
Approaches for the Improvement of the Multilabel
Multiclass Classification with a huge Number of Classes

Martha Tatusch
Institute of Computer Science

Heinrich Heine University Düsseldorf
D-40225 Düsseldorf, Germany

tatusch@cs.uni-duesseldorf.de

ABSTRACT
In the field of data analysis, the multilabel multiclass clas-
sification is still a major problem in case of a large number
of classes.

With the help of deep learning methods, impressive infor-
mation can be extracted from a wide variety of data. For
example, people can be recognized on images and in videos
or fonts can be imitated. Nevertheless, these algorithms also
encounter limitations. One of these limits when classifying
objects is the treatment of multiple classes. For example,
if an image is supposed to be described with the help of a
dictionary in a few keywords, there are countless words that
can be selected, but only very few that apply to the object.
Another aggravating fact is that the number of words per
image is not fixed.

This paper presents two basic approaches to improve the
classification accuracy with neural networks compared to a
common approach. One strategy describes a parallel model
that requires clustered label sets. For this purpose, different
distributions are considered. In the second approach, the
effects of different loss functions are investigated.

It is shown that the presented approaches obtain a very
significant improvement of the results compared to the ba-
sic model. Both approaches show an improvement of at least
400%. The parallel architecture even achieves 31 times bet-
ter results than the basic model. We also show under which
conditions the individual approaches can achieve the most
effective enhancement of quality.

Categories and Subject Descriptors
I.2.8 [Artifical Intelligence]: Problem Solving, Control Me-
thods, and Search; H.2.8 [Database Management]: Da-
tabase Applications—Data Mining ; I.4.m [IMAGE PRO-
CESSING AND COMPUTER VISION]: Miscellaneous—
Image Classification

Keywords
Neural Networks, Image Processing, Artificial Intelligence,
Classification, Information Retrieval

30th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 22.05.2018 - 25.05.2018, Wuppertal, Germany.
Copyright is held by the author/owner(s).

1. INTRODUCTION
Today, Deep Learning and Artificial Neural Network are

widespreaded terms especially in the fields of information
technology and data science. A few years ago, these methods
were launched and immediately met with great enthusiasm.
They stand for a specific concept of machine learning (ML),
in which a machine can learn by itself and opens up new
knowledge only on the basis of training data that does not
necessarily have to be preprocessed. This discovery was a
major breakthrough in the field of data science because the-
re finally was a way to avoid the difficulties of the feature
selection that would otherwise be required in ML.

Although there already was a wide variety of classifiers[10]
that could learn from training data, the developer always
had to manually explore which features of the objects were
meaningful and extract them beforehand, so that the human
being still had a great influence on the quality of the results.

In Deep Learning, the relevant features are automatically
determined and processed. The used construct is an artifi-
cial neural network with multiple layers between the input
and the output. With these networks it is possible to find
correlations between data that cannot be readily grasped by
the human mind. In addition, problems that seem simple
for humans but are difficult on a programmatic level, such
as the artificial generation of realistic images or fonts, and
the generation of meaningful answers to freely formulated
questions, can be solved.

But these models also have their weaknesses. When clas-
sifying objects, large amounts of training data are required
so that each class – also called label – can be learned with
a moderate number of representatives. If we now want to
label a collection of different images – for example, patient
images of a hospital – thousands of different words are possi-
ble. The number of possible words can of course be limited,
for example, by choosing a subject area, but the number of
possibilities will still be large. This means that the number
of images per class on average is very low. The use of classi-
fiers that require a previous feature selection is not possible,
since there are no recognizable consistent properties of rele-
vance that can be extracted. This only leaves the possibility
of using deep neural networks. Due to the large number of
classes, however, this task also represents a great challenge
in Deep Learning, which is dealt with in this paper.

