
Graphical Simulation Feedback in Petri
Net-based Domain-Specific Languages within a

Meta-Modeling Environment

David Mosteller, Michael Haustermann, Daniel Moldt, and Dennis Schmitz

University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences,
Department of Informatics, http://www.informatik.uni-hamburg.de/TGI/

Abstract The development of domain specific models requires appro-
priate tool support for modeling and execution. Meta-modeling facilitates
solutions for the generation of modeling tools from abstract language
specifications. The Rmt approach (Renew Meta-Modeling and Trans-
formation) applies transformational semantics using Petri net formalisms
as target languages in order to produce quick results for the development
of modeling techniques. The problem with transformational approaches
is that the inspection of the system during execution is not possible in
the original representation.
We present a concept for providing simulation feedback for domain spe-
cific modeling languages (DSML) that are developed with the Rmt ap-
proach on the basis of meta-models and translational semantics using
Petri nets. Details of the application of this new approach are illustrated
by some well-known constructs of the Business Process Model and No-
tation (BPMN).

Keywords: Meta-Modeling, BPMN, Petri Nets, Reference Nets, Simu-
lation, Graphical Feedback

1 Introduction

The construction of abstract models is an essential part of software and systems
engineering. Meta-modeling provides a conceptual basis to develop modeling lan-
guages that are tailored to satisfy the demands of specific application domains.
Tools may be generated from the language specifications to support the modeling
process.

We present a concept for the rapid prototyping and direct simulation (and
simulation feedback) of domain specific modeling languages (DSML) within the
Renew simulation environment. The focus of this contribution is on the inte-
grated simulation and graphical feedback of the executed language during sim-
ulation. With our contribution we combine and advance two branches of our
current research: First, the development of domain specific modeling languages
using the Renew Meta-Modeling and Transformation (Rmt) framework [15]
and secondly, the provision and coupling of multiple modeling perspectives dur-
ing execution within Renew [14]. The first contribution does not consider the



simulation in the source language, instead it presents the transformation of the
source language into Reference Nets without the support for graphical simula-
tion feedback. The second contribution does not use meta-modeling but presents
an approach for coupling and simulating multiple formalisms synchronously. The
contribution mentions the execution of finite automata with the possibility of
highlighting the active state and state transitions, however, the graphical simula-
tion feedback was hard-coded. In this contribution we consider the model-based
customization of the visual behavior of a simulated DSML. This paper is an
extended version of a previous workshop contribution [16].

The approach provided by the Rmt framework supports the rapid proto-
typical development of domain specific modeling languages with Petri net-based
semantics. The Rmt approach is based on the idea of providing translational
semantics for the modeling language in development (source language) through
a mapping of its constructs to a target language. The latter is implemented us-
ing net components [2, Chapter 5], which are reusable and parametrizable code
templates – quite comparable to code macros – modeled as a Petri net.

We choose Reference Nets [11] as a target language but we are not restricted
to this formalism. Reference Nets combine concepts of object-oriented program-
ming and Petri net theory. They are well-suited as a target language because of
their concise syntax and broad applicability. With the presented solution Ref-
erence Nets provide the operational semantics for the target language and the
simulation events are reflected in the source language during execution.

Tool support for our approach comes from Renew, which provides a flexi-
ble modeling editor and simulation environment for Petri net formalisms with
comprehensive development support for the construction of Reference Net-based
systems [3, 12].

In this contribution we extend the Rmt framework (as presented in Section 2)
with direct simulation in the original representation of the DSML and discuss
the integration into the approach. The presented concept for simulation visual-
ization bases on highlighting of model constructs. This is achieved by reflecting
simulation events of the underlying executed Petri nets (target language) into the
DSML (source language). Several types of mappings are evaluated in Section 3
regarding their expressiveness and features for modeling. A major challenge for
the provision of direct simulation support is the integration into model-driven
approaches in the sense that the DSML developer is able to specify the desired
representation of the executed models in a model-driven fashion. We discuss
multiple alternatives to provide support for this task in the Rmt approach in
Section 4. As a part of our contribution a generic compiler is implemented in
Renew. On this basis the generated technique may be executed within Renew’s
simulation engine in its original representation as presented in Section 5.

2 The Rmt Framework

The Rmt framework (Renew Meta-Modeling and Transformation) [15] is a
model-driven framework for the agile development of DSML. It follows concepts

58 PNSE’18 – Petri Nets and Software Engineering



Figure 1: Excerpt from the Rmt models for a BPMN prototype with the gener-
ated tool.

from software language engineering (SLE, [10]) and enables a short development
cycle to be appropriately applied in prototyping environments. The Rmt frame-
work is specifically well-suited to develop languages with simulation feedback due
to its lightweight approach to SLE and the tight integration with the extensible
Renew simulation engine, which supports the propagation of simulation events.
Other frameworks for model-driven engineering (MDE), such as for instance the
eclipse modeling framework (EMF, [6]), could also benefit from the proposed
solution for the provision of simulation feedback. However, this would require
integrating the MDE framework with an equally adequate simulation engine.

