
Applicability of Security Measures in a  

Wireless Sensor Network Use Case 
Martin Leuckert 

University of Magdeburg 

Clinic of Nephrology 

martin.leuckert@ovgu.de 

Peter R. Mertens 
University of Magdeburg 

Clinic of Nephrology 

peter.mertens@med.ovgu.de 

Gunter Saake 
University of Magdeburg 

Department of Computer Science 

saake@iti.cs.uni-magdeburg.de 

 
ABSTRACT 

Wireless Sensor Networks (WSN) are used widely and can be 

found in a growing number of heterogeneous applications. 

Consequently, the amount of data produced by these systems 

increases tremendously. Most data produced by sensor networks is 

confidential and needs corresponding security measurements. 

There are many different approaches to maintain data 

confidentiality; homomorphic cryptosystems, for instance, became 

a popular research topic for WSN and Body Area Network (BAN) 

even though they were deemed too costly a few years ago. In the 

present paper, a selection of homomorphic encryption approaches 

will be compared to each other as well as to other current standard 

security measurements. The objective is to evaluate the data 

security, computational effort, memory requirements, key 

distribution (if necessary), energy consumption, and usability - 

from sensor to final storage.   

General Terms 

Measurement, Performance, Design, Experimentation, Security, 

Human Factors, Legal Aspects. 

Keywords 

Data Confidentiality, Homomorphic Encryption, Wireless Sensor 

Network, Body Area Network.  

1. INTRODUCTION 
Sensor Data are collected in very heterogeneous environments. 

Landscape observing systems or military applications of Wireless 

Sensor Networks (WSN) are by nearly all accounts different from 

sensor systems in a Smarter Home environment. However, they all 

produce confidential data. Particularly if the sensors are recording 

biometric traits or medical data in a Body Area Network (BAN), 

confidentiality, integrity and privacy need to be addressed. Due to 

the diversity of the systems, the possibilities for security 

measurements are not identical. Battery powered sensors of 

neither WSN nor BAN are deemed able to implement a highly 

sophisticated asynchronous cryptosystem as, for example, a 

modern ‘IoT-device’ in a medical application can. Medical data 

streams throughput should not be slowed down significantly by 

heavy encryption processing, but it probably has higher 

computational power and does not necessarily rely on battery 

power. 

Until now, there have been few real applications for homomorphic 

encryption due to the high demand in computational effort, space 

requirements, and noise [12]. However, recent advances in the 

field of homomorphic encryption show that it is becoming a 

viable solution to achieve end-to-end confidentiality in wireless 

sensor networks [7, 11]. This paper will start a discussion on 

whether this is still a long way off or an applicable option. 

2. USE CASE 
Saxony-Anhalt has approximately 14,9% diabetics [1]. Diabetes 

amplifies the probability and intensity of developing nerve 

damage, especially in extremities. Since this is an iterative 

process, affected people are not aware of the nerve damages and 

lack bodily responses like pain. As a result, they tend to stress 

their feet incorrectly, which can cause the common secondary 

disease called ‘diabetic foot syndrome’. A diabetic foot syndrome 

leads to inflammations (called ulcer) and oftentimes to 

amputations.   

2.1 Smart Prevent Diabetic Feet 
Armstrong et al. identified temperature increase in the respective 

foot regions up to five weeks before an inflammation occurs [3]. 

Based on these findings, the “Smart Prevent Diabetic Feet” study 

intends to monitor foot temperature. For this purpose, a specially 

manufactured insole with six temperature sensors distributed over 

the insole at the positions shown in Figure 1 is used. The insoles 

are given out to 150 test persons who will be measuring twice a 

day for two years. The signals sent by the insoles are then 

transferred to a smart device using the Bluetooth V4.1 interface. 

The smart device running an Android App will use the data to 

evaluate whether an ulceration is about to develop. For this 

evaluation of the data, several threshold-based algorithms are 

used. For instance, opposing sensor values are compared. To 

improve the results, abnormal influences like a heater are filtered 

out by including historic progression as well as performing ‘sanity 

checks’ on the data.  

As this is medical data, it is very valuable and can reveal a 

patient’s diseases like diabetes. Therefore, the sensor data 

produced in this setup needs to be protected. In the state of the art 

section the de facto standard for this kind of study as well as other 

security measures will be introduced. 
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Figure 1. Sensor layout of Smart Insole. 

