
Mapping Model: A First Step to Ensure Usability
for sustaining User Interface Plasticity

Jean-Sébastien Sottet12 Gaëlle Calvary1 Jean-Marie Favre2

University of Grenoble, CLIPS1 and LSR2 Labs
385, Rue de la Bibliothèque, BP53, 38041 Grenoble cedex 9, France

jean-sebastien.sottet@imag.fr gaelle.calvary@imag.fr jean-marie.favre@imag.fr

ABSTRACT
Ubiquitous computing has amplified the need for interactive
systems to be able to adapt to their context of use (<User,
Platform, Environment>) while preserving usability. This property
is called plasticity. Until now, efforts have been put on the
functional aspect of adaptation, neglecting the usability part of the
definition. This paper investigates MDE mappings for embedding
both the description and control of usability. It first provides a
general definition and metamodel of the notion of “mapping” that
are not devoted to Human-Computer Interaction (HCI). A
mapping describes a transformation that preserves properties. A
transformation is performed by a set of transformation functions
that can be described either by a function and/or an execution
trace. The mappings properties provide the designer with a means
for both selecting the most appropriate transformation functions
and previewing the resulting design. When applied to HCI,
mappings are appropriate for both describing and controlling
ergonomic criteria either at design time or at runtime. Mappings
are rubber bands that link together different perspectives of a
same User Interface (UI). They break when the UI goes outside its
plasticity domain.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control structures.
The ACM Computing Classification Scheme:
http://www.acm.org/class/1998/

General Terms
Algorithms, Design, Human Factors, Standardization, Languages,
Theory.

Keywords
Model, Metamodel, Mapping, Model transformation, Advanced
User Interfaces, Plasticity, Usability, Adaptation.

1. INTRODUCTION
In Human-Computer Interaction (HCI), plasticity refers to the
ability of a User Interface (UI) to withstand variations of context
of use (<User, Platform, Environment>) while preserving
usability. Until now, efforts have been put on the functional
aspect of adaptation. Model Driven Engineering (MDE) has been
seen as promising [3] [10]. At MDDAUI’05, we presented a MDE
approach promoting the description of a UI as a net of models and
mappings (called octopus) [17]. In this paper, we go one step
further investigating the usability part of the plasticity definition.
We show how usability can be described and controlled along the

mappings that compose a UI (the octopus legs). The idea was
roughly sketched in [18].

The paper is threefold. In a first section, it provides a short
reminder of the octopus vision and a basic case study for
illustration. Then, it elaborates a general definition and
metamodel of the notion of “mapping” that are not devoted to
HCI but applicable to the domain as demonstrated on the case
study. Finally, the paper opens a discussion on issues and
perspectives in the areas of advanced UIs and MDE in general.

2. TOWARDS OCTOPUSES
Taking benefit from the past in HCI, the idea is to describe a UI as
a net of models and mappings. The models define different
perspectives on a same UI: domain concepts, user’s task,
workspaces (Wks) and interactors (I) (Figure 1). For their
deployment, these models require resources that are supplied
either by the functional core (FC) and/or the context of use (in
particular, the platform that provides the end-user with input and
output devices). Deployment is modeled as a set of mappings (the
gray boxes on Figure 1). Models and mappings are compliant to
metamodels.

Figure 1. In our MDE vision, UIs look like octopuses. They are
net of models whose mappings define the UI deployment on the

functional core (FC) and the context of use.

As illustration, let us consider a basic booking system inspired
from Nogier’s book [13]. For making a reservation, the end-user
is supposed to first specify the date, then the period of the day
(morning versus evening), and finally the number of seats he/she

would like to book. Figure 2 illustrates a sub-part of the
corresponding octopus: the mappings between tasks, concepts and
interactors. In Figure 2a, dashes have been introduced at the
interactor level to make explicit the fact that the task “Specify the
date” is mapped on two guiding labels (“Date”, “mm/dd/yy”). In
case a, there is no (human) error protection: text fields do not
prevent the end-user from bad entries. In contrast in Figure 2b, the
calendar and the radio buttons decrease the risk of error when
specifying the date and the period of the day.

Figure 2. A basic case study illustrating a sub-part of the
octopus: the mappings between tasks, concepts and

interactors. For legibility, the equivalent dashes for the other
mappings in a) and b) have not been drawn.

This paper deals with usability. It shows how usability can be
described along mappings. To that end, it provides a general
definition and metamodel of mappings that go beyond HCI.

3. MAPPING METAMODEL
Our mapping metamodel is centered on the notion of
transformation. Thus, we first define the notions of mappings and
transformations before presenting the metamodel.

3.1 Mappings and transformations
In the MDA literature (see Table 1), the term “mapping” is far
from being clear. However, it is clearly coupled with
transformations.

Table 1. A confusing literature on “mappings” and
“transformations” terms.

