
Recognizing Quantity Names for Tabular Data

Yang Yi Zhiyu Chen Jeff Heflin Brian D. Davison
{yay218 | zhc415 | heflin | davison}@cse.lehigh.edu

Dept. of Computer Science and Engineering, Lehigh University
Bethlehem, PA USA

Abstract

In this era of Big Data, there are many public web repositories for
people to access, retrieve, and store data. It is natural for dataset
search queries to include quantities along with their units. Describing
data in terms of units is an important characteristic when that data is
to be used, even though such units are often not present in the data
schema. However, quantity names are often provided with or without
corresponding units in the column name or in an abbreviated format.
Quantity names (e.g., length, weight and time) can be matched to a set
of relevant units. Therefore, there is a significant need to automatically
determine the quantity names for column values. We investigate the
potential to recognize quantity names to which units belong. We as-
sign each column a class label corresponding to the quantity name and
thus configure the problem as a multi-class classification task, and then
establish a variety of features based on the column name and column
content. Using a random forest, we show that these features are useful
for predicting quantity names for columns in tables.

1 Introduction

With the increasing number of datasets available online, people in many roles are capturing, storing, and an-
alyzing datasets. Business analysts may search related data to predict an upcoming crisis; journalists want to
find data to report; students use data to learn and analyze, etc. As a result, online data have the potential to
receive unprecedented attention by people with various backgrounds.

Searching for appropriate datasets is a crucial step before using them. To generate results, query terms must
be matched with some columns or rows in the tables. Quantity names (which in QUDT1 reference ontologies
are called quantity kinds) appear commonly in queries to retrieve numeric data, so inferring quantity names is
an important and urgent task to improve the ability to match datasets. Quantity names generally correspond to
one or more units, and so recognizing and matching quantity names can provide for a broader search scope than
simply units. For example, one can imagine a query that asks for data in inches, and the system can recognize
that as a kind of length and look for datasets that contain columns that belong to quantity name length, because
values in another unit can always be converted.

When examining a set of datasets from data.gov, we find that more than 40% of data columns hold numeric
values, and of those, about 30% of those columns appear to be quantities that could have units (i.e., more than
10% of all columns). Our goal, then, is to recognize and recommend quantity names for numeric columns which

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: Joint Proceedings of the First International Workshop on Professional Search (ProfS2018); the Second Workshop on Knowledge
Graphs and Semantics for Text Retrieval, Analysis, and Understanding (KG4IR); and the International Workshop on Data Search
(DATA:SEARCH18). Co-located with SIGIR 2018, Ann Arbor, Michigan, USA – 12 July 2018, published at http://ceur-ws.org

1http://www.qudt.org/

68

could have units. For example, we tag all columns with possible units including meter, mile, inch, feet as length
quantities, and columns with units like pound, ton, ounce as weight quantities. In prior work on searching
data, Au et al. [1] and Thomas et al. [6] point out that inferring data types is a necessary step in generating
query-based summaries. They present a method to recognize dates, numbers, place names, and strings. Our
experiment expands the “numbers” type mentioned in their papers into specific quantities, so that more precise
and concrete results can be shown to people who are doing dataset searches. In addition, an extensive approach
to extract units was proposed by Sarawagi et al. [5] for quantity queries on web tables. They present rule-based
and feature-based unit extractors to detect units that already exist in the column name. However, our proposed
method can also work on columns for which quantity names or units are not explicitly provided in the column
name. This can greatly enlarge the matching scope of dataset queries.

In our experiments, we recognize terms associated with quantity names, and use five common quantity names
(that were found in an early cursory examination of the data) as class labels. The rest of the quantity names,
plus columns that do not have units, are all counted as a 6th class.

Tabular data (i.e., a data table) is one of the most commonly used type of data. In this paper, we focus on data
represented as a two-dimensional table in CSV format. After filtering non-numeric columns, we build features
on the rest of the dataset. Half of the features are based upon the column name, with one of them converted
from the rule-based unit extractor developed in Sarawagi et al. [5]. In addition, since different quantities have
some specific patterns, and features based on column contents are already used by Chen et al. [2] and received
good accuracy, we add other features based on column content (refer to Section 4 for details). For our multi-
class classification task, we build a dataset containing features of 4,418 instances. We then apply 10-fold cross
validation and classification to train and test our model. The results show that our proposed approach can
recognize and recommend quantity names for tabular data.