2. APPROACHES
Multilabel multiclass classification describes the task of

classifying data into classes, whereby there are a lot of clas-
ses and each data point can be assigned to any number of

Figure 1: Example of the parallel execution of multiple CNNs on clustered label sets. The final result is calculated by combining
the individual results using the indicator method. The rectangles marked in gray represent classes into which the sample object
has been classified.

classes. This work deals with the situation in which each in-
put object is assigned to only a fraction of the possible clas-
ses. Let |C| be the number of possible classes and |Co| the
number of classes assigned to an object o. A particular dif-
ficulty in dealing with this problem using machine learning

algorithms is that because of the ratio |Co|
|C| , which is a very

small value, the system has difficulties to learn sensibly.
For example, it is possible that the network may adapt

itself to assign objects to no class at all. This can be explai-
ned by the fact that the hit rate is mainly influenced by the
classes which are not assigned to the considered object. The
Accuracy Metric is calculated by the formula

number of correctly classified classes

number of all classes
.

During the learning process, many systems strive to maximi-
ze this value. Suppose there are 1 000 classes and one object
is assigned to exactly 5 of these classes. If a classifier does
not classify the object to any class, it will have an accura-
cy of 1000−5

1000
= 995

1000
= 99.5%. There is a high probability

that this value will deteriorate if the system tries to find the
correct classes, which can cause incorrect assignments. Since
the accuracy of non-assignment is still very close to 100%,
this method proves to be the best option for the network.
But for humans, however, this approach does not make sen-
se. The aim is, of course, to make the assignment as accurate
as possible, but to assure that an assignment will be made.
This means, in this situation, it is much more important to
identify the associated classes than to prevent other classes
from being incorrectly assigned to an object.

2.1 Parallel Network Architecture
Since the high number of classes is the greatest difficulty,

it is very likely that splitting the problem into several smal-
ler sub-problems can improve the results. The division into
several easier problems can be achieved by clustering[10] the
set of labels. If then, for each cluster, one seperate net is trai-
ned, the number of classes gets considerably lower and the

ratio
|Cavg |
|C| increases. The denominator |Cavg| = 1

N

N∑
o=0

|Co|

stands for the average number of labels per training object
and the counter |C| for the number of all possible classes.
Now, the question is how to divide the classes in order to
achieve the best possible results.

Since often nothing is known about the labels other than
their names, properties must be determined with which the
clustering can be performed. One possibility is to look at the
independent occurrences of the different classes. Labels that

are assigned to a similar number of data objects would then
be placed in the same cluster. It is unlikely that only labels
with similar occurrences will be assigned to the same object.
This means that often multiple clusters contain labels that
belong to one data object. This increases the probability
of correct assignment. Another possibility is to divide the
labels randomly into several groups.

In contrast to classification, which falls under the term
supervised learning, clustering belongs to the unsupervised
learning. This means that objects are classified without kno-
wing the classes in advance. Therefore there is no training
data, since no information about class affiliation is known.
In this work, the clustering by occurrences is done with the
KMeans algorithm.

The parameter K represents the number of clusters to be
calculated. First, K random data points of the training set
are selected as the centers of the individual clusters. The-
se are called centroids. All objects are then assigned to the
cluster whose centroid is closest to the object. The distance
is usually calculated with the euclidean distance. Now the
centers are recalculated by computing the mean value of all
data points of the respective cluster. All data points are then
reassigned and the resulting centroids are calculated. This is
repeated until the assignment of the data objects does not
show any changes anymore.

With the help of the determined clusters, the classifica-
tion problem can now be broken down. We consider a con-
struction, in which a CNN is trained separately for each
calculated label set. When the model is executed, all CNNs
are evaluated in parallel. Here, parallelism does not mean
the temporal context, but a symbolism for the fact that all
CNNs are used for testing at the same level. All resulting as-
signments are finally merged and contribute with the same
importance to the final result.

Figure 1 illustrates an example of a model that can clas-
sify into 16 classes. The individual clusters contain different
numbers of labels and some overlaps. In the leftmost clus-
ter, for example, a network is used that can categorize into
the classes 1, 3, 4, 7, 9, 11, 12 and 14. In this example, it has
chosen the labels 3 and 7. In the final result, the outcomes
of all CNNs are considered equally.

