
On Modelling and Validation of the MQTT IoT
Protocol for M2M Communication

Alejandro Rodriguez1,
Lars Michael Kristensen1 and Adrian Rutle1

1Western Norway University of Applied Sciences, Bergen
{arte,lmkr,aru}@hvl.no

Abstract. Machine to Machine (M2M) communication and Internet of
Things (IoT) are becoming still more pervasive with the increase of com-
municating devices used in cyber-physical environments. A prominent
approach to communication between distributed devices in highly dy-
namic IoT environments is the use of publish-subscribe protocols such
as the Message Queuing Telemetry Transport (MQTT) protocol. MQTT
is designed to be light-weight while still being resilient to connectivity
loss, component failures, and loss of packets. We have developed a formal
model of the MQTT protocol logic covering all three quality of service
levels provided by MQTT (at most once, at least once, and exactly once).
For the initial verification of the protocol model, we show how an incre-
mental model checking approach can be used to reduce the effect of
the state explosion problem. This is done by exploiting that the MQTT
protocol operates in phases comprised of connect, subscribe, publish,
unsubscribe, and disconnect.

Keywords: Coloured Petri Nets, Modelling, Verification, Communica-
tion Protocols, Internet of Things

1 Introduction

Publish-subscribe messaging systems [9] support data-centric communication
and have been widely used in enterprise networks and applications, mainly due
to scalability and support for dynamic application topology. The interaction and
exchange of messages between clients following the publish-subscribe paradigm
are always undertaken using an intermediary usually called a broker (or a bus)
that manages topics. A client acting as a publisher on a given topic can send
messages to other clients acting as subscribers to the topic without the need to
know about the existence of the receiving clients.

A software system architecture based on publish-subscribe messaging pro-
vides more scalability than the traditional client-server architecture. One reason
for this is that operations carried out in the broker can be highly parallelized
and handled using event-driven techniques. The decoupling that the event service
provides between clients acting as publishers or subscribers can be decomposed
along the following three dimensions:

Space decoupling: Clients only need to be aware of the connection to the
broker (bus).

Time decoupling: Clients can exchange messages without being executing at
the same time.

Synchronisation decoupling: Activities on clients are not interrupted during
publishing or receiving.

MQTT [3] is a publish-subscribe messaging transport protocol designed with
the aim of being light-weight and easy to implement. These characteristics make
it a suitable candidate for constrained environments such as Machine-to-Machine
communication (M2M) and Internet of Things (IoT) contexts where a small
memory footprint is required and where network bandwidth is often a scarce
resource. Even though MQTT has been designed to be easy to implement, it
still contains relatively complex protocol logic for handling connections, sub-
scriptions, and the various quality of service levels related to message delivery.
Furthermore, MQTT is expected to play a key role in future IoT applications.
This means that MQTT will be implemented for a wide range of platforms and
in a broad range of programming languages making interoperability a key issue.
This, combined with the fact that MQTT is only backed by an (ambiguous)
natural language specification, motivated us to develop a formal and executable
specification of the MQTT protocol.

We have used Coloured Petri Nets (CPNs) and CPN Tools [13] for the de-
velopment of the executable MQTT specification as these have been successfully
applied in earlier work to build formal specifications of communication proto-
cols [8], data networks [5], and embedded systems [1]. To ensure the proper
operations of the constructed CPN model, we have validated the CPN model
using simulation and verified an elaborate set of behavioural properties of the
constructed model using model checking and state space exploration. In the
course of our work on the MQTT specification [3] and the development of the
CPN model, we have identified a number of issues related in particular to the im-
plementation of the quality of service levels. We suspect these will be a source of
interoperability problems between implementations. Compared to earlier work
on modelling and verification of publish-subscribe protocols [20, 4, 10] (which
we discuss in more details towards the end of this paper) our work specifically
targets MQTT and we consider a more extensive set of behavioural properties.

The rest of this paper is organised as follows. In Sect. 2 we present the
MQTT protocol context and give a high-level overview of the constructed CPN
model. Section 3 details selected parts of the CPN model of the MQTT pro-
tocol. In Sect. 4 we present our experimental results on using simulation and
model checking to validate and verify central properties of MQTT and the CPN
model. Finally, in Sect. 5 we sum up the conclusions, discuss related work, and
outlines directions for future work. Due to space limitation we cannot present
the complete CPN model of the MQTT protocol. The constructed CPN model
is available via [16]. The reader is assumed to be familiar with the basic concepts
of CPNs [13].

100 PNSE’18 – Petri Nets and Software Engineering

2 MQTT Protocol Context and CPN Model Overview

During the last years there have been a huge increase in the use of devices related
to Internet of Things (IoT) [18]. The International Union (ITU) [12] defines IoT
as a global infrastructure for the information society, enabling advanced services
by interconnecting physical and virtual devices. The fields of application for IoT
technologies are broad, and IoT solutions are being adopted in several different
environments.

At its core, IoT is characterised by the combination of physical and digi-
tal components to create new products and enable novel business models [18].
Thanks to increasingly efficient power management, broadband communication,
reliable memory and advances in microprocessor technologies, it has become
possible to digitalize functions and key capabilities of industrial products [19].

2.1 The MQTT Protocol

The IoT paradigm blends the virtual and the physical worlds by bringing dif-
ferent concepts and technical components together: pervasive networks, minia-
turisation of devices, mobile communication, and new ecosystems [6]. As de-
scribed in [18], from the technological side, the implementation of a connected
product typically requires the combination of multiple software and hardware
components distributed in a multi-layer stack of IoT technologies. A typical IoT
technology stack is divided in three core layers:

Device layer: This layer encompasses the hardware. Additional sensors, actu-
ators, or processors can be added to existing core hardware components, and
embedded software can be modified or integrated to manage and operate the
functionality of the physical device.

Connectivity layer: Communication protocols such as MQTT enable the com-
munication between the individual elements and the cloud.

