

Table 1. The final results for the used architectures. For each architecture the run
number is given as well.

augmentations VGG-like single VGG-like multi DenseNet

none 0.0096 / ST 11 0.0153 / ST 1 0.0099 / ST 19
flip, rotate 0.0153 / ST 3 0.0144 / ST 14 -

flip, rotate, crop 0.0103 / ST 15 0.0096 / ST 18 -

We noticed that the result had very high fluctuations and that it was not
clearly visible which augmentation methods did provide an improvement, when
looking at the test set scores. For the single model, only flips and rotations
seemed to provide an improvement and the ensemble seemed to work best with-
out any augmentations. The crops did not lead to any improvement and the
DenseNet is about as good as the VGG-like single model.

However, these scores are the result of the official test set evaluation. When
validating on our separate validation set, we generally found all augmentations
to be helpful.

3.5 XGBoost

One other approach besides neuronal networks was the usage of Extreme Gra-
dient Boosting (XGBoost [3][4]. With XGBoost it is possible to predict a target
variable based on features of the training data. This section describes our two
strategies for building a model with XGBoost. The train data was created from
the images and the occurrences .csv-file. We took all 33 channel values, as well
as the parameters latitude and longitude for each occurrence in the datasets
and saved those information in a new .csv-file. Like with our CNN we used
the seperated validation set (2.5) and early stopping to avoid overfitting. The
model parameters were adjusted every run and we used early stopping rounds
to stop the training when the model overfitted. XGBoost has one parameter
max depth which defined how deep the boosted trees were build. That means
that the higher the depth was defined the more complex the resulting model
was. We tried different depths to get a understanding how complex our model
has to be.

Single Model The first strategy was to build one single model for the pre-
diction. In this case the target variable mentioned earlier was a list of species
probabilities for each dataset occurrence. The evaluation method we choose dur-
ing the training was the multi-class classification error rate (merror-metric in
XGBoost). We submitted the variations at Table 2.

Table 2. The results show that the value 10 for max depth was to big and the model
was to complex whereas value 2 was that one with the best score.

Variation Run max depth Test-Score

1 ST 8 10 0.0085
2 ST 9 3 0.0344
3 ST 10 2 0.0348

Multi-Model The second strategy was to predict each species separately.
Therefore we created 3336 different models. In this case the target variable
mentioned earlier was a list of probabilities for the occurrence of the current
selected single species (one out of 3336) for a dataset occurrence. Each model
was evaluated during the training with the log-loss metric because the resulting
probabilities were decimal numbers. We tried out different parameter settings,
which can be seen at Table 3.

Table 3. Multi-model evaluation with different parameter settings. Scores increased
after calculating the pixel values solely from the four pixels of the center of the images.

Variation Run max depth Pixel Count Test-Score Validation-Score

1 ST 6 3 64x64 0.0338 0.0942
2 ST 13 2 64x64 0.0352 0.0963
3 ST 16 2 2x2 0.0358 0.0884

Groups Model To get better scores, we created an advanced model which
built several groups with species that are similar. The idea was to group species,
because we argued that it is likely that more than one species occur at one
location. In order to find similar species, we looked at the occurrences for each
species in the train set and calculated a representative value per species. One
way of doing so was to look at each feature column and estimate which value
occurred most. The second method was to calculate the mean value for each
feature column. This way, we calculated a simple fingerprint for each species.

In the next step we calculate the difference between all species with the same
method like in the Vector Model. The result was a 3336x3336 matrix in which
the distance between each species was held. We had to round the feature values
to 2 digits and we ignored species which occurred less then a count of o.

After that, we defined the parameter t for threshold which indicates how great
the distance between two species could be to consider them in the same group.
After this, we created a network in which all species relations were contained. The
following figure illustrates some of the problems that arise with that approach.

Therefore, we defined a additional parameter min edges which defines how
much neighbours a species needs to be in a group. As result we got less groups
but instead ones with more similar species.

Fig. 3. Each point represents a species and the connections are distances between the
species which are within t. The main problem is that species a has a difference of 3t to
d in the worst case and is not really similar.