Figure 3 aims at clarifying the situation according to [5]. In
particular, it defines the labels of the columns of Table 1.

On Figure 3, “f(x)=x+2” is a transformation model that is
compliant to a mathematical metamodel. A transformation model
describes (the µ relation) a transformation function in a predictive
way: in our example, {(1,3),(2,4),(3,5)…} for “f” when applied to
integers. A transformation function is the set of all the
transformation instances inside the variation domain (here, the
integers). A transformation instance is a subset (the ε relation) of
the transformation function. It is the execution trace of the
function (“f”).

Figure 3 refines the µ relation into µp and µd. These relations
respectively stand for predictive and descriptive representations.
Predictive means that there is no ambiguity: the transformation
model (e.g., “f(x)=x+2”) fully specifies the transformation
function. Descriptive refers to a qualifier (e.g., “growing”). It is
not sufficient for specifying the transformation function, but it is a
means for providing additional information. Figure 3 illustrates
two kinds of descriptive representations: one deals with a
transformation model (“f(x)>x”) whilst the other one deals with
transformation instances (“growing”). In the first case, the
description is made a priori whilst it is made a posteriori in the
second case. A posteriori descriptions are subject to
incompleteness and/or errors due to too few samples.

 d p

d

Figure 3. Clarification of the notions of transformation

model/function/instance.

Next section provides a metamodel of mappings based on these
clarifications.

3.2 A Mapping Metamodel
The metamodel provided in Figure 4 is a general purpose
mapping metamodel. The core entity is the Mapping class. A
mapping links together entities that are compliant to Metamodels
(e.g., Task and Interactor). A mapping can specify Transformation
functions (e.g., {(Specify the date, Date: --/--/-- (mm/dd/yy)),
(Specify period of the day, “Period of the day: - (M: Morning; E:
Evening)), …}) by patterns. A Pattern is a transformation model.
It links together source and target elements (ModelElement) to
provide a predictive description of the transformation function. In
addition, a mapping can describe the execution trace of the
transformation function. The trace is made of a set of Links
between Instances of ModelElements. The couple (Specify the
date, Date: --/--/-- (mm/dd/yy)) is an example of Link.

Figure 4. A Mapping MetaModel. Containment relations between Mapping and Metamodels are due to the Eclipse Modeling
Framework needs.

A mapping conveys a set of Properties (e.g., “Error protection”).
A property is described according to a given reference framework
(Referential) (e.g., Bastien&Scapin[1] that define eight criteria
among which is the “Error protection”). These properties are
descriptive. They qualify either the global set of mappings or one
specific element: a mapping, a pattern or a link.

Associated transformations are in charge of maintaining the
consistency of the net of models by propagating modifications
that have an impact on other elements. For instance, if replacing
an interactor with another one decreases the UI consistency, then
the same substitution should be applied to the other interactors of
the same type. This is the job of the associated functions which
performs this adaptation locally.

Figure 5 applies the mapping metamodel to the case study
according to Bastien&Scapin’s framework. Three criteria are
considered:

• Compatibility to check the extent to with the UI design
is compliant to the user’s task;

• Error protection to measure the extent to which the UI
prevents the end-user from bad actions;

• Homogeneity-Consistency to ensure a global
consistency in the UI (e.g., style).

As pointed out in Figure 5:

• Compatibility is preserved along all the mappings
linking together tasks and interactors: the UI fully
supports the user’s task (Figures 5 a and b);

• Homogeneity-Consistency is satisfied in Figure 5a as
the transformation function (that is modeled by the

mappings) associates the same type of interactor (input
fields) to all the user’s actions;

• Error protection is guaranteed in Figure 5b thanks to
interactors that preserve the user from mistakes
(calendar and radio buttons).

In Figure 5, the scope of compatibility (e.g., C1, C2, C3) is one
mapping whilst homogeneity-consistency and error protection
deal with the global net of mappings (C4 on a and b).

Figure 5. The Mapping Metamodel applied to the case study.

For legibility, Figure 5 only mentions the criteria that are
satisfied. For instance, the “Error protection” that is not preserved
in Figure 5a has not been mentioned. In reality, octopuses should

tell the extent to which each criteria is satisfied (positively or
negatively).

This work provides a sound basis for future work. Next section
elaborates on perspectives for both HCI and MDE communities.

4. CONCLUSION AND PERSPECTIVES
In 2000, B. Myers stated that model-based approaches had not
found a wide acceptance in HCI. They were traditionally used for
automatic generation and appeared as disappointing because of a
too poor quality of the produced UIs. He envisioned a second life
for models in HCI empowered by the need of device
independence. In our work, we promote the use, the description
and the capitalization of elementary transformations that target a
specific issue.