Cloud layer: This layer manages all the devices connected and the data gen-
erated by them. Developers can provide applications for the communication
between the heterogeneous devices that constitute the IoT environment and
derive knowledge based on data analytics.

MQTT [3] runs over TCP/IP, or over other network protocols that provide
ordered, lossless and bidirectional connections. It uses the publish/subscribe mes-
sage system combined with the concept of topics to provide one-to-many mes-
sage distribution. The message transport structure is agnostic to the payload
contained, i.e., the actual content that will be sent in the message.

Topics. MQTT applies topic-based filtering of messages with a topic being part
of each published message. The broker uses the topics to determine whether a
subscribing client should receive the message or not. Clients can subscribe to
as many topics as they are interested in. A topic consists of one or more topic
levels. Each topic level is separated by a forward slash (topic level separator).

Rodriguez et.al.: On Modelling and Validation of the MQTT Protocol 101

Fig. 1. MQTT topic examples.

This topic structure keeps a tree hierarchy, so clients can subscribe to specific
topics, levels, and groups of topics easily.

Figure 1 shows an example for a possible topic distribution for handling some
sensors in a house. If a client subscribes to the topic Home/BedRoom/temperature
it will only receive notifications from the temperature sensor in the bedroom.
If the subscription is made to the topic Home/+/humidity the receiver will get
messages from the humidity sensors in the house. Here, the +-wildcard allows
to subscribe in a single level of the topic hierarchy and as a result both the
BedRoom and LivingRoom matches into the pattern. A client subscribed to the
topic Home/# will get messages from all the devices in the house. Here, the #-
wildcard is used to subscribe to multiple levels.

Quality of Service. The MQTT protocol delivers application messages according
to the three Quality of Service (QoS) levels defined in [3]. The delivery protocol
is symmetric, and the clients and the broker can each take the role of either a
sender or a receiver. The delivery protocol is concerned solely with the delivery
of an application message from a single sender to a single receiver. When the
broker is delivering an application message to more than one client, each client is
treated independently. The QoS level used to deliver an outbound message from
the broker could differ from the QoS level designated in the inbound message.
Therefore we need to distinguish two different parts of delivering a message: a
client that publishes to the broker and the broker that forwards the message to
the subscribing clients. The three MQTT QoS levels for message delivery are:

At most once: (QoS level 0): The message is delivered according to the ca-
pabilities of the underlying network. No response is sent by the receiver and
no retry is performed by the sender. The message arrives at the receiver
either once or not at all. An application of this QoS level is in environ-
ments where sensors are constantly sending data and it does not matter if
an individual reading is lost as the next one will be published soon after.

At least once (QoS level 1): Where messages are assured to arrive, but du-
plicates can occur. It fits adequately for situations where delivery assurance
is required but duplication will not cause inconsistencies. An application
of this are idempotent operations on actuators, such as closing a valve or
turning on a motor.

Exactly once (QoS level 2): Where messages are assured to arrive exactly
once. This is for use when neither loss nor duplication of messages are ac-

102 PNSE’18 – Petri Nets and Software Engineering

ceptable. This level could be used, for example, with billing systems where
duplicate or lost messages could lead to incorrect charges being applied.

When a client subscribes to a specific topic with a certain QoS level it means
that the client is determining the maximum QoS that can be expected for that
topic. When the broker transfers the message to a subscribing client it uses
the QoS of the subscription made by the client. Hence QoS guarantees can get
downgraded for a particular receiving client if subscribed with a lower QoS. This
means that if a receiver is subscribed to a topic with a QoS level 0, no matter if
a sender publishes in this topic with a QoS level 2, then the receiver will proceed
with its QoS level 0.

2.2 CPN Model Overview

Figure 2 shows the top-level module of the CPN model which consists of two
substitution transitions (drawn as rectangles with double-lined borders) rep-
resenting the Clients and the Broker roles of MQTT. Substitution transitions
constitute the basic syntactical structuring mechanism of CPNs and each of the
substitution transitions has an associated submodule that models the detailed
behaviour of the clients and the broker, respectively. The name of the submod-
ule associated with a substitution transition is written in the rectangular tag
positioned next to the transition. The CPN model of the MQTT protocol con-
sists of 24 modules organised into six hierarchical levels. We have constructed
a parametric CPN model which makes it easy to change the number of clients
and topics without making changes to the net-structure. This makes it possible
to investigate different configuration of MQTT and it is a main benefit provided
by CPNs in comparison to ordinary Petri Nets.

As described in [15], an MQTT client can operate as a publisher or subscriber.
We use the term client to generally refer to a publisher or a subscriber. There is
no restrictions in terms of hardware to run as a MQTT client, and any device
equipped with a MQTT library and connected to a MQTT broker can operate
as a client. The MQTT broker [15] is the core of any publish/subscribe protocol.
Topics are the mechanism to filter messages in the MQTT protocol. A client
can either subscribe to a topic to receive messages or publish on a topic. The
broker is primarily responsible for receiving and filtering messages, deciding to
which clients they will be dispatched and sending them to all subscribed clients.
Another responsibility of the broker is client authentication and authorisation.

The two substitution transitions in Fig. 2 are connected via directed arcs
to the two places CtoB and BtoC. The clients and the broker interact by pro-
ducing and consuming tokens on the places. Figure 3 shows the central data
type definitions used for the colour sets of the places CtoB and BtoC and the
modelling of clients and messages. The colour sets QoS is used for modelling the
three quality of service levels supported by MQTT, and the colour set PID is
used for modelling the packet identifiers which plays a central role in the MQTT
protocol logic. It can be seen that we have abstracted from the actual payload of

Rodriguez et.al.: On Modelling and Validation of the MQTT Protocol 103

CtoB

BrokerxMessages

[]

BtoC

ClientxMessages

initMsgQueue()

Broker

BrokerBroker

Clients

ClientClient

1 1`[]1 1`[(client(1),[]),(client(2),[])]

Fig. 2. The top-level module of the MQTT CPN model.

the published messages as these are not central for modelling the protocol logic.
For similar reasons, we also abstract from the hierarchical structuring of topics.