There are several ways to combine the results. For examp-
le, all classes selected by at least one CNN can be considered
assigned in the final result. It is also possible to use a ma-
jority voting system or an average value. In the first case,
this means that for each label all results of the clusters con-
taining it are considered. Only if the majority has assigned

the object to this class, it is also selected in the final result.
For the calculation of the average values either the binary or
unrounded predicted values can be used. The consideration
of the decimal values is more suitable, since a prediction of
0.51 for a class in the binary case would already result in
a 1, which would flow into the average much more strongly
than a 0.51. Finally the average value itself is rounded up,
whereby in the binary case a ”double rounding”would result,
which can falsify the result.

2.2 Propensity Loss Function
A further approach to improving the results of a mul-

tilabel multiclass CNN, which has nothing to do with the
construction of the model and the clustering of classes, is to
adjust the loss function. If it is set up in such a way that,
for example, false negatives are strongly and false positives
are hardly penalized, then this would already have a great
influence on the learning process of the classifier and would
prevent objects from not being classified at all.

The learning process of a convolutional neural network
requires a loss and an optimization function. Depending on
the resulting error value of a run, all weights of the CNN
are adjusted during the backpropagation. A frequently used
loss function in multilabel classification is the binary cross
entropy. It is calculated by H(p, q) = −

∑
x p(x) log(q(x)),

where p(x) stands for the actual probability and q(x) for the
calculated probability that the considered object belongs to
class x. The resulting probabilities are rounded, so that p(x)
and q(x) can only have values of 0 or 1. The largest costs are
incurred if the network does not classify into the class which
the object in question belongs to. If it assigns the data point
to a class which it does not belong to, no costs are caused
by the object.

In [5] a new type of loss functions is introduced. It is pri-
marily designed for multiclass classification with an enor-
mous number of classes. According to [5], the functions prio-
ritize the assignment to the correct classes and promotes
classification to rarely occurring labels. Their special cha-
racteristic is the relation to the propensity of the individual
labels.

The Hamming Loss is cited as a bad example for a loss
function for the multiclass problem. For a model M , it is
defined by

HL(M) =
1

N · L

N∑
i=1

L∑
j=1

(yi,j − ŷi,j)
2 , (1)

with N the number of data points, L the number of labels,
yi,j the actual assignment of an object i to class j, and ŷi,j
the predicted assignment of an object i to class j. Becau-
se of the squared difference, the model is punished for both
false negatives and false positives. In addition, the costs for
all individual class assignments are calculated in the same
way, as it is usual in most cases. In an unbalanced dataset,
however, there may be labels that contain very few repre-
sentatives but are nevertheless as important as frequently
represented labels. These are easily overlooked during the
training because the probability of an incorrect assignment
is significantly lower than for classes that belong to many
data points. Even a correct classification to such minority
classes has not much influence on the training result, as this
happens so rarely that the relevant weights get hardly chan-
ged.

For this reason, a cost function which treats each label in-

dividually and calculates weighted costs is desirable. In [5] a
type of loss functions is presented, which is based on propen-
sity values that can be calculated with subjective relevance
ratings. The developer can assign relevance values to the in-
dividual classes, which then are incorporated into the cost
function. Since this paper assumes that the relevance ratings
of the different labels are not known, another variant is used
that was presented in the same paper and is independent of
subjective evaluations.

Based on previous observations, the authors have decided
that the propensity of a class can be represented by a sig-
moid function. For a label l with unknown relevance value
the propensity pl is calculated by

pl =
1

1 + (log(N − 1)) ·
√
1.4 · e−0.5 log(Nl+0.4)

, (2)

where Nl represents the number of data objects that con-
tain the label l and N stands for the number of all training
objects. The values for the optimization parameters are the
same as those chosen in the paper.