2 Related Work

There is no prior work describing the problem of dataset quantity name recommendation of which we are aware.
However, some efforts have proposed methods to detect data types and existing units. In addition, there is work
in the area of processing column names and column contents for queries on web tables.

In information retrieval, there is work on web search for tabular data. To match and extract precise data,
Thomas et al. [6] and Au et al. [1] introduce methods to infer data types, specifically strings, numbers, boolean
values, dates, and place names, which are stored in various formats in web tables. Valera et al. [7] propose a
way to discover statistical types of variables in a dataset using Bayesian methods. Sarawagi et al. [5] point out
that unit extraction is a significant step for queries on web tables, and design unit extractors for units in column
names by developing a unit catalog tree. These methods only extract units and data types that already exist
within column names, and cannot be applied to infer unknown units. Inspired by their work, we build features
for classification, with one based on Sarawagi et al.’s unit extractor.

To perform feature-based quantity name inference, it is helpful to utilize other datasets which have similar
distributions and context. Two papers [3, 8] discuss models to find related tables by computing schema similarity.
These models can detect that columns “Shape Length (mile)” and “Shape Len” have high similarity. In addition,
Ratinov et al. [4] present a way to expand the abbreviation in schemas, which is helpful since quantity names
and units, if represented in the column name, are typically stored in abbreviated forms. For instance, expanding
abbreviated schemas such as “len” to “length” and “sqmi” to “square miles” is in fact detecting and extracting
quantity names and units from column names. Instead of expanding abbreviations, we directly detect unit
abbreviations to suggest particular quantity names.

3 Datasets

In our experiments, we use comma-separated value (CSV) format files sampled from the government dataset
repository data.gov, which contains real datasets on various topics including finance, health, education, climate,
etc. One dataset sometimes contains multiple CSV files, so we give each dataset a dataset ID, and each CSV file
a CSV ID. Since columns representing quantities must be numeric, we filter out columns with other data types
and retain only numeric columns.

After an initial exploration of the data.gov data, we select five popular quantities: length, time, percent,
currency, and weight and focus on these quantities in our experiment. They are summarized in Table 1. For
each quantity name, we list possible units as well as abbreviations, since units are sometimes provided in the
column name by unit itself or in its abbreviated form. Besides these, we include contexts for each quantity name,

69

Table 1: Terms associated with each quantity name.
Quantity Name Units Abbreviation Context
Length meter, mile, inch, feet m, mi, in, ft height, width
Time second, minute, hour sec, s, min, hr, hrs duration
Percent percentage % accuracy
Currency dollar, euro, pound USD, $, EUR, GBP amount, cost
Weight gram, kilogram, pound, ounce, ton g, kg, lb, oz, t

because a quantity is stored and marked with some related words in many situations. For example, data with
column name “duration of a trip” most likely is a quantity of time, and a column describing the height of a
person should belong to quantity length.

We manually labeled columns which belong to the five quantities with 1-5, corresponding to length, time,
percent, currency, and weight quantities, respectively. For those columns whose quantities do not belong to any
of these five quantity names, we label them with 0.

When looking at the dataset created at this point, we notice that it contains many duplicate column names. For
example, we find that the column name called “Shape Length” appears around 650 times. This will considerably
affect the class distribution and may lead to over-fitting. Therefore, we remove duplicate column names with
the same dataset ID. After that, we obtain a dataset with 896 column instances of length, 352 instances of time,
1031 instances of percent, 875 instances of currency, and 233 instances of weight. (To match the size of the
popular percent quantity name, we include 1031 instances within the other class.) Since the number of instances
in each quantity are different, which makes the dataset imbalanced, we deal with this problem by upsampling
less frequent classes during cross validation (which will be discussed further in Section 5).

The datasets, as well as the code implementing our proposed method, are publicly available at
https://github.com/yay218/RecognizingQuantityName.

4 Features

Establishing good features plays a pivotal role in the process of training models, and will significantly affect
performance. In this section, we describe our approach to predict the quantity name by creating features based
on column name and column content.

For column content, we consider that all data cells contain numerical values, and we are looking for patterns
for each quantity name. For example, percent has data cell values from 0 to 100, or 0 to 1. Years usually
have values from within the past few hundred years. Therefore, we calculate features maximum value, minimum
value, average value, and range for all column content. Moreover, we notice that some columns such as year are
integers with a constant length, while some are decimals with one or more digits after the decimal point. Hence,
we record the string length of the maximum value in the column. For example, the column with maximum
number 5140 has length of 4, and the column with maximum value 3.1415 has length of 6.