The places CtoB and BtoC are designed to behave as queues. The purpose
of this is to assure the ordered message distribution property specified in the
MQTT documentation. Even so, these two places are slightly different; while
CtoB is modelled as a single queue that the broker manages to consume messages,
BtoC is designed to maintain an incoming queue of messages for each client.
This construction assures that all clients will have their own queue, respecting
the ordered reception of messages. The function initMsgQueue() initialises the
queues according to the number of clients specified by the symbolic constant C.
The BrokerxMessages colour set for the CtoB place used at the bottom of Fig. 3
consists of a list of ClientxMessage which are pairs of Client and Messages.

We represent all the messages that the clients and the broker can use by
means of the Message colour set. We use the terms packet and message in-
distinguishably when we refer to control packets. The control information used
depends on the messages considered. As an example, a Connectmessage (packet)
does not contain control information, but a Publish message requires a specific
Topic, QoS, and PID. The Topic and QoS colour sets are both indexed types
containing values (topic(1), topic(2) ... topic(T) depending on the constant
T, and QoS(0), QoS(1) and QoS(2), respectively. The ClientxMessages colour
set for the BtoC place encapsulates all the queues (each one declared as a pair
of Client and Messages in the ClientxMessageQueue colour set) in one single
queue. This construction allows us to deal with the distribution of multiple mes-
sages in a single step in the broker side which in turn simplifies the modelling of
the broker and reduces the number of reachable states of the model.

3 Modelling the Protocol Roles and their Interaction

We now consider the different phases and client-broker interaction in the MQTT
protocol, and show how we have modelled the MQTT protocol logic using CPNs.

104 PNSE’18 – Petri Nets and Software Engineering

val T = 5; (* number of topics *)
val C = 2; (* number of clients *)

colset Client = index client with 1..C;
colset Topic = index topic with 1..T;
colset QoS = index QoS with 0..2; (* quality of service *)
colset PID = INT; (* packet identifiers *)

colset TopicxPID = product Topic * PID;
colset TopicxQoSxPID = product Topic * QoS * PID;

colset Message = union CONNECT + CONNACK +
SUBSCRIBE : TopicxQoSxPID + UNSUBSCRIBE : TopicxPID +
SUBACK : TopicxQoSxPID + UNSUBACK : TopicxPID
PUBLISH : TopicxQoSxPID +
PUBACK : TopicxPID + PUBREC : TopicxPID +
PUBREL : TopicxPID + PUBCOMP : TopicxPID +
DISCONNECT;

colset Messages = list Message;

colset ClientxMessage = product Client * Message;
colset BrokerxMessages = list ClientxMessage;

colset ClientxMessageQueue = product Client * Messages;
colset ClientxMessages = list ClientxMessageQueue;

Fig. 3. Client and message colour set definitions

3.1 Interaction Overview

In order to show how clients and the broker interact, we describe the different
actions that clients may carry by considering an example. Figure 4 shows a
sequence diagram for a scenario where two clients connect, perform subscribe,
publish and unsubscribe, and finally disconnect from the broker. The protocol
interaction is as follows:

1. Client 1 and Client 2 request a connection to the Broker.
2. The Broker sends back a connection acknowledgement to confirm the estab-

lishment of the connection.
3. Client 2 subscribes to topic 1 with a QoS level 1, and the Broker confirms

the subscription with a subscribe acknowledgement message.
4. Client 1 publishes on topic 1 with a QoS level 1. The Broker responds with a

corresponding publish acknowledgement.
5. The Broker transmits the publish message to Client 2 which is subscribed to

the topic.

Rodriguez et.al.: On Modelling and Validation of the MQTT Protocol 105

Fig. 4. Message sequence diagram illustrating the MQTT phases.

6. Client 2 gets the published message, and sends a publish acknowledgement
back as a confirmation to the Broker that it has received the message.

7. Client 2 unsubscribes to topic 1, and the Broker responds with an unsubscribe
acknowledgement.

8. Client 1 and Client 2 disconnect.

3.2 Client and Broker State Modelling

The colour sets defined for modelling the client state are shown in Fig. 5. The
states of the clients are represented by the ClientxState colour set which is
a product of Client and ClientState. The record colour set ClientState is
used to represent the state of a client which consists of a list of TopicxQoS,
a State, and a PID. Using this, a client stores the topics it is subscribed to,
and the quality of service level of each subscription. The State colour set is an
enumeration type containing the values READY (for the initial state), WAIT (when
the client is waiting to be connected), CON (when the client is connected), and
DISC (for when the client has disconnected).

Below we present selected parts of the model by first presenting a high-level
view of the clients and broker sides, and then illustrating how the model captures
the execution scenario described in Section 3.1 where two clients connects, one
subscribes to a topic, and the other client publishes on this topic. The unsub-
scribe and the disconnection phases are not detailed due to space limitations.

106 PNSE’18 – Petri Nets and Software Engineering

colset State = with READY | DISC | CON | WAIT;

colset TopicxQoS = product Topic * QoS;
colset ListTopicxQoS = list TopicxQoS;

colset ClientState = record topics : ListTopicxQoS *
state : State *
pid : PID;

colset ClientxState = product Client * ClientState;

Fig. 5. Colour set definitions used for modelling client state.

3.3 Client Modelling

The ClientProcessing submodule in Fig. 6 models all the operations that a client
can carry out. Clients can behave as senders and receivers, and the five substitu-
tion transitions CONNECT, PUBLISH, SUBSCRIBE, UNSUBSCRIBE and DISCONNECT
has been constructed to capture both behaviours.

