
IAM at CLEF eHealth 2018 : Concept Annotation
and Coding in French Death Certificates

Sébastien Cossin1,2[0000−0002−3845−8127], Vianney Jouhet1,2, Fleur Mougin1,
Gayo Diallo1, Frantz Thiessard1,2

1 Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, team
ERIAS, UMR 1219, F-33000 Bordeaux, France

sebastien.cossin@u-bordeaux.fr
2 CHU de Bordeaux, Pôle de santé publique, Service d’information médicale,
Informatique et Archivistique Médicales (IAM), F-33000 Bordeaux, France

Abstract. In this paper, we describe the approach and results for our
participation in the task 1 (multilingual information extraction) of the
CLEF eHealth 2018 challenge. We addressed the task of automatically as-
signing ICD-10 codes to French death certificates. We used a dictionary-
based approach using materials provided by the task organizers. The
terms of the ICD-10 terminology were normalized, tokenized and stored
in a tree data structure. The Levenshtein distance was used to detect ty-
pos. Frequent abbreviations were detected by manually creating a small
set of them. Our system achieved an F-score of 0.786 (precision: 0.794,
recall: 0.779). These scores were substantially higher than the average
score of the systems that participated in the challenge.

Keywords: Semantic annotation · Entity recognition · Natural Lan-
guage Processing · Death certificates

1 Introduction

In this paper, we describe our approach and present the results for our par-
ticipation in the task 1, i.e. multilingual information extraction, of the CLEF
eHealth 2018 challenge [1]. More precisely, this task consists in automatically
coding death certificates using the International Classification of Diseases, 10th
revision (ICD-10) [2].

We addressed the challenge by matching ICD-10 terminology entries to text
phrases in death certificates. Matching text phrases to medical concepts auto-
matically is important to facilitate tasks such as search, classification or orga-
nization of biomedical textual contents [3]. Many concept recognition systems
already exist [3,4]. They use different approaches and some of them are open
source. We developed a general purpose biomedical semantic annotation tool
for our own needs. The algorithm was initially implemented to detect drugs in
a social media corpora as part of the Drugs-Safe project [5]. We adapted the
algorithm for the ICD-10 coding task. The main motivation in participating in



the challenge was to evaluate and compare our system with others on a shared
task.

2 Methods

In the following subsections, we describe the corpora, the terminology used,
the steps of pre-processing and the matching algorithm.

2.1 Corpora

The data set for the coding of death certificates is called the CépiDC corpus.
Three CSV files (AlignedCauses) were provided by task organizers containing
annotated death certificates for different periods : 2006 to 2012, 2013 and 2014.
This training set contained 125,383 death certificates. Each certificate contains
one or more lines of text (medical causes that led to death) and some metadata.
Each CSV file contains a "Raw Text" column entered by a physician, a "Standard
Text" column entered by a human coder that supports the selection of an ICD-
10 code in the last column. Table 1 presents an excerpt of these files. Zero to
multiples ICD-10 codes can be assigned to each line of a death certificate.

Raw Text Standard Text ICD-10 code
SYNDROME DE GLISEMENT AVEC GRABATI-
SATION DEPUIS OCTOBRE 2012

syndrome glissement R453

SYNDROME DE GLISEMENT AVEC GRABATI-
SATION DEPUIS OCTOBRE 2012

grabatisation 2 mois R263

Table 1. One raw text sample with three selected columns of the training data.
Raw Text : text entered by a physician (duplicated in the file when multiple codes are
assigned).
Standard Text : text entered by a human coder to support the selection of the ICD-10
code

2.2 Dictionaries

We constructed two dictionaries based on ICD-10. In practice, we selected
all the terms in the "Standard Text" column of the training set to build the first
one which was used in the second run. In the first run, we added to this previous
set of terms the 2015 ICD-10 dictionary provided by the task organizers. This
dictionary contained terms that were not present in the training corpus. When
a term was associated with multiple ICD-10 codes in our dictionary, we kept the
most frequent one (Table 2).

The first dictionary contained 42,439 terms and 3,539 ICD-10 codes (run2)
and the second one 148,448 terms and 6,392 ICD-10 codes (run1).

Metadata on death causes were not used (age, gender, location of death).



Standard Text ICD-10 code number of occurrences
avc F179 1
avc I64 260
avc I640 1,635
avc T821 1
avc Z915 1
avc I489 1

Table 2. Some terms like "avc" were associated with multiple ICD-10 codes in our
dictionary. We kept the most frequent ICD-10 code, I640 in this case.
Standard Text : text entered by a human coder to support the selection of an ICD-10
code.

