
Model-Driven Development of Digital Libraries: Generating
the User Interface ∗

Alessio Malizia
University “La Sapienza”
Dep. Computer Science

Rome, Italy

malizia@di.uniroma1.it

Esther Guerra
Universidad Carlos III

Dep. Computer Science
Madrid, Spain

eguerra@inf.uc3m.es

Juan de Lara
Universidad Autónoma

Dep. Computer Science
Madrid, Spain

jdelara@uam.es

ABSTRACT
Digital Libraries (DLs) are extremely complex information
systems that integrate findings from disciplines such as hy-
pertext, information retrieval, multimedia services, database
management, and human-computer interaction. Designers
of DLs are often multidisciplinary teams, which include li-
brary technical staff and computer scientists. Wasted effort
and poor inter-operability can therefore ensue, raising the
costs of DLs and risking the fluidity of information assets.

To alleviate these problems, we use a model-driven approach
for the design and automatic generation of code for DLs.
In particular, we use a Domain Specific Visual Language
(DSVL) made of four diagram types (collection, structural,
service and societal) which describe the different aspects of
a DL. We have built a code generator able to produce XUL
code from the design models for the DL user interface. This
XUL code integrates predefined components for the different
services, according to the model specification.

Categories and Subject Descriptors
Information Systems [INFORMATION STORAGE AND
RETRIEVAL]: Digital Libraries—System Issues

General Terms
Design, Languages, Human Factors

1. INTRODUCTION
The proper concept of a Digital Library (DL) seems hard to
be completely understood and evades definitional consen-
sus [6]. For example, a Delphi study [4] of DLs coalesced
a broad definition: organized collection of resources, mech-
anisms for browsing and searching, distributed networked

∗Work supported in part by the EC’s Human Potential Pro-
gramme under contract HPRN-CT-2002-00275, SegraVis,
and the Spanish Ministry of Science and Education, projects
MD2 (TIC200303654) and MOSAIC (TSI2005-08225-C07-
06).

environments, and sets of services objectified to meet users’
needs. Underlying all these definitions, there is the agree-
ment that DLs are fundamentally complex, due to their in-
terdisciplinary nature. They are usually built from scratch
using specialized architectures that do not benefit from past
design experiences. In addition, formal models, which sup-
port research and development in most computer science
subfields, are surprisingly unaccounted for within the DL
literature. This lack of formality leads to branching efforts
and has made interoperability one of the most crucial prob-
lems faced by the DL field.

In Model-Driven Development (MDD), models are the pri-
mary assets, from which code is generated for a particular
platform. Moreover, many User Interface Description Lan-
guages (e.g. UsiXML, XAML and XUL) have been intro-
duced so far that address different aspects of a User Interface
(UI) [7]. In our framework, we follow an MDD approach for
UI generation. With this purpose we introduce a new Do-
main Specific Visual Language (DSVL), called VisMODLE
(Visual MOdeling of Digital Library Environments), for the
description of the different aspects of a DL. It is made of
a set of notations for describing collections, structures, ser-
vices and societies – as a framework for providing formal
and empirical unification of DL systems. We have created
a modeling environment for VisMODLE, and a code gen-
erator that generate software tools for a given DL model.
In particular, XUL code is generated for the UI in which
different predefined components are invoked as specified by
the models.

Our approach has the following advantages. The use of a
language that is visual makes it easier for people to inter-
pret the model, while being domain-specific leaves less room
for misunderstandings. The language has been specified by
metamodeling, what makes it possible to build tools provid-
ing automatic built-in syntactic and semantic checks that
guide the DL designer in finding inconsistencies and gaps in
the designs, and making sure that a change in a model is au-
tomatically reflected in other parts where it is relevant. In
addition, although visual, the language is also formal, thus
it is possible to simulate and analyze the models to demon-
strate, understand and verify its behavior. Finally, deriving
code from the models minimizes the number of errors in the
final DL implementation.