ClientsIn/Out

ClientxState

In/Out

CtoBOut

BrokerxMessages

OutBtoCIn

ClientxMessages

In

PUBLISH

PUBLISHPUBLISH

SUBSCRIBE

SUBSCRIBESUBSCRIBE

UNSUBSCRIBE

UNSUBSCRIBEUNSUBSCRIBE

DISCONNECT

DISCONNECTDISCONNECT

CONNECT

CONNECTCONNECT

2

1`(client(1),{topics=[],state=READY,p
id=0})++
1`(client(2),{topics=[],state=READY,p
id=0})

1 1`[]1 1`[(client(1),[]),(client(2),[])]

Fig. 6. ClientProcessing submodule.

The socket place Clients stores the information of all the clients that are
created at the beginning of the execution of the model. In this scenario there
are two clients, and the value of the tokens representing the state of the two

Rodriguez et.al.: On Modelling and Validation of the MQTT Protocol 107

clients is provided in the green rectangle (the marking of the place) next to the
Clients place. The BtoC and CtoB port places are associated with the socket
places already shown in Fig. 3.

3.4 Broker Modelling

We have modelled the broker similarly as we have done for clients. This can be
seen from Fig. 7 which shows the BrokerProcessing submodule. The Connected-
Clients place keeps the information of all clients as perceived by the broker. This
place is designed as a central storage, and it is used by the broker to distribute
the messages over the network. The broker behaviour is different from that of
the clients, since it will have to manage all the requests and generate responses
for several clients at the same time.

CtoBIn

BrokerxMessages

Connected
Clients

Out
ClientsxState

BtoCOut

ClientxMessages

Process
DISCONNECT

ProcessDISCONNECTProcessDISCONNECT

Process
UNSUBSCRIBE

ProcessUNSUBSCRIBEProcessUNSUBSCRIBE

Process
CONNECT

ProcessCONNECTProcessCONNECT

Process
PUBLISH

ProcessPUBLISHProcessPUBLISH

Process
SUBSCRIBE

ProcessSUBSCRIBEProcessSUBSCRIBE

In

Out

Out1 1`[]

1 1`[]

1

1`[(client(1),[]),(client(2),[])]

Fig. 7. The BrokerProcessing module.

3.5 Connection Phase

The first step for a client to be part of the message exchange is to connect to the
broker. A client will send a CONNECT request, and the broker will respond with a
CONNACK message to complete the connection establishment. Figure 8 shows the
CONNECT submodule in a marking where client(1) has sent a CONNECT request
and it is waiting (state = WAIT) for the broker acknowledgement processing to
finish such that the connection state can be set to CON.

108 PNSE’18 – Petri Nets and Software Engineering

CtoBOut

BrokerxMessages

Out

Clients

In/Out

ClientxState

BtoCIn

ClientxMessages

Send
CONNECT

[isClientState (cs,READY),
 nLR outmsgs]

Receive
CONNACK

[isClientState (cs,WAIT),
 hasCONNACK (cs,inmsgs)]

sendMsg outmsgs (cs,CONNECT)

setClientState (cs,WAIT)

cs

outmsgsinmsgs

setClientState (cs,CON)

cs

recvMsg(cs,inmsgs)

In

In/Out

1 1`[(client(1),CONNECT)]

2

1`(client(1),{topics=[],state=WAIT,pi
d=0})++
1`(client(2),{topics=[],state=READY,p
id=0})

1 1`[(client(1),[]),(client(2),[])]

outmsgs = []

cs = (client(1),{topics=[],state=READY,pid=0})

Fig. 8. CONNECT module after the send-connect occurrence.

The broker will receive the CONNECT request. The broker will register the
client in the place ConnectedClients and send back the acknowledgement. Figure 9
shows the situation where client(1) is connected in the broker side and the
CONNACK response has been sent back to the client. The function connectClient()
used on the arc from the ProcessCONNECT transition to the ConnectedClients
place will record the connected client on the broker side. The last step of the
connection establishment will occur again in the clients side, where the transition
ReceiveCONNACK (in Fig. 8) will be enabled, meaning that the confirmation for
the connection of client(1) can proceed.

Connected
Clients

In/Out

ClientsxState

BtoC Out

ClientxMessages

CtoBIn

BrokerxMessages

Process
CONNECT

[cLR boutmsgs]

connectClient(clstates,c)

bsendMsg (boutmsgs,(c,CONNACK))((c,CONNECT)::msgs)

msgs

clstates

boutmsgs

Out

In/Out

In

1
1`[(client(1),{topics=[],state=CON,pi
d=0})]

1
1`[(client(1),[CONNACK]),(client(2),[])
]

1 1`[]

Fig. 9. ProcessCONNECT module after the process-connect occurrence.

Rodriguez et.al.: On Modelling and Validation of the MQTT Protocol 109

3.6 Subscription Phase

Starting from the point where both clients are connected, i.e., for both clients, the
state is CON as shown at the top of Fig. 10), the client(2) will send a SUBSCRIBE
request to topic(1) with QoS(1). The place PendingAcks represents a queue that
each client maintains to store the PIDs that are waiting to be acknowledged. In
this example, the message has assigned a PID = 0, and client(2) is waiting for
an acknowledgement to this subscription with a PID = 0. When a client receives
a SUBACK (subscribe acknowledgement) it will check that the packet identifier (0
in this case) is the same to ensure that the correct packet is being received. At
the bottom right side of the Fig. 10, the message has been sent to the broker.

Clients

In/Out
ClientxState

CtoBOut

BrokerxMessages

BtoCIn

ClientxMessages

In

PendingAcks

ClientxPIDs

initQueue()

can
Subscribe

QoS

iSubscribe

Send
SUBSCRIBE

[checkClientCON(cs),
 nLR msgs, c = #1 cs,
 listpids = [],
 notSubscribed(t,cs),
 subLR (#pid (#2 cs))]

Receive
SUBACK

[hasSUBACK(cs,inmsgs),
 (#1 cs) = c]

cs

(msgs^^[(c, SUBSCRIBE(t,qos,(#pid (#2 cs))))])msgsinmsgs

clientSubTopic(cs,getMsg(cs,inmsgs),listpids)

cs

(c,listpids)

(c,listpids^^[#pid (#2 cs)])(c,rmPid (listpids,
 getMsg (cs,inmsgs)))

(c,listpids)

increasePID(cs)

qos

recvMsg (cs,inmsgs)

In/Out

Out

2

1`(client(1),{topics=[],state=CON,pid
=0})++
1`(client(2),{topics=[],state=CON,pid
=1})

1
1`[(client(2),SUBSCRIBE((topic(1),QoS
(2),0)))]

1 1`[(client(1),[]),(client(2),[])]

2
1`(client(1),[])++
1`(client(2),[0])

1 1`QoS(2)

Fig. 10. SUBSCRIBE module after the subscribe occurrence.