In [5] the integration of propensity scores into different
known loss functions was presented. In this work, the deci-
sion was made to use an adapted version of the Hamming
Loss function:

HL(M) =
1

N

N∑
i=1

L∑
j=1

(
1

pj
(2ŷij − 1)) · (yi,j − ŷi,j)

2 . (3)

The subterm (2ŷij −1) has the function of an indicator that
checks whether the object i has been assigned to class j or
not. In the binary case, it is 1 if it has been classfied, and
−1 if it has not been classified into the observed class. As a
result, predictions in which i incorrectly has been assigned
to class j are punished and those who have wrongly not
been assigned an object to the class are rewarded. By po-
sitioning the propensity in the denominator of the fraction,
misclassifications to labels with high propensity are weigh-
ted less than those to the rarely occurring ones. Except for
this factor, nothing has changed in the original Hamming
Loss function.

As one of the problems discussed here is that the classifier
possibly learns not to classify at all, it is not advisable to
take the formula from [5] unchanged. The indicator function
only punishes false positives and even rewards false negati-
ves. As a result, the likelihood that the network does not
make a classification at all rather than misclassifying an ob-
ject is increased. In this work, it makes more sense to use a
loss function that punishes false positives and false negati-
ves equally or possibly prefers false negatives. In any case,
however, incorrect allocations must increase the error value.
For this reason, the absolute value of the indicator function
is used in the following process:

HL(M) =
1

N

N∑
i=1

L∑
j=1

(
1

pj
(|2ŷij − 1|)) · (yi,j − ŷi,j)

2 . (4)

This ensures that all incorrect classifications are treated in
the same way.

3. REALISATION
Before creating the model, the input data has to be prepro-

cessed. All images are mapped to the RGB color space. Since
the net expects a fixed image size, a squared size of 800×800
pixels has been chosen. If neccessary, the increase of the
image size is achieved by adding black borders. This can be

(a) Random

(b) By Occurrences

Figure 2: Distributions of the labels with different cluste-
rings. A dataset of 2 000 labels has been used.

done by adding zero values on the sides. If the image is too
big, it is scaled down by means of interpolation until the lar-
gest side length is 800 pixels long. The smaller side length
is then evenly filled with zero values from both sides.

3.1 Clustering
In order to accomplish the approach of the parallel mo-

del, the first step is to cluster the label set. In this work,
in any case, 50 clusters has been requested. The determina-
tion of random label groups is self-explanatory. The result
is a distribution of the classes that is similar to an uniform
distribution. This balanced arrangement is illustrated in Fi-
gure 2a. The smallest cluster contains 28 and the largest 52
labels. All label groups are therefore relatively small.

Although the used MiniBatchKMeans implementation of
Scikit Image1 receives a desired number of clusters as pa-
rameter, it only creates as many clusters as actually make
sense. The effect of this is that during clustering by occur-
rences 39 label groups with 8 to 391 classes are created.
Besides a few exceptions, these are again relatively small
clusters. Even the largest number of labels is more than four
times smaller than the total amount of classes and therefore
represents a significant decimation of the label set. Neverthe-
less, the distribution is very heterogeneous. The differences
between the label distributions of the random clusters and
the clustering by occurrences become clear in Figure 2, as
the Y-axis is same-scaled in both cases.

Both, the random distribution and the clustering by oc-
currences, generate disjoint label groups. Since it is interes-
ting to see which effect it would have, if the clusters showed
overlaps, an additional distribution of the labels has been
made. The labels were randomly distributed into 50 clusters,
with each label being assigned to a maximum of 5 clusters.

1http://scikit-learn.org/stable/modules/generated/
sklearn.cluster.MiniBatchKMeans.html

Figure 3: Uniformly used CNN Architectur. The grayed-out
part was computed only once.