With the Rmt framework the specification of a language and a corresponding
modeling tool may be derived from a set of models that are defined by the devel-
oper of a modeling technique. A meta-model defines the structure (abstract syn-
tax) of the language, the concepts of its application domain and their relations.
The visual instances (concrete syntax) of the defined concepts and relations are
provided using graphical components from the repertoire of Renew’s modeling
constructs. They are configurable by stylesheets and complemented with icon
images and a tool configuration model to facilitate the generation of a modeling
tool that nicely integrates into the Renew development environment.

In this contribution we use a BPMN (Business Process Model and Notation)
prototype as our running example to present how the Rmt approach is extended
for simulation with graphical feedback. Figure 1 displays a selected excerpt from

Mosteller et.al.: Graphical Simulation Feedback in Petri Net-based DSLs 59



the models required for the BPMN prototype together with the tool that is gen-
erated from these models. The parts of the figure are linked with colored circles
and numbers. The meta-model (upper left) defines the concepts for classifiers (4,
5) and relations (1) for the modeling language and the corresponding model (3).
Annotations are realized as attributes of these concepts (2). The concrete syntax
(upper right) is provided using graphical components, which are created with
Renew as it is depicted for the task and the parallel gateway (4, 5). Icon images
for the tool bar can be generated from these components. The representation of
the inscription annotation (2) and the sequence flow relation (1) is configured
with stylesheets.

The tool configuration model (lower left) facilitates the connection between
abstract and concrete syntax and defines additional tool related settings. The
concepts from the meta-model are associated with the previously defined graph-
ical components (4), with custom implementations or default figure classes that
are customizable by stylesheets (1) and the icon. Connection points for con-
structs are specified with ports (8). The general tool configuration contains the
definition of a file description and extension (6) and ordering of tool buttons (7).

With these models a tool is generated as a Renew plugin as shown at the
bottom right side of Figure 1. A complete example of the Rmt models and
additional information about framework and approach can be found in [15].

3 Net Component-based Semantics

Our main goal is the provision of an easily applicable approach and readily usable
tools for language developers as well as users. The difficult part is often the
definition of the semantics. We propose to apply a mapping of DSML constructs
to Petri net constructs in order to provide operational semantics for the DSML.
The Petri net constructs can be created with the Renew editor in a similar way
this is done for the graphical components (cf. Figure 1). The net elements are
annotated with attributes and arranged together in one environment in order to
form a net component.

The operational semantics and the visualization of simulation states are mu-
tually dependent. The development of a semantic mapping should be discussed
with respect to the intended visualization and if applicable, interaction. Any-
how, the semantics should not be neglected in favor of a decent visualization.
We discuss several variants of defining the semantic mapping and choose the
one that is in best conformance with the BPMN standard and at the same time
suited for the development of a highlighting for the integrated simulation.

When providing transformational semantics through semantic mappings, a
point to consider is the number of mapped constructs in the source and in the
target language. Different types of mappings are possible (1:1, 1:n, n:1, n:m). A
general solution that covers semantics for possibly any language would probably
require a n:m mapping. In this contribution we mainly consider languages that
are more abstract than Reference Nets, consequently our approach utilizes 1:n
mappings. Using net components, which group multiple Reference Net constructs

60 PNSE’18 – Petri Nets and Software Engineering



Table 1: Mapping of BPMN and Petri net constructs [5, p. 7].
BPMN Reference Net BPMN Reference Net

into one, the mapping is reduced to cardinalities of 1:1. A 1:1 mapping restricts
the expressiveness, but there are options to overcome some of the restrictions
that we discuss further on in this section.

There are many ways of defining the semantic mapping. Regarding BPMN,
the specification itself [17] describes informal semantics for the execution of
BPMN processes on the basis of tokens. Therefore, the Petri net semantics –
at least for a subset of BPMN constructs – is straight-forward and may be
implemented using a mapping to Petri nets that was proposed by Dijkman et
al. [5, p. 7] as displayed in Table 1. Covering the full BPMN standard with Petri
net implementations is a challenge of its own that we do not try to resolve in the
context of this work. Even this small selected subset of BPMN constructs leaves
enough room for interpretation and discussion of general concepts of Petri net
mappings using semantic components.

One of the main questions is how the components are bordered and how
they are connected with each other. This depends mainly on the handling of
relations. A simple way to connect two net components is with a simple arc
between them, which requires the connection elements in the net components to
be of opposing type. Regarding expressiveness, this approach may be sufficient
for simple P/T net semantics but in more complicated scenarios that use colored
Petri nets it becomes necessary to maintain control over the data transported
through the relations. One way to overcome this issue is to fuse the connection
elements of the net components so that the connecting arc is part of one of the
net components, which permits adding inscriptions to that arc.