A UI is described as a net of models and mappings both at design
time and runtime. At design time, mappings convey properties
that help the designer in selecting the most appropriate
transformation functions (or set of transformation functions).
Either the target element of the mapping is generated according to
the transformation function that has been selected, or the link is
made by the designer who then describes the mapping using a
transformation model. We envision adviser tools for making the
designer aware of the properties he/she is satisfying or neglecting.

At runtime, mappings are the key for reasoning on usability.
However, it is not easy as (1) there is not a unique consensual
reference framework; (2) ergonomic criteria may be inconsistent
and, as a result, require difficult trade-offs. Thus, (1) the
metamodel will have to be refined according to these frameworks;
(2) a meta-UI (i.e., the UI of the adaptation process) may be
relevant for negotiating trade-offs with the end-user.

Beyond HCI, this work provides a general contribution to MDE.
It defines a mapping metamodel and clarifies the notions of
mappings and transformations. Mappings are more than a simple
traceability link. They can be either predictive (transformation
specifications) or descriptive (supported properties), as a result
covering both the automatic generation and the hand-made
linking. Moreover mapping models can embed transformation in
order to manage models consistency. This is new in MDE as most
of the approaches currently focus on direct transformation. Our
mapping metamodel will be stored in the international Zoo of
metamodels: the ZOOOMM project [6].

5. ACKNOWLEDGMENTS
The work has been supported by the European project EMODE.
Authors would like to thank Joëlle Coutaz and Alexandre
Demeure for their strong contribution. Metamodels are edited
under Topcased plugin for eclipse: http://www.topcased.org.

6. REFERENCES
[1] Bastien J.M.C, Scapin D. Ergonomic Criteria for the

Evaluation of Human-Computer Interfaces, Technical report
INRIA, N°156, June 1993

[2] Caplat, G., Sourrouille, J.L, Considerations about Model
Mapping, Wisme 2003

[3] Clerckx, T., Luyten, K., Coninx, K. The mapping Problem
Back and Forth: Customizing Dynamic Models while
preserving Consistency, 3rd International Workshop on Task
Model and Diagrams for User Interfaces Design, Prague,
Czeck Republic, November 2004, pp 33-42

[4] DSTC, IBM, MOF STC Query/View/ Transformation,
Submission by DSTC IBM, ad/2003-02-03, March 2003

[5] Favre, J.M. Toward a Basic Theory to Model Driven
Engineering, Workshop on Software Model Engineering,
WISME 2004, joint event with UML 2004, Lisboa, Portugal,
October 11,2004

[6] http://zooomm.org

[7] Judson, S.R, France, R.B., Carver, D.L. Specifying Model
Transformation at on the Metamodel Level, Wisme 2003

[8] Kleppe, A., Warmer, Bast, W. MDA Explained. The Model
Driven Architecture: Practice and Promise, Addison-
Wesley, April 2003

[9] Kurtev, I., Van den Berg, K. A Synthesis-Based Approach to
Transformations s in an MDA Software Development
Process, In Proc. of Model Driven Architecture: Foundations
and Applications, pp. 121-126, University of Twente,
Enschede, The Netherlands 2003

[10] Limbourg, Q., Vanderdonckt, J. Adressing the mapping
problem in User Interfaces Design, 3rd International
Workshop on Task Model and Diagrams for User Interfaces
Design, Prague, Czeck Republic, November 2004, pp 155-
163

[11] Mellor, S.J., Scott, K., Uhl, A., Weise, l.D MDA Distilled:
Principles of Model-Driven Architecture, Addison-Wesley,
March 2004

[12] Myers, B., Hudson, S.E., Pausch, R. Past, Present, and
Future of User Interface Software Tools, Transactions on
Computer-Human Interaction (TOCHI), Vol 7, Issue 1,2000

[13] Nogier, J.F. De l'ergonomie du logiciel au design des sites
Web, Third edition, Dunod 2005

[14] OMG, MDA Guide Version 1.0.1, omg/2003- 06-01, June
2003

[15] Peltier, M. Techniques transformations de modèles basées
sur la méta-modélisation, PhD, University of Nantes,
October 2003

[16] QVT- Partners Revised Submission for MOF 2.0 Query /
Views / Transformation RFP, http://qvtp.org, August 2003

[17] Sottet, J.S., Calvary, G., Favre, J.M., Coutaz, J., Demeure,
A., Balme, L. Towards Model-Driven Engineering of Plastic
User Interfaces, in Conference on Model Driven Engineering
Languages and Systems (MoDELS’05) satellite proceedings,
Springer LNCS, pp 191-2005

[18] Sottet, J.S., Calvary, G., Favre, J.M., Coutaz, J., Demeure, A.
Towards Mappings and Models Transformations for
Consistency of Plastic User Interfaces The Many Faces of
Consistency. Proc. (CHI2006), Montréal, Québec, Canada,
April 22-23, 2006,