3.2 Architecture
Due to the problem of determining a suitable Convolu-

tional Neural Network architecture and the usually time-
consuming training sessions of a network, it is advisable to
use a pre-trained network, which has already achieved con-
vincing results on similar data. In [9] several strongly resem-
ble architectures for Deep Convolutional Neural Networks
are presented. They were developed as part of the ImageNet
Challenge 2014[8]. The VGG16 net achieved the best results
with a depth of 16 trainable layers.

Since both the input data and the required output differ
from the original architecture, the model needs to be slight-
ly modified. The entire chosen section of the architecture
includes 14, 714, 688 pretrained weights. These can be set
untrainable so that only the weights which have been added
by the own layers are trained. In Figure 3 the final archi-
tecture used in all cases is displayed. Since the weights of
the VGG16 block were no longer trained, the output of this
part of the net could be calculated once and reused to in-
crease efficiency. Since the result of this area still contained
512 channels, the idea arose to pool the result. When using
the VGG16 block without pooling, it was noticeable that
the output sometimes contained a lot of zeros. For this rea-
son, pooling above the maximum makes sense to reduce the
number of zeros. Since it is not the size of the feature maps
but the number of channels that should be reduced, we wro-
te a custom layer. It is named ChannelsMaxPooling Layer
and pools one-dimensionally each pixel over a given number
of feature maps. It can be found on Github2. In this work
a filter size of 32 and a step size of 8 pixels were used. This
means that the sliding window goes over 32 channels and is
moved in 8-pixel steps across all channels. The number of
feature maps is reduced from 512 to 512−32

8
+ 1 = 61.

The white components in Figure 3 must be trained for
each approach. The second dense layer generates aN -dimen-
sional vector, where N stands for the number of CNN classes
considered. Unlike all other layers, it does not have ReLu as
an activation function, but Sigmoid. By using this activation
function, all values of the resulting vector are normalized to
the interval [0, 1], which correspond to the probabilities of an
assignment to the respective class. Between the two dense
layers a dropout layer is applied, which randomly rejects
20% of the tensor values to prevent overfitting.

2http://github.com/tatusch/ChannelsMaxPoolingLayer

Dataset Clustering Loss Function Precision Recall F1-Score

2000-Labels Dataset None Binary Cross Entropy 0.000206 0.000900 0.000336

Propensity Loss 0.001118 0.461154 0.002230

Random Binary Cross Entropy 0.005398 0.282772 0.010594

Propensity Loss 0.002225 0.455054 0.004429

Random (redundant) Binary Cross Entropy 0.002082 0.225877 0.004126

Propensity Loss 0.001842 0.431557 0.003669

By Occurrences Binary Cross Entropy 0.000709 0.066093 0.001403

Propensity Loss 0.000475 0.188481 0.000948

1000-Labels Dataset None Binary Cross Entropy 0.002608 0.001677 0.002042

Propensity Loss 0.005148 0.201733 0.010040

Random Binary Cross Entropy 0.013830 0.151201 0.025343

Propensity Loss 0.007573 0.209422 0.014618

Table 1: Comparison of the achieved precision, recall and F1 score values with different clusterings and loss functions on the
two datasets. The results of the redundant clusters with the Binary Crossentropy were calculated using the indicator and with
the Propensity Loss using the average method.

4. EXPERIMENTAL RESULTS
The dataset used for the evaluation was provided during

ImageCLEF2017[6]. All images come from the medical field,
but can vary greatly in size, color coding and content. For
example, there are images of wounds, patients, CT scans and
maps of areas where a diseases has been spread. The mea-
nings of the labels can be looked up in the Unified Medical
Language System (UMLS)3. They, however, were not taken
into account in this work.

The dataset contains 164 614 training and 10 000 test images
in different formats and a total of 20 812 labels. The test re-
sults of the competition listed in [3] clearly show that a pre-
cise classification of the objects is a difficult problem.The
best achieved average F1 score is only 15.83%. The next 10
places are occupied with values of 12 to 14%. With additio-
nal external resources, a maximum F1 score of 17.18% was
achieved. All these values are far away from a score, which
can be taken for a precise classification.