Consider the BPMN process displayed in Figure 2, which shows three tasks,
where task a is being executed in parallel to task b and task c, which are
mutually exclusively alternative.

Each of the Petri nets from Figure 3 and 4 implements the BPMN process
using a slightly different semantics. The vertical lines represent graphical cuts
(not Petri net cuts) through the process, which indicate the fusion points be-

Mosteller et.al.: Graphical Simulation Feedback in Petri Net-based DSLs 61



Figure 2: A BPMN process containing three tasks.

Figure 3: Place bordered decomposition of the BPMN process.

Figure 4: Transition bordered decomposition of the BPMN process.

tween components (highlighted by dashed lines). The first Petri net implements
the original mapping from Dijkman et al. [5]. It uses place bordered components
and fuses the elements along the places. The sequence flow relations are mapped
to places, which dissolve in the fusion points and in this sense have no indi-
vidual semantics. The second net is very similar but uses transition bordered
components. These components apply a mapping of sequence flow relations to
transitions. Note how the semantics of the individual components slightly varies.
For instance, the end event terminates with a marked place when applying the
mapping from Dijkman et al. The BPMN standard prescribes that each token
must be eventually removed from the process [17, p. 25], so the variant from
Figure 4 is more in conformance with the BPMN standard regarding this as-
pect. On the other hand, the second variant defines a task as a place surrounded
by two transitions (incoming and outgoing), so it has more the character of a
state rather than an event or process. The BPMN execution semantics of a task

62 PNSE’18 – Petri Nets and Software Engineering



is much more complex than this abstract interpretation, but it basically begins
with a state (Inactive) and ends with a state (Closed) [17, p. 428].

There are many possible variants of the semantic mapping from Table 1.
Each of the semantic components can be refined with additional net structure,
as long as the bordering remains unaltered. The same holds for the relations, in
case it becomes desirable to attach semantics to the relations in a similar way
this is done for the constructs.

Figure 5: A Petri net mapping of the BPMN process that consists of alternating
components.

Figure 5 again shows an alternative semantics of the presented BPMN pro-
cess. The bordering of components is alternating in the sense that each BPMN
construct is place bordered on the incoming and transition bordered on the out-
going side. The bordering of sequence flow relations is the opposite way around so
that it provides the proper fusion points to complement the BPMN constructs.
Following the BPMN standard, the outgoing sequence flows of a conditional
gateway hold the condition inscriptions. With this mapping it is possible to
specify the conditions on the sequence flow and they could be transformed to
guard expressions on the transitions of the mapped sequence flow, which are
merged with the outgoing transitions of the conditional gateway in Figure 5.
This allows the mapping of the inscription to remain within the locality of the
mapped construct. However, as we do not discuss inscriptions in detail in this
contribution this argument can be neglected. The alternating semantics have a
different advantage for defining the highlighting in Section 4. Each component
locally encapsulates its states and behavior. This property will be used to de-
fine two highlighting states “active” and “enabled” for the simulation of BPMN
models.

Figure 6: Connection semantics of Reference Nets.

With Reference Nets additional variants become possible such as the connec-
tion via virtual places or synchronous channels. Displayed in Figure 6 are on the

Mosteller et.al.: Graphical Simulation Feedback in Petri Net-based DSLs 63



left side virtual places. The double-edged place figures are virtual copies of their
respective counterpart. These could be easily utilized to implement the place
fusion. The synchronous channels displayed to the right are even more power-
ful. The synchronization of two transition instances supports the bidirectional
exchange of information through unification of the channels. Besides supporting
the possibility to simply move information along the edges, synchronous chan-
nels provide the facilities to define interfaces to query and modify data objects.
With syntactical constructs for net instantiation Reference Nets provide the ca-
pabilities of modeling dynamic hierarchies. In the context of BPMN this is useful
to implement pools, sub processes, etc. However, this goes beyond the scope of
this contribution.

The choice of handling relations and connections leads to the question of the
bordering of the net components. A uniform bordering for all classifiers is de-
sirable because different bordering among the classifiers has a negative effect on
developers and users regarding the complexity of the language. Furthermore, for
each construct of the DSML the bordering for the related net components should
not depend on the context, e.g. whether a sequence flow construct precedes or
follows a gateway or how many outgoing relations a gateway has. Depending on
the connection possibilities within the DSML, a net component for a classifier
may have multiple input and output elements whose type affects which con-
nections are possible. In BPMN the gateways are allowed to have an arbitrary

(a) Conditional split component with
transition output elements

(b) Conditional split component with
place output elements

(c) Parallel split component with place
output elements

(d) Parallel split component with tran-
sition output elements

Figure 7: Conditional and parallel split net components with connected sequence
flow.