We show now the situation where the SUBSCRIBE request has been processed
by the broker as represented in Fig. 11. The function brokerSubscribeUpdate()
manages the subscription process, so if the client is subscribing to a new topic,
it will be added to the client state stored in the broker. If the client is already
subscribed to this topic it will update it. In the example, one can see that
client(1) keeps the same state, but client(2) has appended this new topic
to its list. The corresponding SUBACK message has been sent to client(2) (with
the PID set to 0) to confirm the subscription. Next, client(2) will detect that
the response has arrived and it will check that the packet identifiers correspond
to each other.

3.7 Publishing Phase

The publishing process in the considered scenario requires two steps to be com-
pleted. First a client sends a PUBLISH in a specific topic, with a specific QoS,
which is received by broker. The broker will answer back with the corresponding

110 PNSE’18 – Petri Nets and Software Engineering

Connected
Clients

In/Out

ClientsxState

CtoBIn

BrokerxMessages

BtoC Out

ClientxMessages

process
SUBSCRIBE

[isClientConnected(clstates,c),
cLR boutmsgs]

clstates

((c,SUBSCRIBE(t,qos,pid))::msgs)

msgs

bsendMsg (boutmsgs,(c,SUBACK(t,qos,pid)))

brokerSubscribeUpdate(clstates,(c,t,qos))

boutmsgs

In Out

In/Out 1
1`[(client(1),{topics=[],state=CON,pi
d=0}),(client(2),{topics=[(topic(1),Qo
S(1))],state=CON,pid=0})]

1 1`[] 1
1`[(client(1),[]),(client(2),[SUBACK((to
pic(1),QoS(1),0))])]

Fig. 11. ProcessSUBSCRIBE module after occurrence of ProcessSUBSCRIBE.

acknowledgement, depending on the quality of service previously set. Second,
the broker, that stores information for all clients, will propagate the PUBLISH
sent by the client to any clients subscribing to that topic. We have modelled
the clients and broker sides using different submodules depending on the qual-
ity of service that is being applied for sending and receiving. In our example,
client(1) will publish in topic(1) with a QoS(1). This means that the broker
will acknowledge back with a PUBACK to client(1), and will create a PUBLISH
message for client(2), which is subscribed to this topic with a QoS(1). In this
case, there is no downgrading for the client(2), so the publication process will
be similar to step 1, i.e, client(2) will send back a PUBACK to the broker.

Figure 12 shows the scenario where client(1) has sent a PUBLISH with
a QoS(1) for the topic(1). Similar to the subscription process, the place CtoB
holds the message that the broker will receive, and the place Publishing keeps the
information (PID and topic in this case) of the packet that needs to be acknowl-
edged. The transition TimeOut models the behaviour for the re-transmission of
packets. Quality of service level 1 assures that the message will be received at
least once. The TimeOut transition will be enabled to re-send the message until
the client has received the acknowledgement from the broker.

The Broker module models the logic for both receiver and sender behaviours.
Figure 13 shows a marking corresponding to the state where the broker has
processed the PUBLISH request made by client(1), and it has generated both
the answer to this client and the PUBLISH message for client(2) (in this case,
only one client is subscribed to the topic). The port place BPID (Broker PID),
at top right of Fig. 13, will hold a packet identifier for each message that the
broker re-publishes to the clients. The port place Publishing keeps information
for all the clients that will acknowledge back the publish messages transmitted
by the broker. Again, a TimeOut is modelled which, in this case, creates PUBLISH
messages for all the clients subscribed to the topic in question. In the BtoC place
(bottom right of Fig. 13), one can see that both messages have been sent, one

Rodriguez et.al.: On Modelling and Validation of the MQTT Protocol 111

ClientsIn/Out

ClientxState

CtoB In/Out

BrokerxMessages

Publishing

ClientxListPIDxTopic

initQueue()

BtoC

In

ClientxMessages

PUBLISH_QoS_1

[checkClientCON(cs),
 nLR msgs,
 epub 1, c = #1 cs,
pubLR (#pid (#2 cs))]

receive
PUBACK

[hasPUBACK(c,inmsgs)]

TimeOut

[nLR msgs,timeout()]

cs

msgs

increasePID(cs)

(msgs^^[(#1 cs, PUBLISH(t,QoS(1), (#pid (#2 cs))))])

(#1 cs,
listpidsxtopics^^[((#pid (#2 cs)),t)])

(c, (pid,t)::listpidsxtopics)

(msgs^^[(c, PUBLISH(t,QoS(1),pid))])

msgs

precvMsg (c,inmsgs)

(c,listpidsxtopics) (c, listpidsxtopics)

(c, rmPidT
 (listpidsxtopics,
 (pgetMsg (c,inmsgs))))

(c,listpidsxtopics^^[(pid,t)])
inmsgs

In/Out

In/Out
In

2 1`(client(1),{topics=[],state=CON,pid
=1})++
1`(client(2),{topics=[(topic(1),QoS(1)
)],state=CON,pid=1})

1
1`[(client(1),PUBLISH((topic(1),QoS(1
),0)))]

2

1`(client(1),[(0,topic(1))])++
1`(client(2),[])

1

1`[(client(1),[]),(client(2),[])]

Fig. 12. PUBLISH_QoS_1 module after the PUBLISH_QoS_1 occurrence.

for the original sender client(1) (PUBACK packet), and one for the only receiver
client(2) (PUBLISH packet).

