
Peer-to-peer Face-to-face collaboration

Delfina Malandrino and
Ilaria Manno

ISISLab
Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”,

Università di Salerno, 84081 Baronissi (Salerno), Italy.
{delmal,manno}@dia.unisa.it

Abstract. In this paper, we present a proof of concept application of a technique
that is designed explicitly for face to face collaboration software architectures.
The objective is to minimize the impact on the installation and deployment of the
application, that, while internally keeping a client-server architecture (in order
to allow the centralize coordination and monitoring), presents to the user (both
teacher and learners) as uniform work environment, integrating client and server
components in one piece of software. In order to further limit the impact on the
configuration, we define a start and play protocol, to start-up the application with
no network configuration; the start and play protocol takes advantage from the
particular conditions of the face to face context i.e. LAN setting.
The application is built on the Eclipse core (Rich Client Platform), and inherits
its plug-in based architecture and its advanced tailoring features.

1 Face2face collaboration systems

Current research in Computer Supported Collaborative Learning (CSCL) has produced
many studies and several classifications of the situations where the collaboration takes
place. The space-time matrix (see Fig.1) is a well-known classification [4] that de-
fines the four basic space-time situations. A lot of works have studied the different-time
AND/OR different-place situations to reduce distances (both in time and space), while
there are fewer studies about the same-time AND same-space situations. Of course, ex-
isting synchronous systems for remote situations can also be used in the co-located
situations, but the same-time AND same-space situations is substantially different from
the remote ones and the technological support should take in account this difference.
Indeed, the tools to support remote collaboration try to achieve a “virtual co-location”

Fig. 1. Space Time Matrix

E. Tomadaki and P. Scott (Eds.): Innovative Approaches for Learning and Knowledge Sharing,

EC-TEL 2006 Workshops Proceedings, ISSN 1613-0073, p. 80-88, 2006.

enhancing remote communication by chat, e-mail, file sharing, audio and video con-
ferencing, etc. In f2f situations, this kinds of communications channels are unneces-
sary because there is no distance to fill up. For these reasons, the systems to support
co-located learning could and should focus on collaboration activities rather than on
reducing distances, for example, they could provide reviewability and revisability [8],
that are important characteristics in particular in the learning process [11].

Our team is involved as technical partner in the European project LEAD, in Sixth
framework programme priority IST [5], whose goals are to develop, implement and
evaluate conceptual models, practical scenarios and associated networked-computing
technologies for effective face-to-face problem-solving discussions.

In this project we are focussing on design features and development solutions to
produce a face-to-face (f2f) collaborative learning tool, in collaboration with others
technical partner and according to the conceptual model outlined by the pedagogical
partners.

In this paper, we approach the problem of designing an application for face-to-face
collaboration that has minimum impact on the installation and management. We present
an architecture and a small proof-of-concept prototype that was designed in order to test
the effectiveness of our low-cost deployment strategy.

2 Software architectures

Most of the existing systems for CSCL have a client-server architecture. This model,
in fact, simplifies data collection process and persistence management; furthermore,
the client/server entities support the students/teacher roles, allowing to centralize in the
server component the functionalities for the teacher, while the clients components offer
the functionalities common to all the students.

The existing systems are Web-based, since the most are designed for remote situa-
tions (a survey is presented in [6]). These systems are not always suitable for a f2f di-
dactic context, since they require to communicate with an external server (and therefore
they require an Internet connection), and many schools employ restrictive firewalls and
access policies. Furthermore, the teachers could not exercise fully control on the exter-
nal server and is somewhat limited by its availability and configurability. On the other
hand, some of the existing systems allow to install a local server, but the installation
process is often too much complex for the end users, that may not have the experiences
and capabilities to install and configure a Web server.

We aim to design a CSCL system explicitly applied to the f2f context, addressing
the particular conditions of such context. In fact, in a co-located situation the system can
use only the local area network, so it could and should do without external servers and
Internet connection, in this way it can avoid many problems due to restrictive security
policies, that are, often, commonplace in educational settings.

An existing cooperative system providing a LAN-based approach is MeetingWorks
[7]: chauffeur and participant components are local applications and every participant
links up with the chauffeur automatically, but the system1 needs a shared directory to

1 We have tested only the free version of the program, that has only LAN participants.

Peer-to-peer Face-to-face Collaboration 81

which every participant needs to gain access. Using a shared directory is a critical choice
in the context of a classroom because the standard hardware and software equipment
may not support many concurrent accesses (e.g. limitations on the number of simul-
taneous remote accesses in standard operating systems that are intended for desktop
and not for servers). Therefore, the network use and configuration must be carefully
designed not only to avoid problems due to security policies but to assure effectiveness
and efficiency as well.