2.3 Terms pre-processing

All the terms were normalized through accents (diacritical marks) and punc-
tuation removal, lowercasing and stopwords removal (we created a list of 25
stopwords for this task). Then, each term was tokenized and stored in a tree
data structure. Each token of a N-gram term is a node in the tree and N-grams
correspond to different root-to-leaf paths [6] (Figure 1).

Figure 1. Terms in our dictionaries are normalized, tokenized and stored in a tree
data structure. Each dark blue node corresponds to a term. In this figure, five terms
are described : "insuffisance cardiaque", "insuffisance cardiaque aigue", "insuffisance
cardiaque congestive", "insuffisance respiratoire" and "insuffisance respiratoire aigue".
The token "insuffisance" is the first token of many terms but it does not match any
term by itself (light blue).



Figure 2. Algorithm pipeline. The text was normalized and tokenized. For each token,
the algorithm used three matching techniques to detect a token in the dictionary.
Possible dictionary tokens depended on the current location in the tree.
Raw Text : a death cause entered by a physician. Solid arrows : path taken by the
algorithm. Dotted arrows : other available tokens at this depth. Dark blue nodes : a
term in the dictionary. Light blue nodes : token that does not match any term by itself

2.4 Matching algorithm

The goal of our algorithm was to recognize one or many dictionary entries in
a raw text. An example is given in Figure 2. For each raw text entry, the same
normalization steps described above were performed first. The raw text was then
tokenized. For each token, the algorithm looked for an available dictionary token
depending on where it currently was in the tree. For example, the token "car-
diaque" was possible after the token "insuffisance" but was not available at the
root of the tree.
For each token, the algorithm used three matching techniques : perfect match,
abbreviation match and Levenshtein match. The abbreviation match technique
used a dictionary of abbreviations. We manually added nine frequent abbre-
viations after looking at some examples. The Levenshtein matching technique
used the Levenshtein distance. It corresponds to the minimum number of single-
character edits (insertions, deletions or substitutions) required to change one
token into the other. The LuceneTMimplementation of the Levenshtein distance
was used.
In Figure 2, the algorithm used these three techniques to match the tokens "ins",
"cardiaqu", "aigue" to the dictionary term "insuffisance cardiaque aigue" whose
ICD-10 code is I509. As the following token "detresse" was not a dictionary entry
at this depth, the algorithm saved the previous and longest recognized term and



restarted from the root of the tree. At this new level, "detresse" was detected
but as no term was associated with this token alone, no ICD-10 code was saved.
Finally, only one term was recognized in this example.
Besides unigrams, bigrams were also indexed in LuceneTMto resolve composed
words. For example, "meningoencephalite" matched the dictionary entry "me-
ningoencephalite" by a perfect match and "meningo encephalite" thanks to the
Levensthein match (one deletion). Therefore, the algorithm entered two different
paths in the tree (Figure 3). By combining these different matching methods for
each token, the algorithm was able to detect multiple lexical variants. The pro-
gram was implemented in Java and the source code is on Github 1.

Figure 3. The token "meningoencephalite" was matched to the unigram "meningoen-
cephalite" by the perfect match method and to the bigram "meningo encephalite" by
the Levenshtein method. The algorithm explored different paths in the tree. It detec-
ted the term "meningo encephalite virale" ("meningoencephalite virale" did not exist).
Only the longest term was kept.

1. https ://github.com/scossin/IAMsystem



3 Results

We submitted two runs on the CépiDC test set, one used all the terms entered
by human coders in the training set only (run 2), the other (run 1) added the
2015 ICD-10 dictionary provided by the task organizers to the set the terms of
run 1. We obtained our best precision (0.794) and recall (0.779) with run 2.

Table 3 shows the performance of our system with median and average scores
of all participants in this task.

System Precision Recall F-measure
run1 0.782 0,772 0.777
run2 0.794 0.779 0.786
average score 0.712 0.581 0.634
median score 0.771 0.545 0.641

Table 3. System performance on the CépiDC test set

4 Discussion

Surprisingly, adding more terms (run 1) did not improve the recall, which
appears to be even slightly worse. The results were quite promising for our first
participation in this task, using a general purpose annotation tool.