To finish the process, client(2) will notice that there has been a message
published in topic(1). Since client(2) is subscribed to this topic with QoS(1),
it must send a PUBACK acknowledgement to the broker to confirm that it has
received the published message. Figure 14 shows the Receive_QoS_1 submodule
in the clients side. The transition Receive_QoS_1 has been fired meaning that
client(2) has received the publish message from the broker, and has sent the
corresponding PUBACK. When the broker detects the incoming PUBACK message,
it will check if there is some confirmation pending in the Publishing place (in
Fig. 13 where client(2) is waiting for a PID = 0 in topic(1) with QoS(1).

4 Model Validation

During development of the MQTT protocol model we used single-step and auto-
matic simulation to test the proper operation of the model. To perform a more
exhaustive validation of the model, we have conducted state space exploration
of the model and verified a number of behavioural properties.

We have conducted the verification of properties using an incremental ap-
proach consisting of three steps. In the first step we include only the parts related
to clients connecting and disconnecting. In the second step we add subscribe and
unsubscribe, and finally in the third step we add data exchange considering the
three quality of service levels in turn. At each step, we include verification of ad-
ditional properties. The main motivation underlying this incremental approach
is to be able to control the effect of the state explosion problem. Errors in the
model will often manifest themselves in leading to a very large state space. Hence,
by incrementally adding the protocol features, we can mitigate the effect of this

112 PNSE’18 – Petri Nets and Software Engineering

BPIDIn/Out

PID

1`0

In/Out

CtoBIn/Out

BrokerxMessages

In/Out BtoC Out

ClientxMessages

Out

PublishingIn/Out

ListClientxListPIDxTopicxQoS

initQueue()

In/Out

Connected
Clients

In/Out
ClientsxState

In/Out

Process_QoS_1

[cLR boutmsgs]

ReceivePUBACK

TimeOut

[createPublishQoS1 listcxlptq <> [],
 nLR boutmsgs,timeout()]

(bpid + 1)

bpid

msgs

((c,PUBLISH(t,QoS(1),pid))::msgs)
bsendMsgs(boutmsgs,
 brokerDispatchPublishQos1 (bpid, clstates, c, t, pid))

brokerCreateACKWaiting(bpid, clstates, t, listcxlptq)

clstates

listcxlptq

msgs

(c,PUBACK(t,pid))::msgs

brokerUpdateACKWaiting(c,pid,listcxlptq)

listcxlptq

listcxlptq
bsendMsgs (boutmsgs,
 createPublishQoS1 listcxlptq)

boutmsgs

boutmsgs

1 1`1

1 1`[]

1
1`[(client(1),[PUBACK((topic(1),0))]),(
client(2),[PUBLISH((topic(1),QoS(1),0)
)])]

1
1`[(client(1),[]),(client(2),[(0,topic(1),
QoS(1))])]

1
1`[(client(1),{topics=[],state=CON,pi
d=0}),(client(2),{topics=[(topic(1),Qo
S(1))],state=CON,pid=0})]

Fig. 13. Process_QoS_1 module after the Process_QoS_1 occurrence.

phenomenon. We identified several modelling errors in the course of conducting
this incremental model validation based on the phases of the MQTT protocol.

To obtain a finite state space, we have to limit the number of clients and
topics, and also bound the packet identifiers. It can be observed that there is
no interaction between clients and brokers across topics as the protocol treats
each topic in isolation. Executing the protocol with multiple topics is equivalent
to running multiple instances of the protocol in parallel. We therefore only con-
sider a single topic for the model validation. Initially, we consider two clients.
The packet identifiers are incremented throughput the execution of the differ-
ent phases of the protocol (connect, subscribe, data exchange, unsubscribe, and
disconnect). This means that we cannot use a single global bound on the packet
identifiers as a client could reach this bound, e.g., already during the publish
phase and hence the global bound would prevent a subsequent unsubscribe to
take place. We therefore introduce a local upper bound on packet identifiers for
each phase. This local bound expresses that the given phase may use packet
identifiers up to this local bound. Note that the use of bounds does not guar-
antee that the client uses packet identifiers up to bound. It is the guard on the
transitions sending packets from the clients that ensures that these local bounds
are accomplished. Finally, we enforce an upper bound on the number of messages
that can be in the message queues on the places CtoB and BtoC.

Below we describe each step of the model validation and the behavioural
properties verified. The properties verified in each step include the properties
from the previous step. We summarise the experimental results at the end. For
the actual checking of properties, we have used the state and action-oriented
variant of CTL supported by the ASK-CTL library of CPN Tools.

Rodriguez et.al.: On Modelling and Validation of the MQTT Protocol 113

CtoB In/Out

BrokerxMessages

In/OutBtoCIn/Out

ClientxMessages

In/Out

ClientsIn/Out

ClientxState

In/Out

Receive_QoS_1

[(c= #1 cs),LR 3 msgs,
 hasPUBLISH (QoS(1)) (cs,inmsgs)]

msgs^^sendPUBACK (c, inmsgs)

msgs

recvMsg (cs,inmsgs)

cs

inmsgs

11`[(client(2),PUBACK((topic(1),0)))]1 1`[(client(1),[PUBACK((topic(1),0))]),(
client(2),[])]

2

1`(client(1),{topics=[],state=CON,pid
=1})++
1`(client(2),{topics=[(topic(1),QoS(1)
)],state=CON,pid=1})

Fig. 14. Receive module after the transition Receive_QoS_1 occurrence

Step 1 – Connect and Disconnect. In the first step, we consider only the
part of the model related to clients connecting and disconnecting to the broker.
The state space in this step is rather small, and consists of only 33 states, 44 arcs,
and a single dead marking. We consider the following behavioural properties:

S1-P1-ConsistentConnect The clients and the broker have a consistent view
of the connection state. This means that if the client in the clients side is in
a connect state, then also the broker has the client recorded as connected.