Column name also has great impact on quantity name detection. For some quantities, the column name con-
sists of multiple words, and is even longer if units are provided. To take advantage of this, another feature is built
to count the number of white-space delimited words in the column name. However, we find that many column
names have underscores or utilize CamelCase to connect words, e.g., ExtraFeeAmount, Low Confidence Limit.
Thus, we add one more feature to count the number of characters in the column name. In addition, Sarawagi et
al. [5] propose a rule-based method to extract units that are already provided in the column name. Inspired by
their work, we establish a feature that incorporates more rules for analyzing the column name. Besides checking
whether quantity names and units appear in possibly abbreviated forms in parentheses (e.g., Perimeter (meter)),
after “in” (e.g., Dist. from Coop in miles), and after a dash or underscore (e.g., segment length miles), we also
look for a match of the context terms in Table 1. This feature records the presence of quantity-specific terms,
and consists of an array of 5 boolean features in which each corresponds to a quantity name, and has value 1
if there’s a match, and otherwise 0. For example, column name “Canopy height in meters” has 1 in length and
0 for the others because meter is a unit appearing after “in” and height is present, and column name “Trip
duration” has 1 in time and 0 for others because duration matches with the context for the time quantity. All
features are summarized in Table 2.

70

https://github.com/yay218/RecognizingQuantityName

Table 2: Features for Classification
Built From ID Type Feature

Column Content 1 Real with length 1 Maximum value
2 Real with length 1 Minimum value
3 Real with length 1 Average value
4 Real with length 1 Range value (maximum - minimum)
5 Integer with length 1 Length of the maximum value (when expressed as a string)

Column Name 6 Integer with 1ength 1 Number of words
7 Integer with length 1 Number of characters
8 Array of 5 booleans Presence of quantity-specific terms for each quantity name

5 Classification Models

For careful estimation of generalization performance, we apply ten-fold cross validation to the classification
model. Since the number of instances for each quantity name are different, we design our cross validation process
to upsample the minority classes to handle the imbalanced dataset. Within each round of cross validation, 90%
of the instances are training, while other 10% are testing for each split. For the 90% training part, we find the
quantity name which has the largest size, and we upsample the other classes with smaller size to match the size
of the largest quantity name by replicating instances in those classes. Instances are selected randomly and added
to classes containing fewer instances so that each quantity name has the same number of instances. However, we
do not upsample the 10% testing part to maintain evaluation fidelity. Thus, for each round of cross validation,
the dataset consists of 5568 instances for training (928 for each unit type) and 440 instances for testing in each
shuffle within the cross validation process.

For this multi-class classification task, we compare: 1) random forest, 2) Naive Bayes classifier for multivariate
Bernoulli models, and 3) SVM with a linear kernel (LinearSVC).

6 Evaluation

In order to evaluate the performance of our approach, we use 10-fold cross validation as mentioned in Section
5. The accuracy of Naive Bayes classifier for multivariate Bernoulli models is 77.3%, and the accuracy of SVM
with a linear kernel is 48.7%. The random forest model with 200 trees and max depth 200 produces the best
accuracy of 89.5%.

The confusion matrix for the random forest model is shown in Table 3. Most of the falsely predicted instances
are quantity names that do not belong to any of the five selected names, in other words, are labeled with 0.
For example, “toe(s)” is predicted to be quantity time, “sqmiles” to be quantity length, and “Number of Boats”
to be quantity weight. There are many errors for instances which belong to the five selected types too. For
instance, some “Shape Length” are falsely classified as not belonging to any type, while others are correctly
recognized. “Elevation, ft” is predicted to not belong to any quantity name although “ft” is already provided
in the column name. “Graduation rate” is falsely predicted to be length quantity, “Refunds - Individual Income
Tax” is predicted to belong to percent instead of currency, and “Steel (lbs)” is falsely predicted as not belong to
any quantity name.

As our features are built from either the content or the name of each column, we compare the results of
models using different subsets of features utilizing the random forest model. The result is shown in Figure 1.
The model with features built from full column content only has 61.9% accuracy, and the model with features
exclusively from full column names achieves a higher accuracy at 84.8%. Performance of the extraction features
alone (corresponding roughly to the rule-based model from Sarawagi et al. [5]) is in between, at 77.2%. Best

Table 3: Confusion Matrix for Random Forest
Predicted Class

Actual Length Time Percent Currency Weight Other

Length 86 0 0 0 0 3

Time 0 34 0 0 0 1

Percent 0 0 100 0 0 3

Currency 0 0 1 76 1 9

Weight 0 0 0 0 20 3

Other 1 1 12 4 1 84

71

Figure 1: Prediction accuracy depending on features used.

performance (89.5%) is when both column content-based and column name-based types of features are used
together.