While this example only considers foot temperature, it represents 

an entrance into the topic. Many more health-monitoring 

applications, e-Health or “Ambient Assisted Living” systems 

produce or work with a patient’s data. However, many of them 

rely on an intermediate system – often called ‘aggregator’ or ‘IoT-

device’ – like a smartphone or a tablet that gives meaning to the 

collected sensor values. 

3. STATE OF THE ART 
Previous research discusses both symmetric as well as asymmetric 

encryption. However, it was rather common to decline asymmetric 

encryption due to high computational effort and energy 

consumption [12]. Especially Clinical studies like Smart Prevent 

Diabetic Feet are obligated to comply with data security laws. To 

meet this requirement, this study is performed as a blinded study. 

Accordingly, all personal data are pseudonymized and 

transportation of the data is protected from eavesdropping or man-

in-the-middle attacks by implementing the standard encryption 

protocol AES-128/256 for both the Bluetooth V4.1 interface and 

the HTTPS data transfer. 

One could argue that personal data encrypted with AES-256 is 

secure; however, the implementation of the cryptosystem may 

have flaws. On the other hand, a major issue is the security on the 

smart device, which is vulnerable to social engineering. Therefore, 

to assure that the data is always protected, the data should never 

be available as plain data. To prevent the access of plain data, the 

capturing devices are required to encrypt the data, or the mobile 

device immediately encrypts the incoming data. This paper will 

propose different setups and usages of encryption approaches. 

This will include expectations regarding advantages, flaws and 

feasibility of each setup. 

There is a broad variety of studies looking into node distribution 

as well as the path and connectivity between nodes, but this is out 

of the scope of this paper. Instead, the research presented in this 

paper is based on previous studies on encryption approaches and 

security investigations. One of the main issues regarding security 

in wireless sensor networks is the key distribution. Chen and 

Chao’s survey of key distribution schemes in WSN [9] are a 

valuable introduction into the topic. 

There is a variety of (lightweight) encryption algorithms that can 

be used in BAN to protect the confidentiality of the data. Next to 

the AES, which was mentioned before, there are the ‘Tiny 

Encryption Algorithm’ (TEA) as well as lightweight block ciphers 

like HIGHT, PRESENT, Prince and KLEIN to name a few. Each 

of them has different advantages and disadvantages and different 

areas of application [5]. However, all of them are considered 

suitable for the use of embedded systems with limited resources, 

whereas asymmetric approaches, for instance the 1024-bit RSA, 

are less suitable for a very small sensor device running on battery 

power. 

4. Problem Formulation 

Acquisition 

Wireless Sensor Networks and Medical Applications produce 

tremendous amounts of confidential data. However, many of these 

applications open up severe security loopholes [13]. Especially on 

the sensors’ side, data security is sometimes non-existent. Due to 

their differences in cost efficiency, there are not many security 

measures that can be applied. Apart from computational 

limitations, there are RAM constraints as well, which require 

block ciphers optimization of memory consumption. Energy 

consumption also remains an issue that concerns most 

autonomous sensors, because renewable energy is absent.  

The most likely attacks are impersonation or denial-of-service 

attacks [2, 4]. Usually, there are no backups for a sensor in a 

BAN; the denial-of-service attack may prevent that vital life 

signals are monitored. The impersonation attack on weak 

encrypted or even plain signals may disclose personal 

information. In Wireless Sensor Networks, if a node is 

compromised, it usually will be excluded from the cluster in case 

a malicious intent can be detected. BAN do not have these 

possibilities since they do not have any redundancy. This means 

either that a compromised node leads to a data breach or even a 

shutdown of the compromised system.  

Communication 

For saving resources, communication protocols like Bluetooth 

Security Level 1 could be used, which do not implement any 

security measures at all. In the context of highly confidential data, 

as in the use case described above, this cannot be used. To prevent 

attacks like ‘Man-in-the Middle’ or ‘Eavesdropping’, Bluetooth 

Security Level 4 (“Authenticated LE Secure Connections pairing 

with encryption”) is used. This level requires a connection that 

must be encrypted using the Secure Connection Pairing, which 

was introduced in Bluetooth LE version 4.2. However, this does 

not address already encrypted communications. If, for instance, a 

homomorphic encryption approach is applied, the additional effort 

to encrypt the data again through the Bluetooth protocol produces 

unnecessary overhead. Going back to Bluetooth Security Level 1 

makes sense in that case; however, the authentication issue and 

impersonation still need to be addressed. 