64 PNSE’18 – Petri Nets and Software Engineering



number of connected sequence flow relations where the conditions for conditional
gateways are directly attached to them. For a predefined number of choices or
parallel paths the components are easy to build with either of the bordering
variants. With an arbitrary number of connections, a uniform bordering is no
longer possible. Figure 7 shows the bordering variants of the conditional and
parallel gateway where the dashed line divides the net component for the gate-
way and the component for the sequence flow. The connection is again realized
by fusion of the elements that are crossed by this line. Figure 7a shows the con-
ditional split with transitions as output elements where the net component for
the gateway depends on the number of outgoing connections. In Figure 7b the
component is uniformly independent of the connections. The same holds for the
parallel gateway with the complementary elements as shown in Figure 7c and
7d.

The presented example shows that a uniform bordering is not possible. Our
solution to this problem are components with static parts that are independent
of the connections and a dynamic part, which is duplicated for each connection.
The challenge thereby is the integration into the approach because one of its key
features is that language developers have a simple way to provide their semantics
by using the graphical Renew editor and to draw and test the semantics directly
within the environment. Therefore, a way to draw these components with vari-
able parts is required. Figure 8a depicts the net component for the conditional
split. The red part is duplicated for each connected sequence flow as displayed
in Figure 8b. The variable part is specified by the name inscription terminated
with the *, where the element with this inscription and all the connected arcs
are duplicated. With this concept of variable components, a uniform bordering
is possible for the presented subset of BPMN.

(a) Conditional split component with a
variable part

(b) Sequence flow component

Figure 8: Conditional split net component with variable part and transition bor-
der.

4 DSML Tools with Graphical Simulation Feedback

Up to now there was no (sufficient) user feedback when executing models of
the generated modeling technique. In this paper we address the extension of our

Mosteller et.al.: Graphical Simulation Feedback in Petri Net-based DSLs 65



Figure 9: Conceptual model of the model synchronization from [14, p. 8].

framework to allow feedback from the simulation of the underlying Petri net. The
main idea is that within the domain models, the internal state (resp. marking)
of the Petri net is reflected directly in the domain of the generated modeling
technique. This allows for an adaptive feedback individually depending on the
translational semantics for each generated modeling technique.

A conceptual image from the simulation of two modeling techniques that
interact with each other is displayed in Figure 9. The image originates from
[14, p. 8] where we presented a concept for multi-formalism simulation with the
synchronization of multiple modeling techniques on the basis of Reference Nets.
The presented solution sketched the idea of providing feedback into a DSML but
the realization was specific for a finite automata modeling tool. With our current
work this idea is generalized to facilitate feedback into principally any DSML
that is developed with the Rmt approach using model-driven development. This
opens up the possibility to develop and research different simulation semantics
or modes of simulation for these DSML.

The provision of graphical simulation feedback in the original representation
of a DSML is summarized by two tasks: The language developer has to specify
the connection between the simulation state and the representation in order to
specify on which simulation event the representation of the constructs should be
changed. Furthermore, the visualization of the highlighted constructs has to be
defined, i.e. how the representation should be altered or extended to represent a
certain simulation state.

We identified some requirements that need to be fulfilled in order to ade-
quately support the developer of a modeling language in these two tasks. Gen-
erally, there are two requirements: expressiveness and simplicity. First, the de-
veloper must be able to implement the desired result, i.e. has to be able to

66 PNSE’18 – Petri Nets and Software Engineering



specify the exact representation of the executed model. Secondly, the implemen-
tation and configuration overhead should be minimal. Multiple factors have an
impact on the simplicity. The connection between simulator and representation
should be specifiable without knowledge of the internals of the simulator and op-
timally without programming skills. To provide representations for highlighted
constructs it should be possible to use the same tools as used for the representa-
tion of the static constructs. Often the highlighted representation only minimally
differs from the original representation (e.g. by changing a color). It should be
possible to specify these slight variations without the requirement to provide
multiple copies of the same figure. This is especially important for Petri net
components with a high degree of concurrency, which may result in a large num-
ber of global states and thus to a large number of different representations.

There is a trade-off between expressiveness and simplicity. Based on the iden-
tified requirements, we present three different variants for realizing model-based
simulation highlighting, each with a different focus regarding expressiveness and
simplicity. The specification of the connection between simulation and represen-
tation may be achieved with an annotation language for the semantic compo-
nents. For the provision of the altered representations we propose three different
strategies: simple, stylesheet-based and graphical component-based. With the
simple highlighting method, the generic highlighting mechanism of Renew is
used. The stylesheet-based mechanism uses stylesheets analogously to the spec-
ification of the concrete syntax for the DSML constructs. With the annotated
template-based highlighting, the representation of the highlighted constructs is
provided by drawings that are created with the graphical editor of Renew.