A limitation of the proposed algorithm that impacted recall was the absence
of term detection when adjectives were isolated. For example, in the sentence
"metastase hepatique et renale", "metastase renale" was not recognized even
though the term existed. This situation seemed to be quite frequent.

Some frequent abbreviations were manually added to improve the recall in
this corpora. Improvement at this stage may be possible by automating the
abbreviation detection or by adding more entries manually.

In the past, other dictionary-based approaches performed better [7]. In 2016,
the Erasmus system [8] achieved an F-score of 0.848 without spelling correction
techniques. In 2017, the SIBM team [9] used a dictionary-based approach with
fuzzy matching methods and phonetic matching algorithm to obtain an F-score
of 0.804.

Further improvement may be possible by using a better curated terminology.
We are currently investigating frequent irrelevant codes that may have impacted
the precision. A post-processing filtering phase could improve the precision.

We also plan to combine machine learning techniques with a dictionary-based
approach. Our system can already detect and replace typos and abbreviations
to help machine learning techniques increase their performance.

5 Affiliation

DRUGS-SAFE National Platform of Pharmacoepidemiology, France



6 Funding

The present study is part of the Drugs Systematized Assessment in real-liFe
Environment (DRUGS-SAFE) research platform that is funded by the French
Medicines Agency (Agence Nationale de Sécurité du Médicament et des Produits
de Santé, ANSM). This platform aims at providing an integrated system allo-
wing the concomitant monitoring of drug use and safety in France. The funder
had no role in the design and conduct of the studies ; collection, management,
analysis, and interpretation of the data ; preparation, review, or approval of the
manuscript ; and the decision to submit the manuscript for publication. This pu-
blication represents the views of the authors and does not necessarily represent
the opinion of the French Medicines Agency.

References

1. Suominen, H. and Kelly, L. and Goeuriot, L. and Kanoulas, E. and Azzopardi, L.
and Spijker, R. and Li, D. and Névéol, A. and Ramadier, L. and Robert, A. and
Palotti, J. and Jimmy and Zuccon, G.: Overview of the CLEF eHealth Evaluation
Lab 2018. CLEF 2018 - 8th Conference and Labs of the Evaluation Forum, Lecture
Notes in Computer Science (LNCS). Springer. (2018).

2. Névéol, A. and Robert, A. and Grippo, F. and Lavergne, T. and Morgand C. and
Orsi, C. and Pelikán L. and Ramadier, L. and Rey, G. and Zweigenbaum,P: CLEF
eHealth 2018 Multilingual Information Extraction task Overview: ICD10 Coding of
Death Certificates in French, Hungarian and Italian. CLEF 2018 Evaluation Labs
and Workshop: Online Working Notes, CEUR-WS, September, 2018.

3. Jovanović, J. and Bagheri, E.: Semantic Annotation in Biomedicine:
The Current Landscape. Journal of Biomedical Semantics (2017).
https://doi.org/10.1186/s13326-017-0153-x

4. Tseytlin, E. and Mitchell, K. and Legowski, E. and Corrigan, J. and Cha-
van, G. and Jacobson, RS.: BMC bioinformatics (2016). NOBLE - Flexible
Concept Recognition for Large-Scale Biomedical Natural Language Processing.
https://doi.org/10.1186/s12859-015-0871-y

5. Bigeard, E.: Construction de lexiques pour l’extraction des mentions de maladies
dans les forums de santé. TALN (2017).

6. Pibiri, GE. and Venturini, R.: Efficient Data Structures for Massive N-Gram
Datasets. In: 40th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pp. 615–624. ACM, Shinjuku, Tokyo, Japan (2017)
https://doi.org/10.1145/3077136.3080798

7. Névéol, A. and Cohen, KB. and Grouin, C. and Hamon, T. and Lavergne, T. and
Kelly, L. and Goeuriot, L. and Rey, G. and Robert, A. and Tannier, X. and Zweigen-
baum, P.: Clinical Information Extraction at the CLEF eHealth Evaluation Lab
2016. CEUR workshop proceedings. (2016).

8. Van Mulligen, E. and Afzal, Z. and Akhondi, S. and Vo, D. and Kors, J.: Erasmus
MC at CLEF eHealth 2016: Concept Recognition and Coding in French Texts.
Online Working Notes. CEUR-WS. (2016).

9. Cabot, C. and Soualmia, LF. and Darmoni, S.: SIBM at CLEF eHealth Evaluation
Lab 2017: Multilingual Information Extraction with CIM-IND. CEUR-WS. (2017).