Storage 

There are major differences in terms of storing and working with 

encrypted data and plain data. While the assumption used to be 

that a server will be compromised at some point, it is not 

recommendable to trust a cloud system to begin with. The 

confidentiality and integrity of data is at risk at all times as long as 

no proper security measurements have been implemented. As each 

system faces individual threats, a fitting security scheme requires 

a threat analysis. If the outcome is, for instance, that a certain 

encryption shall be used, the question arises what this means for 



the database and the performance. Furthermore, if the data in a 

database stays always encrypted, how does this affect the query 

performance, the storage requirements, and the design of the 

database? The different setups described in the following chapter 

shed light on the impact on usability, security, and performance. 

5. APPROACHES AND IDEAS 
Security investigations usually compare different cryptosystems 

against each other and look at the code length, block size, and the 

number of rounds, etcetera. This paper will take the setup as a 

whole into account in order to identify additional parameters that 

might influence the data security and performance. On the one 

hand, different cryptographic algorithms will be used; on the other 

hand, the setups will encrypt and decrypt at different stages of the 

process. Because of the differences, each setup is expected to have 

different security and performance properties. Next to analyzing 

possible attacks on the systems, the applicability for each involved 

device will be examined: This starts at the sensor device that 

records data, continues at the aggregator, and finished at the 

database. This also includes factors like the utilization of 

resources (for instance computational effort or memory while 

computing), key distribution, the required time until data is 

available, and maintainability.  

One of the setups will not use encryption and instead implement 

the current data security requirements, which can be fulfilled by 

pseudonymization of the data. This setup is expected to be the 

best in terms of computation times, time until availability and 

energy consumption. However, it is also likely that it poses the 

greatest risk to the data. Some setups will implement symmetric 

encryption algorithm AES and lightweight encryption algorithms 

from section 3. 

For the asymmetric encryption, the additive homomorphic Paillier 

cryptosystem and an elliptic curve algorithm as well as the fully 

homomorphic encryption ‘THFE’ from [7] are considered. The 

Paillier is a good example of homomorphic encryption as it can be 

utilized for Similarity Verification without decrypting the data [8, 

10]. However, it is expected to be too expensive compared to 

lightweight symmetric cryptographic algorithms. The paper and 

the open-source implementation in [7] raise high expectations and 

will therefore be compared to the performance, security and 

advantages and disadvantages of the Paillier cryptosystem as well 

as the lightweight symmetric cryptosystems.  

Expected outcomes are statements to each investigated approach 

regarding the resilience against compromises, the resource 

efficiency, and further advantages and disadvantages. 

Resilience against compromises 

While the intention is not to guarantee that a node is not 

compromised, the key distribution (where applicable) must be 

secure at all times. 

There is a variety of standard cryptanalysis that could be used to 

compromise the system. A few exemplary attacks are ‘Brute 

Force’, ‘Ciphertext-Only Attack’, and ‘Man-in-the-Middle 

Attack’. The authors of [4] categorize the following examples as 

‘Modern Attacks’: An attacker could exploit ‘Operating System 

Flaws’ or ‘Memory Residues’, ‘Temporary Files’, ‘Differential 

Power Analysis’, ‘RSA-155 (512-bit) Factorization’. The 

examples target different levels and stages of a system. Some 

attacks target the encryption process and others try to exploit 

vulnerabilities of the communication. This means that the 

selection of a ‘strong cryptosystem’ will not necessarily result in a 

secure system. 

Even if an attacker would not be able to decrypt ciphertext, just 

listening to when a communication is established could result in 

the exposure of habits, like, for instance, when a patient is at 

home. Vice versa: If an attacker knows when a patient is at home, 

they could use this information to identify which dataset can be 

associated with a patient. 

Resource efficiency 

Encryption and key management should not have a huge impact in 

cases of limited resources. Usually, asymmetric approaches are 

not even considered, because they are deemed too expensive. 

Furthermore, the communication is rather cost heavy, which 

means that fewer messages exchanged with as few packages as 

possible should be aimed at. 

Advantages & disadvantages 

Are there side effects brought along by the security measures? 

What operations can be performed on each stage of the process? 

What are the side effects: e.g. searching in encrypted space is 

much slower, takes more space etc. 

5.1 Setup description 
This section describes the considered scenarios, their pros and 

cons, security, and applicability. 