S1-P2-ClientsCanConnect For each client, there exists a reachable state in
which the client is connected to the broker.

S1-P3-ConsistentTermination In each terminal state (dead marking), clients
are in a disconnect state, the broker has recorded the clients as disconnected,
no clients are recorded as subscribed in both clients and broker sides, and
there are no outstanding messages in the message buffers.

S1-P4-PossibleTermination The protocol can always be terminated, i.e., a
terminal state (dead marking) can always be reached.

The two properties S1-P3 and S1-P4 imply partial correctness of the protocol
as it states that the protocol can always be terminated, and if it terminates, then
it will be in a correct state. The state space obtained in this step is acyclic which
together with S1-P3 implies the stronger property of eventual correct termina-
tion. This is, however, more a property how the model has been constructed as
in a real implementation there is nothing forcing a client to disconnect.

Step 2 – Subscribe and Unsubscribe. In the second step, we add the abil-
ity for the clients to subscribe and unsubscribe (in addition to connect and
disconnect from step 1). The state space when adding these features has 1716
states, 4412 edges, and a single dead marking. For subscribe and unsubscribe we
additionally consider the following properties:

114 PNSE’18 – Petri Nets and Software Engineering

S2-P1-CanSubscribe For each of the clients, there exists states in which both
the clients and the broker sides consider the client to be subscribed.

S2-P2-ConsistentSubscription If the broker side considers the client to be
subscribed, then the clients side considers the client to be subscribed.

S2-P3-EventualSubscribed If the client sends a subscribe message, then even-
tually both the clients and the broker sides will consider the client to be
subscribed.

S2-P4-CanUnsubscribe For each client there exists executions in which the
client sends an unsubscribe message.

S2-P5-EventualUnsubscribed If the client sends an unsubscribe message,
then eventually both the clients and the broker sides considers the client to
be unsubscribed.

It should be noted that for property S2-P2, the antecedent of the implication
deliberately refers to the broker side. This is because the broker side unsubscribes
the client upon reception of the unsubscribe message, whereas the client side does
not remove the topic from the set of subscribed topics until the subscribe ac-
knowledgement message is received from the broker. Hence, during unsubscribe,
we may have the situation that the broker has unsubscribed the client, but the
subscribe acknowledgement has not yet been received on the client side.

Step 3 – Publish and QoS levels. In this step we also consider publication
of data for each of the three quality of service levels. As we do not model the
concrete data contained in the messages, we use the packet identifiers attached
to the message published to identity the packets being sent and received by the
clients. In order to reduce the effect of state explosion, we verify properties for
each QoS level in isolation. To make it simpler to check properties related to
data being sent, we record for each client the packet identifiers of messages sent.
For all three service levels, we consider the following properties:

S3-P1-PublishConnect A client only publishes a message if it is in a con-
nected state.

S3-P2-CanPublish For each client there exists executions in which the client
publishes a message.

S3-P3-CanReceive For each client there exists executions in which the client
receives a message.

S3-P4-Publish Any data (packet identifiers) received on the client side must
also have been sent on the client side.

S3-P4-ReceiveSubscribed A client only receives data if it is subscribed to
the topic, i.e., the client side considers the client to be subscribed.

It should be noted that it is possible for a client to publish to a topic without
being subscribed. The only requirement is that the client is connected to the bro-
ker. What data can correctly be received depends on the quality of service level
considered. We therefore have one of the following three properties depending
on the quality of service considered.

Rodriguez et.al.: On Modelling and Validation of the MQTT Protocol 115

S3-P5-Publish-QoS0 The data (packet identifiers) received by the subscribing
clients must be a subset of the data (packet identifiers) sent by the clients.

S3-P5-Publish-QoS1 The data sent on the client side must be a subset of the
multi-set of packets received by the subscribing clients.

S3-P5-Publish-QoS2 The data received by each client is identical to the packet
identifiers sent by the clients.

To check the above properties related to data received, we accumulate the
packet identifiers received such that they can be compared to the packet identi-
fiers sent. To simplify the verification of data received, we force (using priorities)
both clients to be subscribed before data exchange takes places since otherwise
the data that can be received depends on the time at which the clients were
subscribed and unsubscribed. As part of future work, we are investigating how
to lift this restriction and express the data received properties more generally.

Table 1 summarises the verification results. We provide for each step informa-
tion about the steps and configurations considered, the size of the state spaces,
and the property verified. The DM column lists the number of dead markings.
The state space generation and verification took in all cases less than one minute.

Table 1. Summary of configurations and experimental results for model validation

Step Phases State space Behavioural Properties
States Arcs DMs

S1 Connect + 33 44 1 ConsistentConnect ClientsCanConnect
Disconnect ConsistentTermination PossibleTermination

S2 Subscribe + 1,716 4,412 1 Can{Subscribe,Unsubscribe}
Unsubscribe Eventual{Subscribe,Unsubscribe}

ConsistentSubscription
S3 Publish + PublishConnect,Can{Publish,Receive}

Publish,ReceiveSubscribed
Publish QoS 0 2,953 5,784 7 Publish-QoS0
Publish QoS 1 8,329 15,606 7 Publish-QoS1
Publish QoS 2 12,066 19,466 34 Publish-QoS2

5 Conclusions and Related Work

We have presented a formal CPN model based on the most recent specification of
the MQTT protocol (version 3.1.1 [3]). The constructed CPN model represents
a step towards developing a formal and executable specification of the MQTT
protocol. For the validation of the model, we have conducted simulation and
state space exploration in order to verify an extensive list of behavioural prop-
erties and thereby validate the correctness of the model. In addition to aiding
in the development of inter-operable MQTT implementations, the CPN MQTT

116 PNSE’18 – Petri Nets and Software Engineering

model may also be used to perform model-based testing of MQTT protocol im-
plementations following the approach presented in [17].