4.1 Relating Simulation State and Representation

In order to obtain graphical feedback in the simulated DSML one task is defining
the connection between the simulation events and the graphical representation.
Since the underlying executable is a Petri net, the simulation events are net
events. In the graphical simulation environment of Renew it is possible to re-
spond to mainly two types of events: the firing of a transition (with start and
end of the firing) and the change of a marking of a place. Additionally, it is
possible to check the state of a single net element such as the marking of a place
and whether a transition is enabled or firing.

The figures in the representation of the running model are linked to the sim-
ulator via the ids of the net elements in the sense that a net element in the
simulation (a place or a transition) has exactly one connected graphical com-
ponent that observes the net element and listens to its events. One graphical
component may observe multiple net elements (this is a result of the 1:n map-
ping).

Depending on the DSML and the semantics there are multiple possibilities to
link simulation events and representations. The relevant question in this context
is whether the classifiers and relations reflect the state of the places or the
activities of the transitions. This depends mainly on the character of the DSML.
For a language focusing on the behavior of a system (such as activity diagrams),

Mosteller et.al.: Graphical Simulation Feedback in Petri Net-based DSLs 67



it probably makes sense to target the transition events. A classifier, for example,
could be highlighted when one of the transitions in the corresponding semantic
component is firing. A concentration on the place markings is more useful for
a language with a strong state focus (such as state diagrams) where a classifier
would be highlighted when a place in the semantic component is marked. Many
languages (including BPMN) have a hybrid character so that it is required to
have different behaviors for multiple constructs.

Figure 10: Annotated semantic component for parallel fork gateway.

Our approach facilitates the implementation of these hybrid languages in a
simple way. The DSML developer is able to define the highlighting behavior for
each construct by using an annotation language that we present exemplarily for
the construct of the parallel gateway. Figure 10 depicts the semantic component
of the parallel gateway (as shown in Table 1) with the annotations. The annota-
tions in this contribution are presented as dotted lines connecting the annotation
text with the corresponding element. In the case of our implementation within
the Renew environment these annotations are attributes set to the elements.
An annotation contains two parts divided by a colon where the first part repre-
sents the simulation state or a simulation event for the respective element and
the second part is a state concerning the whole component. For example, the
annotation marked:active1 in Figure 10 means that the parallel gateway is in
the state active1 whenever the upper place contains a token. These component
related states are not disjoint because the upper and the lower place may be
marked at the same time which results in the component being in state active1
and active2. These states can now be used to specify the representation of the
highlighted constructs.

4.2 Simple Highlighting

The simple highlighting strategy uses a generic highlighting mechanism where
constructs and parts of constructs are highlighted by a change of the color. Of
the three strategies this is the easiest to implement for the DSML developer,
but in return it is limited in the sense that it is not possible to customize the
highlighted representation.

Renew has a generic mechanism for highlighting figures, which is already
applied for simulation feedback of Petri net simulations. The highlighting is

68 PNSE’18 – Petri Nets and Software Engineering



Table 2: Highlighting variants and example representations.
enabled activeboth active1 active2

Semantic
Component State

simple

stylesheet-based

graphical
component-based

based on changing the color of figures where it is ensured that the color change
is noticeable by choosing a color depending on the original color of the figure.
This mechanism is also suitable for figures that are utilized in the Rmt approach.

Table 2 exemplarily shows some representations that can be achieved with the
different highlighting variants. The semantic component of the parallel gateway
may have four different states. With the true concurrency simulation of Renew
there are more states (with firing transitions) but these are omitted here and
can be handled analogously. The second row contains the highlighted constructs
for the simple highlighting strategy.

Figure 11 shows the artifacts that are required to achieve the result in Ta-
ble 2. Together with the concrete syntax the highlighting information can be
provided with a drawing that is created with Renew. The graphical component
is extended with annotations for the graphical objects. In this case, the anno-
tations correspond to the states defined within the semantic component. The
annotation enabled is connected to the border of the gateway. This means that
the border is highlighted in the enabled state, which results in a green color.
The two circles representing the ports receive a gray background in the states
active1 or active2.

4.3 Stylesheet-based Highlighting

The problem with the simple highlighting strategy is that highlighting is limited
to a change of colors, which are not selectable. The stylesheet-based highlighting
makes it possible to specify the highlighting color and other style parameters
via stylesheets. With this strategy representations such as the ones depicted in
the third row of Table 2 become possible. The DSML developer now has to

Mosteller et.al.: Graphical Simulation Feedback in Petri Net-based DSLs 69



Figure 11: Artifacts for simple highlighting.

specify which part of the figure to style, similar to the simple highlighting, but
additionally she/he has to define which style to apply.

Figure 12: Artifacts for stylesheet-based highlighting.