Fig. 4. Now the species in the groups are more similar at a min edges of 3.

At both runs we used all 64x64 pixels. For the test submission we first pre-
dicted the groups for each test occurrence and then we mapped them back to
the species. Therefor we took all species of the specific groups and sorted them
descending with regard of their probability in the train set.

Table 4. The score of the run in which the mean was calculated was slightly better
than the other run but not as good as the run without any groups.

Variation Run max depth min edges t o Method Test-Score

1 ST 8 4 1 3 10 most common 0.0220
2 ST 17 2 3 9 0 mean 0.0326

At variation 1 we have got 2148 groups in which were 266 species in groups
with an size greater than one. We then trained each group with 2148 models. At
variation 2 we got 3301 groups and 39 species in groups with a size greater one.

We realized that it was not an improvement to build groups, because the test
scores were not as good as the scores without groups. The reason could be that
the machine learning algorithm detected by itself which species are similar and
it therefore was more accurate then building the groups manually.

4 Source Code

We published our source code at GitHub3. The code is written in Python and
uses different third party libraries. The project page provides instructions on
how to execute the code. We used an i7 INTEL CPU and a NVIDIA P6000 for
model training.

3 https://github.com/stefantaubert/lifeclef-geo-2018

5 Summary

As the submissions of other participants and our own results show, predicting
plant species based on environmental variables can be a challenging task. Fur-
thermore, it is especially challenging when it comes to predicting only a single
species, since there are many species that may occur under the same environ-
mental conditions. However, we evaluated various machine learning techniques
to get an idea of which work best for this problem.

Fig. 5. As in the result graph is shown the overall scores were really low. This may
indicate, that predicting this dataset is a hard task.

Our approaches were divided into two main groups, one using the 33-channel
images and CNN, the other one using single values, that were extracted from
these images. For the CNN part, we mainly used a traditional feed forward net-
work in two variations: One using all 33 channels of the images, the second was
an ensemble of 6 individually trained models, each using one of 6 selected chan-
nels. After using the unprocessed versions of the images, we also added different
affine transformations as data augmentation. On the test score, augmentations
did not lead to an improvement, but when evaluating them on our local val-
idation set they had proven to be useful. In general, at their best, our CNN
were merely better then a probability based approach, which implies that more
optimization would be needed to make this technique work properly.

Our single value approach used boosted trees with the XGBoost framework.
The first parameter we tried to optimize with this approach was finding the
right depth for our trees. We started with a very high depth, but we found, that

less depth and therefore less complex models yield better results. After that, we
also changed the way in which we extract the single values from the images.
We were able to show that averaging only over the 4 centered pixels leads to
better results than averaging over the whole image. Finally, we also tried out
forming groups of similar species and predicting them instead of single species.
We defined predicting a group as the prediction of all species within this group
ordered along their frequency in the train set. This data processing step did not
lead to an improvement of our score.

In general we have to state, that our local validation score constantly differed
from the challenges test score, which led us to the conclusion that the species of
the tasks dataset are not completely distinguishable using the given EV.

References

1. Botella, C., Bonnet, P., Joly, A.: Overview of GeoLifeCLEF 2018: location-based
species recommendation. In: CLEF working notes 2018. (2018)

2. Joly, A., Goëau, H., Botella, C., Glotin, H., Bonnet, P., Planqué, R., Vellinga, W.-P.,
Müller, H.: Overview of LifeCLEF 2018: a large-scale evaluation of species identifi-
cation and recommendation algorithms in the era of AI. In: Proceedings of CLEF
2018 (2018).

3. Tianqi, C., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, ACM (2016)

4. Friedman, J. H.: Greedy function approximation: a gradient boosting machine. In:
Annals of statistics, 1189-1232. (2001)

5. Chollet, F. et al.: Keras. (2015)
6. Huang, G., Liu, Z., Weinberger, K. Q., van der Maaten, L.: Densely connected

convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition (Vol. 1, No. 2, p. 3). (2017)

7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In: arXiv preprint arXiv:1409.1556. (201