During our study of MQTT specification, we encountered several parts that
are vaguely defined and which could lead developers to different implementa-
tions. There is a gap in the specification with the lossless property in that the
MQTT protocol is described to run over TCP/IP, or over other transport pro-
tocols that provide ordered, lossless and bidirectional connections. However, the
QoS level 0 establish that message loss can occurs and the specification is not
clear as to whether this is related to termination of TCP connections and/or
clients connecting and disconnecting to the broker. Additionally, we found sev-
eral issues in the specification of QoS levels 1 and 2. As an example, it is specified
that the receiver (assuming the broker role) is not required to complete delivery
of the application message before sending the PUBACK (for QoS1) or PUBREC
or PUBCOMP (for QoS2) and the decision of handling this is up to the imple-
menter. Moreover, the documentation specifies that when the original sender
receives the PUBACK packet, ownership of the application message is trans-
ferred to the receiver, but it is unclear how to determine that the original sender
has received the PUBACK packet.

There exists previous work on modelling and validation of the MQTT pro-
tocol. In [11], the authors uses the UPPAAL SMC model checker [7] to evaluate
different quantitative and qualitative (safety, liveness and reachability) proper-
ties against a formal model of the MQTT protocol defined with probabilistic
timed automata. Compared to their work, we have verified a larger set of be-
havioural properties using the incremental approach adding more operations in
each step. In [14], tests are conducted over three industrial implementations of
MQTT against a subset of the requirements specified in the MQTT version 3.1.1
standard using the TTCN-3 test specification language. In comparison to our
work, test-based approaches do not cover all the possible executions but only ran-
domly generated scenarios. With the exploration of state spaces, we considered
all the possible cases. In [2], the authors first define a formal model of MQTT
based on timed message-passing process algebra, and they conduct analysis of
the three QoS levels. In contrast, our work is not limited to the publishing/sub-
scribing process, but considers all operations of the MQTT specification.

We see several directions for future work based on the result presented in this
paper. Currently, we have restricted the model to simplify the verification part
and reduce the effect of the state space explosion. We are currently investigating
how to lift some of these restrictions to conduct verification of additional scenar-
ios. Since our goal was to construct a complete model that covers all the MQTT
operations, we have abstracted some parts, e.g., the topics structure and the
payload of packets. We are considering how to incrementally add more details to
the model so it will be even closer to the MQTT specification. Also, the model
currently considers scenarios where the re-connection of clients is not taken into
account. We plan to extend the model so that re-connection and simulation of
persistence of data will be included, being able to also extend the behavioural
properties verified.

Rodriguez et.al.: On Modelling and Validation of the MQTT Protocol 117

References

1. M. A. Adamski, A. Karatkevich, and M. Wegrzyn. Design of embedded control
systems, volume 267. Springer, 2005.

2. B. Aziz. A formal model and analysis of an IoT protocol. Ad Hoc Networks,
36:49–57, 2016.

3. A. Banks and R. Gupta. MQTT Version 3.1.1. OASIS standard, 29, 2014.
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

4. L. Baresi, C. Ghezzi, and L. Mottola. On accurate automatic verification of publish-
subscribe architectures. In Proceedings of the 29th international conference on
Software Engineering, pages 199–208. IEEE Computer Society, 2007.

5. J. Billington and M. Diaz. Application of Petri nets to Communication Networks:
Advances in Petri nets, volume 1605. Springer Science & Business Media, 1999.

6. S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang. A vision of IoT: Applications,
challenges, and opportunities with china perspective. IEEE Internet of Things
journal, 1(4):349–359, 2014.

7. A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen. Uppaal
SMC tutorial. International Journal on Software Tools for Technology Transfer,
17(4):397–415, Aug 2015.

8. J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Concurrency and Petri
Nets, Advances in Petri Nets, volume 3018 of Lecture Notes in Computer Science.
Springer, 2004.

9. P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces
of publish/subscribe. ACM computing surveys (CSUR), 35(2):114–131, 2003.

10. D. Garlan, S. Khersonsky, and J. S. Kim. Model checking publish-subscribe sys-
tems. In Intl. SPIN Workshop on Model Checking of Software, pages 166–180.
Springer, 2003.

11. M. Houimli, L. Kahloul, and S. Benaoun. Formal specification, verification and
evaluation of the MQTT protocol in the Internet of Things. In Mathematics and
Information Technology, pages 214–221. IEEE, 2017.

12. ITU-T. Overview of the Internet of things. https://www.itu.int/ITU-
T/recommendations/rec.aspx?rec=y.2060, 2012.

13. K. Jensen and L. Kristensen. Coloured Petri Nets: A Graphical Language for
Modelling and Validation of Concurrent Systems. Communications of the ACM,
58(6):61–70, 2015.

14. K. Mladenov. Formal verification of the implementation of the MQTT protocol in
IoT devices. Master thesis, University of Amsterdam, 2017.

15. MQTT essentials part 3: Client, broker and connection establishment.
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe.

16. A. Rodriguez, L. M. Kristensen, and A. Rutle. Complete CPN model of the MQTT
Protocol. via Dropbox. http://www.goo.gl/6FPVUq.

17. R. Wang, L. Kristensen, H. Meling, and V. Stolz. Application of Model-based
Testing on a Quorum-based Distributed Storage. In Proc. of PNSE’17, volume
1846 of CEUR Workshop Proceedings, pages 177–196, 2017.

18. F. Wortmann and K. Flüchter. Internet of things. Business & Information Systems
Engineering, 57(3):221–224, 2015.

19. Y. Yoo, O. Henfridsson, and K. Lyytinen. Research commentary — the new or-
ganizing logic of digital innovation: an agenda for information systems research.
Information systems research, 21(4):724–735, 2010.

20. L. Zanolin, C. Ghezzi, and L. Baresi. An approach to model and validate publish/-
subscribe architectures. In Proc. of the SAVCBS, volume 3, pages 35–41, 2003.

118 PNSE’18 – Petri Nets and Software Engineering