Beyond the network architecture, we are interested particularly in enhancing friend-
liness and deployment easiness: the system must be simple to configure, to start-up and
to use, in order to encourage its usage and spreading.

In an overall view, we are designing a LAN-based system, providing a uniform work
environment and a start and play protocol, to offer an application simple to install and
to start up, in other terms, an application that exhibits a low cost deployment.

3 Our architecture

Several studies [9] suggest component-based architectures to address architectural re-
quirements for collaboration systems. In particular, we are studying the Eclipse Plat-
form [3] architecture. Eclipse is a component-based Integrated Development Environ-
ment that provides a framework (Rich Client Platform, RCP) to build general purpose
applications using the Platform architecture. In the following we introduce briefly the
Eclipse architecture (sec. 3.1), and then our approach to use RCP to build a face to face
collaborative application (sec. 3.2).

Since the reasons (simplifying data management and matching teacher and students
roles) to use the client-server model are well-grounded for the f2f system too, we do not
set aside the client-server model, but we are studying how to use it in a LAN-based ar-
chitecture, so that it can be independent of both Internet connection and external servers.

In order to simplify the system usage, we propose here an architecture with server
and client components embedded in the same application, so that the system could pro-
vide a uniform work environment between teacher and students, and without requiring
the management of a separate server. The idea is that the application looks peer-to-peer
to the users even if their internal structure makes one of the peers (tipically, the teacher’s
one) to be the server. Of course, this architecture leverage on the growing availability of
CPU cycles on low-end desktops, and on the inherent limitation on the size of the class-
room, which makes acceptable the workload on a server placed on a desktop machine.

Another aspect affecting user-friendliness is the start-up phase: to simplify the start-
up phase we are defining a low cost deployment approach to allows the end users to
start and play the collaborative application, with no network configuration. We describe
these design features in the section 3.3.

3.1 Eclipse architecture

Eclipse is a component-based Integrated Development Environment grounded on three
key concepts: plug-ins, extension-point and lazy activation.

82 D. Malandrino and I. Manno

Fig. 2. The extender plug-ins B and C provide extensions to the host plug-in A.

A plug-in is the smallest independent software unit; even if a tool could be com-
posed by more than one plug-in, the term plug-in is often used as “tool” or “compo-
nent”. Every plug-in declares its identity and properties in a file manifest2, so these
information are available without activating the plug-in.

The extension-points define the rules of plug-ins composition: an extension-point
is the point exposed by a plug-in to allow extensions from other plug-ins. The plug-in
that exposes the extension-point is the plug-in host, while the plug-in that provides the
extension is the plug-in extender (see fig. 2).

The plug-in host declares the extension-point in its file manifest, and the plug-in ex-
tender declares the extension in its file manifest, so that the information about extension
relation between the two plug-ins are available without activating them.

The lazy activation is the property that allows to activate a plug-in on demand, so
that there can be a lot of plug-ins installed but only few active.

Beyond the flexibility and scalability, the Eclipse architecture assures the extreme
tailorability [2, 9, 10], allowing customization, integration and extension.

3.2 Building on Rich Client Platform.

Rich Client Platform (RCP) is the “core” of Eclipse: it is composed by the fundamental
plug-ins, mainly to manage graphic interface and plug-ins life cicle, without any spe-
cific feature of the development environment. The RCP is a framework to build general
purpose applications based on the Eclipse architecture (see fig. 3). The applications
built on RCP inherit the tailorability provided by the Eclipse architecture.

To build the system on the RCP framework, we have to define the components
of the application. We can distinguish two types of building blocks: the Core and the
collaboration tools. Each component, the Core and the tools, is a plug-in. The Core
provides fundamental functions, that are, at least, user awareness (presence and activ-
ity), installed collaboration tools discovery, start-up of tools (on demand, if possible),
definition of the rules for composing the building blocks in the system.

The collaboration tools can provide any kind of functionality (free chat, structured
chat, graphic shared editor, mix of previous, games, etc.); they must only observe the

2 As a matter of fact, the manifest is a couple of files: plugin.xml and manifest.mf, that contain
respectively information about relations with other plug-ins and about the runtime. They are
often referenced as a single file, first for historical reasons and then because they can be edited
with a single advanced editor.