Figure 12 depicts the artifacts required to achieve this variant of highlighting.
The annotation syntax is extended with boolean expressions over the component
states (active1 OR active2) and a style class that is attached to the respective
figure (highlighted). Multiple style aspects can be defined with stylesheets. It
is possible to set the colors of the background, or the lines, or the shape of lines
(dashed, dotted, etc.). Many attributes are pre-defined.

4.4 Graphical Component-based Highlighting

Sometimes the requirements for the highlighted representations exceed the pos-
sibilities of pre-defined style attributes, such as in the last row of Table 2 where
the highlighted constructs are extended with additional graphical objects. In
this example the constructs are amended with a graphical e or a to repre-
sent the enabled and activated state and the marking is represented via par-
tial gray background coloring. This form of highlighting requires the possibility
to provide individual representations for each of these states. With the graph-
ical component-based highlighting it is possible to model these representations

70 PNSE’18 – Petri Nets and Software Engineering



directly within the Renew editor. To prevent the effects of a state explosion
for semantic components with concurrency, we provide a mechanism to spec-
ify multiple representations in one. The graphical representations in Figure 13
are annotated again. In this case only graphical components with annotations
matching the current state are displayed in the simulation. This allows specify-
ing the representation of the states active1 and active2 in a single component.
The default keyword refers to the fallback state with no other state.

Figure 13: Artifacts for graphical component-based highlighting.

5 Simulation of the BPMN Example

Figure 14 shows a snapshot from the simulation of a BPMN model. The topmost
part shows Renew’s main window with context menus, editor tool bars and
the status bar. The two overlapping windows in the middle are the template
(white background) and an instance (violet background) of a BPMN process. The
template drawing was modeled using the constructs from the BPMN toolbar.

The window on the right side contains an instance of this model and was
created from that template and represents the simulation state using the simple
highlighting strategy. The simulation is paused in a state where the sequence flow
and the conditional gateway at the bottom of the instance window are activated,
which is reflected with the red color of the sequence flow and the gray background
of the gateway. This state corresponds to the Petri net in the lowermost part of
Figure 14. In this state the task at the top and the two sequence flows behind the
xor gateway (in conflict) are activated, which is again reflected with the green
coloring. The subsequent simulation step may be invoked by right-clicking on the
activated task figure or on one of the sequence flow connections in the BPMN
model instance. All actions and executions are performed by the underlying Petri
nets, which therefore determine the semantics of the domain specific language
model while the interaction of the user is performed through the BPMN model.
The behavior may be customized by providing alternative net components that
may contain colored tokens, variables, inscriptions, synchronous channels, etc.
The GUI interaction is provided with the Rmt integration.

The Petri net in the lowermost part of the figure is the representation of the
simulated net instance, which was generated using the semantic mapping from

Mosteller et.al.: Graphical Simulation Feedback in Petri Net-based DSLs 71



Figure 14: Running BPMN simulation and the corresponding Petri net.

Section 3 (cf. Figure 5). For the presentation in this paper, the Petri net model
was created by hand, the generated Petri net that actually performs the simu-
lation has no visual representation at all. This is a design decision to maintain
the ability to execute these models without graphical feedback in server mode,
which is essential to building large scale applications from net models. In all, this
facilitates the provision of graphical feedback in the BPMN model by reflecting
simulation events from the simulated (invisible) Petri net to the above layer.

6 Related Work

The utilization of model transformation in order to provide execution or simula-
tion support for different types of models is present in many approaches. Some
of them provide simulation feedback in the original representation.

Sedrakyan et al. present a model-driven graphical feedback in a model-to-
code transformation with the goal of validating semantic conformance especially
for novice modelers [20]. They focus on feedback for errors that occur in the
compiled system rather than a complete interactive inspection of the execution.

Rybicki et al. [18] use model-to-model transformations to map high-level
models to low-level executable code or models. With tracing capability added to
their approach they keep track of the relations between the transformed models.
These tracing information are used to propagate runtime information during
simulation to the high-level models, which allows to inspect a simulation in the

72 PNSE’18 – Petri Nets and Software Engineering



original representation. However, they do not cover the customization of the
representation of the models at runtime and the highlighted constructs.

Kindler has a comparable approach to ours using annotations with the ePNK
framework to provide simulation capabilities for a meta-model-based modeling
application [9]. The simulation in ePNK is realized in the form of different han-
dlers that manipulate the annotations representing the simulation state. A pre-
sentation handler implements the representation of these annotations as labels
or overlays in the graphical editor.

Other approaches aim at providing interactive visual behavior for domain
specific modeling tools by using model-driven techniques [1, 4].

Petri nets are often used as target language in transformational approaches in
combination with high-level modeling languages. Research questions in the con-
text of transformation into Petri nets are often discussed for specific languages.
An overview about semantics for business process languages is for example pro-
vided by Lohmann et al. [13]. The utilization of semantic components resulting
in a 1:n mapping is related to the static hierarchy concepts, such as the ones
for Coloured Petri Nets [8] and other formalisms. The research results in this
area can be transferred to our approach. The capabilities of Reference Nets re-
garding dynamic hierarchies can be helpful for the development of more complex
semantics.