To explore the importance of each individual feature, we calculate information gain producing the rank
of feature importance shown in Figure 2(a). We find that the presence of quantity-specific terms has great
importance for the result, and features like number of characters in the column name, maximum value and range
in the column content are also useful. Minimum value and number of words in the column name rank the lowest.

The choices for the maximum tree depth and number of trees can affect performance. The graph of the
accuracy against number of trees and max depth is shown in Figure 2(b). We choose a maximum depth of 200
when varying the number of trees, and select 200 trees when studying performance when max depth varies. As
we can see in the graph, accuracy rises rapidly with increasing number of trees and maximum depth.

7 Summary and Future Work

In this paper, we investigate a method to recognize and recommend quantity names for numeric columns in
datasets from data.gov. From the analysis of column name and column content, we establish a variety of features
and manually assign class labels to create this multi-class classification task. Ten-fold cross validation finds the
estimated performance of a random forest model, and we show that our approach is able to predict quantity
names with surprising accuracy.

This model works well in part because the presence of quantity-specific terms within column names is such
a strong signal for recognizing quantity names. Column content improves the overall accuracy and it performs
unexpectedly well (over 60% accuracy) when considered alone. In addition, our experiment only focuses on five
quantity names, which is likely small enough to lead to high classification accuracy.

Our features based on column name, except without a few features, are very similar to the rule-based approach
presented by Sarawagi et al. [5]. They use a feature-based approach that looks at column name and column
content, but also create features to handle compound units, which is very different. By applying and expanding
their rule-based extractor on our dataset, we get an accuracy of 77.2%. Compared to their work, our method

(a) Feature importance based on information gain. (b) Accuracy as number of trees and maximum tree depth
is varied.

Figure 2: Feature and meta-parameter studies.

72

better infers quantity names, because we also predict for columns that quantity names and units that are not
explicitly provided. Applying our work to dataset indexing and search should greatly improve the matching
scope when queries ask for information about quantity types.

Many directions are possible for further work. Features could be developed from exploring the meta data and
description of datasets. Some datasets have attribute information provided in the description or an explicit data
dictionary in a separate file, which likely contains much more detailed information than column name itself. It
will also be interesting and useful to expand this work to actual units. In addition, the table containing terms
associated with quantity names can be expanded so that more quantity names and units (including those are not
that popular) can be included in predictions. The context words associated with a quantity name in the table
can also be more comprehensive.

Acknowledgments

This material is based upon work supported by a Lehigh University internal Collaborative Research Opportunity
grant.

References

[1] Au, V., Thomas, P., Jayasinghe, G.K.: Query-biased summaries for tabular data. In: Proc. 21st Australasian
Document Computing Symp. ADCS ’16 (2016) 69–72

[2] Chen, Z., Jia, H., Heflin, J., Davison, B.D.: Generating schema labels through dataset content analysis. In:
Companion Proceedings of The Web Conference. WWW ’18 (2018) 1515–1522

[3] Das Sarma, A., Fang, L., Gupta, N., Halevy, A., Lee, H., Wu, F., Xin, R., Yu, C.: Finding related tables.
In: Proc. ACM SIGMOD Int’l Conf. on Management of Data. SIGMOD ’12 (2012) 817–828

[4] Ratinov, L., Gudes, E.: Abbreviation expansion in schema matching and web integration. In: Proc.
IEEE/WIC/ACM Int’l Conf. on Web Intelligence. WI ’04 (2004) 485–489

[5] Sarawagi, S., Chakrabarti, S.: Open-domain quantity queries on web tables: Annotation, response, and
consensus models. In: Proc. 20th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining.
KDD ’14 (2014) 711–720

[6] Thomas, P., Omari, R., Rowlands, T.: Towards searching amongst tables. In: Proc. 20th Australasian
Document Computing Symp. ADCS ’15 (2015) 8:1–8:4

[7] Valera, I., Ghahramani, Z.: Automatic discovery of the statistical types of variables in a dataset. In: Int’l
Conf. on Machine Learning. (2017) 3521–3529

[8] Wick, M.L., Rohanimanesh, K., Schultz, K., McCallum, A.: A unified approach for schema matching,
coreference and canonicalization. In: Proc. 14th ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining. KDD ’08 (2008) 722–730

73