Peer-to-peer Face-to-face Collaboration 83

composition rules fixed by the Core. The Core depends on RCP (see fig. 4) and is
the main plug-in, that is, the plug-in defining the application. The Core provides an
extension-point named tools defining the API that any collaborative tool must im-
plement to be integrated in the system. This extension-point (like all extension-points)
may have zero or more extensions. A plug-in extender has to declare in the file manifest
an extension to the extension-point tools and has to implement the API specified by
the extension point. The Core analyzes the extensions to the extension-point at runtime,
so it is possible to add a tool to the system without changing the Core.

The plug-in based architecture allows to build each tool component with its own
server embedded. The idea of a server for each tool has two reasons; first, in this way
the Core ignores completely the tools details (and the tools servers details), so that
whatever tool will be needed, it could be added without modifying the Core, since the
tool embeds its own specific server functionalities; second, having a server for each
tool and thanks to the lazy activation property, in each moment only the required tool
servers are running. So, the strongly component oriented architecture of Eclipse assures
fully tailorability, thanks to plug-ins and extension-point concepts. Furthermore, the
lazy activation assure scalability: each collaborative tool will be activated only when
required.

The flexibility and the extendibility of RCP would allows to extend the system as
the collaboration needs arise, achieving a richer system, placed at the top of the classi-
fication framework presented in [10], where at the bottom there are basic collaboration
functions, while at the top there are “comfortable” collaboration functions.

3.3 Low cost deployment: uniform work environment and start and play
protocol

Part of our studies concerns the problem of the start-up: we would enhance start-up
transparence so that the users could start the application and could use it with no con-
figuration (i.e. start and play). Furthermore, we aim to provide a uniform work envi-
ronment to make semi-transparent the difference between server and clients: they are
integrated in the same application so that the application server instance is not perceived

Fig. 3. (a) The Eclipse architecture and (b) a general purpose application on RCP

84 D. Malandrino and I. Manno

Fig. 4. The Core based on RCP can be extended by many tools.

by users as “the server” but as “a powered peer” (“powered” because it has more func-
tionalities than standard clients). From technical point of view, this is merely a seeming
difference, but from user’s point of view there is no external application to install, to
configure, to start up and to manage. For these reasons, each component contains both
the server side and the client side, even if, in each moment, only one instance of the
application over the net runs in the server mode.

To achieve a start and play application, we developed a UDP-based server localiza-
tion protocol, using only the local network. When the application starts, it is in client
mode, and the Core client sends a “server lookup” message in broadcast; if in a timeout
it does not receive the server reply, it instances and runs the Core server. Every subse-
quent application sending the “server lookup” message will find the server (see fig.5).
Furthermore, the Core manages the start-up of the tools, so when a user (see fig. 6)
requires to start a tool, the core client of user 2 sends a “start tool” message (specifying
the id of the tool) to the Core server. When the Core server receives the “start tool”
message, it instances and runs the tool server and forwards to all users the “start tool”
message; each users that receives the start message runs the tool client. Each tool client
sends a “tool server lookup” in broadcast, and will receives the reply of the tool server.

Since in CSCL f2f systems it is desirable that some operations are reserved to the
teacher, the servers should be hosted by the teacher. To match this requirement, we
have defined a client running mode and a server running mode. The running mode can
be explicitly enabled by specifying a command line parameter. The teacher application

Fig. 5. The Core activation sequence.

Peer-to-peer Face-to-face Collaboration 85

Fig. 6. The tool activation sequence.

instance runs in the server mode and directly creates and starts the Core server, skipping
the lookup message broadcast; the students application instances run in the client mode
and look for the server, but if do not receive reply, do not instance nor start the server.
Obviously, if there is an application instance in server mode, all the other must be in
client mode (or, however, they must fail if try to instance a server). This solution keeps
the uniform work environment and the start and play phase, but reserves the access to
the servers functionalities for the teacher. As matter of fact, we have forced (by the
running modes) the protocol to achieve a powered application instance for the teacher,
because the original protocol does not impose conditions about the user that hosts the
server. Indeed, with the original protocol, the first user starting a component, instances
and runs the server of the component (p2p running mode), so that servers of different
components could be hosted by different users, moving the system toward dynamic
architectures [1]. This solution did not seem suitable for educational settings, where it
is preferable to instance and run all the servers at the teacher application, to provide
servers functionalities access only to the teacher. The extreme tailorable architecture
of RCP enhances the start-up transparency allowing to design the system with a set of
servers: a server for the core and a server for each provided tool 3. With the plug-in
based architecture and the lazy activation it is possible to design the system so that in
each moment a chosen tool can be activated and then, silently, the server of the tool is
started and then the clients of the tool find it.