The approach presented in this contribution is unique in the sense that it
uses Petri nets as target language as a solid formal basis in combination with a
focus on the representation customization of the executed models.

7 Conclusion

In this contribution we present a concept for providing simulation feedback for
DSML that are developed with the Rmt approach on the basis of meta-models
and translational semantics using Petri nets.

In order to demonstrate the practicability of our approach, we present the
integrated simulation of a selected subset of BPMN and refer to a straight-
forward model transformation to Petri nets. Alternative possibilities of defining
the translational semantics for process-oriented modeling languages are pointed
out, but not exhaustively answered, as this is part of our ongoing research. For
this contribution we restrict ourselves to a 1:n mapping from DSML constructs
to Petri net components and introduce the notion of dynamic components to
increase the expressiveness, all with the practicability of our approach in mind.
The main part of our contribution consists in three alternative mechanisms for
the provision of graphical feedback in the simulation of DSML: simple, stylesheet-
based and component-based. Especially the simple variant inherits functionality
from Renew, but each of the presented concepts for highlighting should be
transferable to other approaches and frameworks. The presented mechanisms do
not cover every modeling technique, nor do they claim to be complete in any
sense. Instead, they demonstrate a flexible concept, which allows customization
for many use cases that is easily applicable without much configuration overhead.

Mosteller et.al.: Graphical Simulation Feedback in Petri Net-based DSLs 73



Reference Nets are applied as a target formalism, which benefit from powerful
modeling capabilities, Java integration, the underlying concurrency theory and
the Renew integrated development and simulation environment. The proposed
transformation to a powerful (Turing complete) formalism is attractive on the
one hand because the mentioned advantages of this formalism may be exploited.
On the other hand, the possibilities to perform formal analysis are restricted due
to the complexity of the formalism.

In the future we may benefit from the presented conceptual approach by
conceptualizing the transformation and restrictions of the target language, e.g.
to Place /Transition nets, to perform analysis. The flexibility with respect to the
formalisms opens up the possibility of applying a whole array of methods from
low-level analysis – e.g. using Renew’s integration of LoLA [7, 19] – to normal
software engineering validation like unit testing [21]. Based on our new feature
for visual feedback directly in the simulated domain specific model we provide
an improved experimentation environment to have interactive experiences with
the behavior of newly designed domain specific languages without extra work to
animate the models.

References

1. Biermann, E., Ehrig, K., Ermel, C., Hurrelmann, J.: Generation of simulation views
for domain specific modeling languages based on the Eclipse modeling framework.
In: 2009 IEEE/ACM International Conference on Automated Software Engineer-
ing. pp. 625–629 (Nov 2009). https://doi.org/10.1109/ASE.2009.46

2. Cabac, L.: Modeling Petri Net-Based Multi-Agent Applications, Agent
Technology – Theory and Applications, vol. 5. Logos Verlag, Berlin (2010),
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=2673&lng=eng&id=,
http://www.sub.uni-hamburg.de/opus/volltexte/2010/4666/

3. Cabac, L., Haustermann, M., Mosteller, D.: Renew 2.5 - towards a comprehensive
integrated development environment for petri net-based applications. In: Kordon,
F., Moldt, D. (eds.) Application and Theory of Petri Nets and Concurrency - 37th
International Conference, PETRI NETS 2016, Toruń, Poland, June 19-24, 2016.
Proceedings. Lecture Notes in Computer Science, vol. 9698, pp. 101–112. Sprin-
ger-Verlag (2016). https://doi.org/10.1007/978-3-319-39086-4_7

4. Combemale, B., Crégut, X., Giacometti, J.P., Michel, P., Pantel, M.: Intro-
ducing Simulation and Model Animation in the MDE Topcased Toolkit. In:
4th European Congress EMBEDDED REAL TIME SOFTWARE (ERTS). p.
http://www.erts2008.org/. Toulouse, France, France (Jan 2008), https://hal.
archives-ouvertes.fr/hal-00371596

5. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Information and Software Technology 50(12), 1281–1294 (Nov
2008). https://doi.org/10.1016/j.infsof.2008.02.006

6. Eclipse Foundation, Inc: Eclipse Modeling Framework (EMF) (2018), https://
www.eclipse.org/modeling/emf/, accessed on 2018-05-24

7. Hewelt, M., Wagner, T., Cabac, L.: Integrating verification into the PAOSE ap-
proach. In: Duvigneau, M., Moldt, D., Hiraishi, K. (eds.) Petri Nets and Software
Engineering. International Workshop PNSE’11, Newcastle upon Tyne, UK, June