Due to limited technical resources, it was necessary to
reduce the total amount of labels to 2 000 labels, which were
chosen randomly. Although it is an enormous decimation
of the number of classes, the dataset is still large enough
to represent the described problem. The decimation of the
label set causes, that the reduced dataset contains in total
89 113 training images and 5 451 test images.

Since in this selected dataset a lot of labels with very few
representatives were included, another subset of the dataset
was chosen for comparison. This time the 1 000 most com-
mon labels were selected. All these labels are represented by
at least 139 training images. The resulting data set includes
150 339 training and 9 201 test images.

In Table 1 the results of the models with different cluste-
rings and loss functions on the two data sets are displayed.
All metrics are calculated by the formulas used in [1]. It be-
comes clear that all results are anything but good. The basic
network with all labels reaches only an F1 score of 0.000336
on the 2000-Labels Dataset and 0.002042 on the 1000-Labels
Dataset. In relative terms, however, a strong improvement
was achieved by the different approaches. Regarding the F1

3https://www.nlm.nih.gov/research/umls/

score – which describes the most meaningful measure refer-
red to the task – the best results have been obtained with
the parallel architecture, the random disjoint clusters and
the binary cross entropy. The resulting F1 score is nearly
eight times larger than that of the clusters by occurrences.
Random redundant clustering achieves the second-best va-
lues and is still much better than the worst clustering. Ne-
vertheless, the results are considerably worse than with the
other alternative. This fact once again confirms the assump-
tion that a network achieves poorer results the more classes
it has to consider.

In order to determine which method is the most suitable,
the individual merge strategies have been evaluated on the
2000-Labels Dataset. The results are shown in Table 2. As
you can see, for the binary cross entropy the best strategy is
given by the indicator method. This outcome was expected
as the assignment rate with this loss function is very low
and gets supported by the indicator function.

Since the propensity loss already promotes the allocati-
on rate itself, the best results are achieved with the average
method. This result can also easily be explained. Since the
loss function increases the number of assignments, the fal-
se positive rate is increased, as well. To reduce this effect,
the most appropriate results must be selected. Since both
the average and majority method provide this functionali-
ty, both are suitable for the propensity loss. Table 2 shows
that both results are very close to each other. In Table 1 the
results of the most suitable strategies are displayed.

The usage of the propensity loss function improves the re-
sults of the basic network by around 400% on both datasets,

Method Binary Cross Entropy Propensity Loss
R F1 R F1

Indicator 0.225877 0.004126 0.642536 0.002345
Average 0.053195 0.003831 0.431557 0.003669
Majority 0.056994 0.003796 0.433857 0.003649

Table 2: Comparison of the achieved results with redundant
clusters using different merge strategies on the 2000-Labels
Dataset.

as can be seen in Table 1. Particularly noticeable is the im-
provement of the recall. On the 2000-Labels Dataset a recall
of 0.4612 is achieved. This can be explained by the promo-
tion of classification which causes the decrease of the false
negatives rate. In combination with the parallel architecture,
however, a significant improvement of the results regarding
the basic model is achieved, as well, but it gets clear that
in all cases the parallel approach scores better without the
propensity loss function.

Furthermore, it can be said, that on both datasets, the
results of the basic model using the propensity loss are out-
performed by the parallel approach with random clusters
(disjoint as well as redundant).

5. RELATED WORK
To the present day, there are a few approaches for mul-

tilabel and multiclass classification[7][2][12][13][4], but only
few publications work on the combination of the two tasks.
In addition, the difficult facts that the number of labels per
object is not fixed and the number of classes is very high are
usually not taken into account. In [11] a classifier is presen-
ted that deals with the multilabel multiclass classification
and uses association rules[10] to classify the input objects.
The authors achieve very good accuracy results, however,
the solution is not suitable for a classification with a large
number of classes.