These features together (transparent start-up and uniform work environment) pro-
vide the end user with the perception of a peer-to-peer system, although the system is
instead a client server one.

3 In the educational setting all the server are hosted on the teacher application instance, but
even so, it is preferable having a server for each component because this layout enhances
extensibility (see sec. 3.2)

86 D. Malandrino and I. Manno

4 Conclusions and future work

Here we have presented our studies about the architecture of a system designed and de-
veloped explicitly for face to face collaborative learning. Our system provides a uniform
work environment and allows the users to start and play the application. Compared with
existing systems4, our system is simpler to install, to start-up and to use, because it has
neither separate server to manage (uniform work environment) nor network configura-
tion to execute (start and play). Furthermore, it inherits from Eclipse advanced tailoring
properties.

Since our system has to address specifically face to face collaboration, we can uti-
lize the particular conditions of such context to achieve a more friendly application.
The start and play protocol takes advantage of the LAN-based context, and really, it is
workable only on wired-LAN, because the UDP broadcast is often disabled out of the
LAN. Furthermore, the local network often offers low variance delay and this helps to
prevent (but it is not the best solution, of course) race conditions in the server start-up
phase. Vice versa, the high delay variance of wireless LAN may cause anomalous be-
haviors of the protocol, due to, for example, expiring timeouts. To use a similar protocol
on wireless LAN, it must be specifically designed to address WiFi peculiarity.

In the context of face to face collaborative learning, the server functionalities should
be managed by the teacher, so that all the servers (Core server and tools servers) are
hosted on the same application instance (the teacher’s one). Actually, the described ar-
chitecture forces this behavior, but interesting studies concern the p2p running mode,
that provides the opportunity of hosting the servers in a distributed way over different
application instances (for example, the first user starting a tool can host the tool server),
migrating the system toward dynamic architectures [1]. Even if the p2p running mode
may be unsuitable for educational settings, we wish briefly describe some interesting
features and problems related to the p2p running mode. The opportunity to have a dis-
tributed servers set allows to share the workload between all the users; furthermore,
this allows to relax the roles strictness, matching situations more dynamic and flexible
(such as a work group where different members have different roles and competences)
than the educational one, where there are the well defined student and teacher roles. A
problem related to the distributed servers set concerns the shutdown of a single applica-
tion instance hosting one server: it should be a controlled shutdown, to allow the server
migration toward another application instance (i.e. another application instance creates
and runs the server). An even more complex problem concerns the crash of an appli-
cation instance hosting one server, and this requires further studies, as well as the data
management protocol. Obviously, the p2p running mode and the distributed servers set
are based on the idea that each component embeds its own server. Maybe it is too early
to make statement about the user capabilities required by a system with a distributed
server set, although we expect that the distributed architecture has no consequences on
the user level.

4 i.e. existing remote systems used in a face to face context

Peer-to-peer Face-to-face Collaboration 87

References

1. G. Chung and P. Dewan. Towards Dynamic Collaboration Architectures. In Proc. of
CSCW’04, pages 1–10.

2. A. Dimitracopoulou. Designing Collaborative Learning Systems: Current Trends and Future
Research Agenda. In Proc. of Computer Supported Collaborative Learning 2005: The next
Ten years!, 2005.

3. Eclipse. http://www.eclipse.org.
4. Robert Johansen. GroupWare: Computer Support for Business Teams. The Free Press, New

York, NY, USA, 1988.
5. Lead - technology-enhanced learning and problem-solving discussions: Networked

learning environments in the classroom, 6th Framework Programme Priority IST.
http://lead2learning.org/.

6. J. Lonchamp. Supporting synchronous collaborative learning: a generic, multidimensional
model. International Journal of CSCL, 1(2), to appear in June 2006.

7. MeetingWorks Software. http://www.entsol.com/html/meetingworks software.html.
8. G.M. Olson and J.S. Olson. Distance Matters. Human Computer Interaction, 15(2-3):139–

178, 1994.
9. H. ter Hofte R.Slagter, M.Biemans. Evolution in Use of Groupware: Facilitating Tailoring

to the Extreme. In Proc. of Seventh International Workshop on Groupware, 2001.
10. A. Sarma, A. van der Hoek, and L.T. Cheng. A Need-Based Collaboration Classification

Framework. In Proc. on Eclipse as Vehicle for CSCW Research, Workshop at CSCW 2004.
11. R.J Simons. Three ways to get content based and in-depth conversation in on-line learning:

revisability,focussing and peer feedback, 2006. Seminario Tecnologia Cultura e Formazione.

88 D. Malandrino and I. Manno