74 PNSE’18 – Petri Nets and Software Engineering



2011. Proceedings. CEUR Workshop Proceedings, vol. 723, pp. 124–135. CEUR-
WS.org (Jun 2011), http://ceur-ws.org/Vol-723/paper9.pdf

8. Huber, P., Jensen, K., Shapiro, R.M.: Hierarchies in coloured petri nets. In: Rozen-
berg, G. (ed.) Advances in Petri Nets 1990 [10th International Conference on
Applications and Theory of Petri Nets, Bonn, Germany, June 1989, Proceed-
ings]. Lecture Notes in Computer Science, vol. 483, pp. 313–341. Springer (1989).
https://doi.org/10.1007/3-540-53863-1_30

9. Kindler, E.: ePNK applications and annotations: A simulator for YAWL nets. In:
Application and Theory of Petri Nets and Concurrency - 39th International Con-
ference, PETRI NETS 2018, Bratislava, Slovakia, June 27-29, 2018, Proceedings
(2018), to be published

10. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Pearson Education (Dec 2008)

11. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002), http://www.
logos-verlag.de/cgi-bin/engbuchmid?isbn=0035&lng=eng&id=

12. Kummer, O., Wienberg, F., Duvigneau, M., Cabac, L., Haustermann, M.,
Mosteller, D.: Renew – the Reference Net Workshop (Jun 2016), http://www.
renew.de/, release 2.5

13. Lohmann, N., Verbeek, E., Dijkman, R.M.: Petri net transformations for business
processes - A survey. Trans. Petri Nets and Other Models of Concurrency 2, 46–63
(2009). https://doi.org/10.1007/978-3-642-00899-3_3

14. Möller, P., Haustermann, M., Mosteller, D., Schmitz, D.: Simulating multiple for-
malisms concurrently based on reference nets. In: Moldt, D., Cabac, L., Rölke,
H. (eds.) Petri Nets and Software Engineering. International Workshop, PNSE’17,
Zaragoza, Spain, June 25-26, 2017. Proceedings. CEUR Workshop Proceedings,
vol. 1846, pp. 137–156. CEUR-WS.org (2017), http://CEUR-WS.org/Vol-1846/

15. Mosteller, D., Cabac, L., Haustermann, M.: Integrating Petri net semantics in a
model-driven approach: The Renew meta-modeling and transformation framework.
Transaction on Petri Nets and Other Models of Concurrency XI 11, 92–113 (2016).
https://doi.org/10.1007/978-3-662-53401-4_5

16. Mosteller, D., Haustermann, M., Moldt, D.: Prototypical graphical simulation feed-
back in reference net-based domain-specific languages within a meta-modeling en-
vironment. In: Bergenthum, R., Kindler, E. (eds.) Algorithms and Tools for Petri
Nets Proceedings of the Workshop AWPN 2017, Kgs. Lyngby, Denmark October
19–20, 2017. pp. 58–63. DTU Compute Technical Report 2017-06 (2017)

17. OMG, Object Management Group: Business Process Model and Notation (BPMN)
– Version 2.0.2 (2013), http://www.omg.org/spec/BPMN/2.0.2

18. Rybicki, F., Smyth, S., Motika, C., Schulz-Rosengarten, A., von Hanxleden, R.:
Interactive model-based compilation continued - incremental hardware synthesis
for sccharts. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification and Validation: Discussion, Dissemination, Applications -
7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece, October 10-
14, 2016, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9953, pp.
150–170 (2016). https://doi.org/10.1007/978-3-319-47169-3_12

19. Schmidt, K.: LoLA: A low level analyser. In: Nielsen, M., Simpson, D. (eds.)
ICATPN. pp. 465–474. Springer-Verlag (2000). https://doi.org/10.1007/3-540-
44988-4_27

20. Sedrakyan, G., Snoeck, M.: Enriching model execution with feedback to sup-
port testing of semantic conformance between models and requirements - de-
sign and evaluation of feedback automation architecture. In: Calabrò, A.,

Mosteller et.al.: Graphical Simulation Feedback in Petri Net-based DSLs 75



Lonetti, F., Marchetti, E. (eds.) Proceedings of the International Workshop
on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn,
AMARETTO@MODELSWARD 2016, Rome, Italy, February 19-21, 2016. pp. 14–
22. SciTePress (2016). https://doi.org/10.5220/0005841800140022

21. Wincierz, M.: A tool chain for test-driven development of reference net software
components in the context of CAPA agents. In: Moldt, D., Cabac, L., Rölke, H.
(eds.) Petri Nets and Software Engineering. International Workshop, PNSE’17,
Zaragoza, Spain, June 25-26, 2017. Proceedings. CEUR Workshop Proceedings,
vol. 1846, pp. 197–214. CEUR-WS.org (2017), http://CEUR-WS.org/Vol-1846/

76 PNSE’18 – Petri Nets and Software Engineering