6. CONCLUSION
It has been shown that the division of the original label set

into smaller label groups and the parallel execution of mul-
tiple CNNs on seperate clusters significantly improves the
results regarding a basic network which deals with all labels
at a time. Depending on the choice of the clustering, the
quality can be even further improved. On the used datasets,
the use of clusters after occurrences has not been very ad-
vantageous. Significantly better results were achieved with
random disjoint clusters. The artificially generated redun-
dancy of the labelsets reduces the quality of the results, as
this again leads to an increase in the average cluster size.

The customized propensity loss function reveals a strong
improvement of the results, as well. The usage of this func-
tion makes particularly sense if the assignment rate is very
low. If the structure of the model has already achieved a
relatively high assignment rate, it has been shown that the
propensity loss can also reduce the quality of the results. For
this reason, it should not be assumed that the propensity loss
always leads to an improvement in quality.

7. FUTURE WORK
Unfortunately the usage of association rules for the cluste-

ring of the labels was not possible on the datasets considered
here. Due to the diversity of the data, it was not possible
to find suitable parameters that covered most of the labels
and did not produce any rules that only appeared once or
twice. Rules that occur so rarely are meaningless and there-
fore not useful. For future research, it would be interesting
to look at a different set of data and examine the effects of
such a clustering, especially since in [11] it was shown that
association rules can achieve convincing results.

Another interesting aspect would be the development of a
hierarchical model, in whose uppermost levels it is decided
which cluster the input object can be assigned to. A clas-
sification to the concrete labels is only made at the lowest

level. It can also be promising to perform backpropagation
across all levels so that the first levels can learn from the
final results.

Principally, the multilabel multiclass classification with a
large number of classes is continually a difficult problem that
can be investigated extensively in the future.

8. REFERENCES
[1] F. Chollet. Metrics File in Keras’ GitHub Repository.

https://github.com/keras-team/keras/blob/

ac1a09c787b3968b277e577a3709cd3b6c931aa5/

keras/metrics.py. Accessed: 2018-04-06.

[2] O. Dekel and O. Shamir. Multiclass-Multilabel
Classification with More Classes than Examples. In
Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, 2010.

[3] C. Eickhoff, I. Schwall, A. G. S. de Herrera, and
H. Müller. Overview of ImageCLEFcaption 2017 -
Image Caption Prediction and Concept Detection for
Biomedical Images. In Working Notes of CLEF 2017 -
Conference and Labs of the Evaluation Forum, 2017.

[4] D. J. Hsu, S. M. Kakade, J. Langford, and T. Zhang.
Multi-Label Prediction via Compressed Sensing. In
Advances in Neural Information Processing Systems
22. 2009.

[5] H. Jain, Y. Prabhu, and M. Varma. Extreme
Multi-label Loss Functions for Recommendation,
Tagging, Ranking & Other Missing Label
Applications. In Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016.

[6] H. Mller, P. Clough, T. Deselaers, and B. Caputo.
ImageCLEF: Experimental Evaluation in Visual
Information Retrieval. 2010.

[7] M.-E. Nilsback and A. Zisserman. Automated Flower
Classification over a Large Number of Classes. In
Indian Conference on Computer Vision, Graphics and
Image Processing, Dec 2008.

[8] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision, 2015.

[9] K. Simonyan and A. Zisserman. Very Deep
Convolutional Networks for Large-Scale Image
Recognition. Computing Reasearch Repository.

[10] P. Tan, M. Steinbach, and V. Kumar. Introduction to
Data Mining: Pearson New International Edition.
2013.

[11] F. A. Thabtah, P. I. Cowling, and Y. Peng. MMAC: A
New Multi-Class, Multi-Label Associative
Classification Approach. In ICDM, 2004.

[12] C. M. Wang, L. and J. Feng. Parallel and Sequential
Support Vector Machines for Multi-Label
Classification. In International Journal of Information
Technology, 2005.

[13] T. Zhang. Class-size Independent Generalization
Analsysis of Some Discriminative Multi-Category
Classification. In Advances in Neural Information
Processing Systems 17, 2004.