5.1.1 Scenario 1: solution of use case 
The first setup corresponds to the current solution, which means 

that only the data transfer is encrypted. The transfer protocols 

implement state-of-the-art encryption, which significantly 

hampers eavesdropping. However, each device can potentially be 

compromised in a way. The sensors may face imposter attacks, the 

smart device could be compromised by malware and the server 

hosting the database may have an ill-intending administrator. The 

data is still pseudonymized, but both the sensors and the IoT-

device can easily be linked to a single person as they always carry 

it. 

 

Figure 2. Scenario 1 – standard communication protocols. 

5.1.2 Scenario 2: encryption on IoT-device 
The imposter attacks described in scenario 1, see Figure 2, require 

exchanging the sensor devices, flashing the device’s firmware, or 

getting very close with an impersonating device due to the low 

range of the Bluetooth signal. At least for this use case an 

imposter attack is rather unlikely; therefore, the following two 

scenarios are considered: The sensor transfers encrypted data to 



the smart device, the data will be decrypted and immediately be 

re-encrypted using a homomorphic encryption approach.  

 

Figure 3. Scenario 2 – encryption on IoT-device. 

The unencrypted data will never be stored on the device and is 

only available in memory for a short duration – just long enough 

to perform the pre-analysis of the data from Section 2. The device 

has more computational power and energy available than the 

sensor device and is expected to be able to perform the required 

calculations in reasonable time. The data will not be decrypted 

before the transfer to the database server and therefore stays 

secure.  

5.1.3 Scenario 3: immediate encryption 
In scenario 3, see Figure 4, the sensor device already encrypts the 

data using a public-key cryptosystem (PK). A major difference 

between approach 2 and 3 can be found on the server side: In 

approach 2, the data stays encrypted as is. This prevents most 

attacks if the data never gets decrypted and the key is not 

compromised. A disadvantage lies in the usability of the data, as it 

is not searchable or indexable. This is different in approach 3a / 

3b, where the data will be decrypted on arrival. In 3a, the data will 

immediately be re-encrypted on arrival using a searchable 

encryption scheme. For comparison, the data will stay 

unencrypted in approach 3b. 

 

Figure 4. Scenario 3a/b – immediate encryption. 

In the use case from Section 2 the IoT-device is expected to 

perform a pre-analysis of the data based on thresholds. This 

operation can only be performed on the homomorphically 

encrypted data. Most of the known homomorphic encryption 

schemes are asymmetric. For use cases that do not require the 

aggregator to work with the encrypted data, a symmetric approach 

could be used, but this is out of the scope of this paper. 

As was mentioned before, the device is required to perform a pre-

analysis of the data and decide whether the user’s temperature 

data is within a certain range or not. This can be done due the 

homomorphic encryption approach. Some homomorphic 

cryptosystems can be exploited in order to implement a 

“Similarity Search” [8], which allows the device to decide about 

the user’s health status without decrypting the data. 

5.1.4 Scenario 4: always encrypted 
A fourth scenario, see Figure 5, could be a mixture of 2 and 3; the 

data will be encrypted as soon as possible using a homomorphic 

public key cryptosystem and never decrypted. This appears to be 

the strongest solution in terms of resilience against compromises 

because the data is almost never available as plain data. On the 

other hand, encrypted data may still be vulnerable to key leakage, 

brute force attacks, timing attacks, loopholes in the cryptosystem 

or implementation and many other threats. Additionally, in 

scenario 4 all analysis of the data must be performed on the 

encrypted data, which is very time and resource consuming. Then 

again, the additional computation is performed on the backend 

system, which has more available resources than the IoT-device.  

 

Figure 5. Scenario 4 – always encrypted. 

The fourth scenario is different from Scenario 3, see Figure 4, 

because the received data is not searchable and not indexed. 

Therefore, working and analyzing with the data is hardly possible 

if it stays encrypted, because only limited operations like, for 

instance, a predefined set of threshold-based operations are 

possible, whereas other scenarios allow data mining processes to 

improve the ulcer detection algorithms from Section 2. 

Assuming the corresponding private key is stored at a trusted third 

party instead of the backend that stores the encrypted data, this 

approach prevents data leakage at server-side, because even if an 

attacker could gain access to the data, they cannot decrypt it. 

5.2 COMPARISON 
This section summarizes the expected results of a security and 

performance analysis of the different setups. Various parameters 

can influence the results. For instance, increasing the key length 

will improve the security of a cipher but has negative side effects 

like reducing the possible throughput and increasing memory 

consumption. 

 

Table 1. Expected performance of the scenarios (-- equals very 

bad / non-existent, ++ equals very good). 

Scenario 

Resilience 

against 

compromises 

Resource 

efficiency 

(collectively) 

Utility 

1 -- o ++ 

2 o + + 

3a + o + 

3b o + ++ 

4 + - o 

 

Table 1 does not necessarily reflect the properties of each applied 

cryptosystem, but the investigated system it is used in. For 



example, the cipher produced by AES256 can be assumed to be 

resilient against brute force attacks, but there could still be an 

imposter sending the cipher. The possibility of an imposter attack 

is a security flaw of the system rather than of the applied 

cryptosystem.  

It is not possible to just eavesdrop the communication in approach 

1 because the messages are encrypted, but, on every other 

component, the data is available as plain text. For this reason, it is 

very prone to compromises of many kinds. This is different in all 

other setups; however, each has its own advantages and 

disadvantages and no setup is expected to be perfectly secure. 

Furthermore, as stated in the introduction of this section, there are 

different requirements to different use cases. For example, a 

sensor network with very high throughput and near real-time 

availability requirements must not be delayed by too much 

because of computational overhead. 

The databases stay unencrypted in approaches 1, 2, and 3b. 

Medical data protection for clinical studies require the 

implementation of proper access control and implementing 

pseudonymization and a locally secured room for the servers. 

When these requirements are accomplished the data is somewhat 

secure because it is hard to gain unauthorized access. Assuming 

an attacker managed to get access to the study database from the 

use case of Section 2, they cannot immediately tie data sets to a 

person because the datasets are pseudonymized. This is different 

if the attacker already has background information about the 

probands because they could use their knowledge to look for 

habits or patterns of the patients, e.g. when they usually go to 

church, to identify their pseudonym and therefore their datasets. 

Nevertheless, it would leak information about the study, or, in 

different use cases, other meta information. Here again, this is a 

question for risk assessment and applicable law, which can play 

different roles for each use case. In Table 1, this is reflected by 

decreasing the security score compared to encrypted databases, 

because it is less secure. On the other hand, the usability of plain 

data or searchable encryption schemes are better: Queries, 

indexes, transactions and stored procedures are easily processed 

because information about the data is given or obtainable.  

Table 2 gives more in-depth information about the resource 

consumption per component. The first scenario only uses standard 

protocol exchanges, which is why it is not affected by the 

selection of cryptographic function. All other scenarios are 

affected by this. 

 

Table 2. Resource consumption per component. 

Scenario 
Sensor 

device 
Aggregator Backend 

1 Medium Low Low 

2 Medium High Medium 

3a Very high High Medium 

3b Very high High Low 

4 Very high High Medium 

 

The values for the aggregator and backend include encryption, 

decryption and homomorphic operations for the pre-analysis (each 

where applicable); on sensor device side the encryption effort is 

looked at. The limiting resource factors for each component can 

vary depending on the performed operations, the selected 

encryption (function and key length) and the available resources 

per component. Due to this, there can be different limiting factors 

like, for instance, CPU, RAM or network adapters (esp. 

Bluetooth). Hardware accelerations are not used. 

If a similar threshold-based verification like Rane et al. introduced 

in [8] is used, the verification takes place on a trusted third party. 

However, this does reduce the required effort for the aggregator or 

backend because there are still homomorphic operations prior to 

the verification itself, which have a similar effort. 

The tables should be understood as a hypothesis of this work. It 

changes depending on requirements of use cases, availability of 

resources, and applied cryptosystems. Furthermore, it can be 

extended by additional setups and requires analyzing each 

component (sensor device, IoT-device, backend, and 

communication channels) individually. 

6. CONCLUSION 
All proposed setups have different properties and their suitability 

does not only depend on the computational power of the nodes 

but also the quantity of collected data, expected real-time 

availability, data security requirements and many more. There are 

vital parameters recording applications, which require special 

safety and security precautions, while, on the other hand, a forest 

fire detection application, probably is not as demanding. 

The next step will be to implement the proposed setups and vary 

the parameters. This includes sensor signals and different 

encryption approaches with varying key length. An expected 

outcome of the investigation is a collection of statements 

regarding the requirements of a setup as discussed in section 1, 

the data security including possible attacks, as well as usability of 

the data (can it easily be queried, etc.). 

Another important step would be to retrieve more general 

statements about the applicability of the proposed setups. Where 

else can they be applied? What if the database is not located in a 

trusted environment, e.g. in a cloud system? 
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