The paper is organized as follows. Section 2 presents some
related research, while in section 3 we sketch the overall



proposed architecture. Section 4 presents the VisMODLE
language, for which a modeling environment has been gener-
ated, as explained in section 5. In section 6 we show the gen-
eration of the XUL code for the DL’s UI. Finally, section 7
ends with the conclusions and future work. Throughout the
paper we use a toy example of a university library.

2. RELATED WORK
Formal models for DLs are rarely found. Wang [9] tried one
first attempt to fill this gap. His so-called hybrid approach
specifies a DL as a combination of a special-purpose data-
base and a hypermedia-based UI, and uses this combination
to formalize DLs with the Z language.

Lee et al. [5] have developed a canonical model for informa-
tion systems, together with a compositional approach they
applied to provide a partial solution for interoperability in
DLs. Castelli et al. [1] presented works in the context of
a multidimensional query language for DLs. They have de-
scribed the concepts of documents developed on the notions
of views and versions, metadata formats and specifications,
and a first-order logic based language. Moreover, there are
some declarative approaches, which are not supported by
a strict underlying formal theory. These include the Digi-
tal Library Definition Language [8], and the DSpaces data
model (which includes communities and bitstreams).

Examining the related bibliography we noted that there is
a lack of tools or computer-aided systems, for designing and
developing DL systems. Moreover, there is a need for model-
ing interactions among DL systems and users (as proposed
in the HCI field) such as: scenario or activity-based ap-
proaches. The VisMODLE framework fills this gap provid-
ing a DSVL based approach for generating visual interaction
oriented tools for DLs.

3. MODEL DRIVEN APPROACH TO DLS
Our work investigates and empirically evaluates a new MDD
framework that allows DL designers to model ideas and
mechanisms specific to interaction in the DL domain, and
to transform them to the final (compilable) source code.

Figure 1 shows the framework. First, we have designed a
DSVL, called VisMODLE, for the modeling of the different
aspects of a DL. It has been defined through a metamodel
(step “a” in the figure, see section 4). Next, we have gen-
erated a modeling environment for VisMODLE using the
AToM3 tool [2] (see section 5). This environment allows DL
designers to visually specify DLs (step “b”). In addition,
it incorporates a code generator (“LibGen”) which gener-
ates code for the DL’s UI and selects predefined components
(from database “c”) that implement the functionality of the
services specified in the model (step “d”).

To improve acceptability and interoperability, our frame-
work makes flexible use of existing standard specification
sub-languages for representing DL concepts. Therefore, most
of the model primitives are defined as XML-based elements,
which can enclose other sub-languages that help to define
DL concepts. In more detail, MIME1 types constitute the

1Multipurpose Internet Mail Extensions

Figure 1: The Framework.

basis for encoding elements (e.g. documents) of a collec-
tion. The XML User Interface Language (XUL) is used to
represent the DL visual interface. It provides a simple and
portable definition of common widgets, thus drastically re-
ducing the software development effort for visual interfaces.
However, the framework is general and other UI description
languages can be used.

4. A DSVL FOR DIGITAL LIBRARIES
In this section we present VisMODLE, a DSVL oriented to
the design of DLs, as well as a running example, called Li-
brary, to show the overall process starting from the basic
entities of the model. The example is kept small for presen-
tation purposes, although our system has been able to deal
with real-life DLs.

In VisMODLE the specification of a DL encompasses four
complementary dimensions or viewpoints, including: multi-
media information supported by the DL (Collection Model);
how that information is structured and organized (Struc-
tural Model); the overall behavior of the DL (Service Model)
and the different societies of actors and groups of services
that act together to carry out the DL behavior (Societal
Model). The complete metamodel is shown in Figure 2.

Figure 2: The VisMODLE Metamodel.

Collections are sets of elements. They can model both static
(e.g. text) and dynamic content (e.g. presentation of a
video). Our running example includes a collection model
(not shown for space constraints) that defines a collection
(called Library) of two documents: long1.pdf and long2.pdf.

The Structure specifies the way in which parts of a whole
are arranged or organized. In DLs, structures can represent
hypertexts, taxonomies, system connections, user relation-



ships, and containment. The window to the right in Fig-
ure 5 shows the structural model for the running example.
Thus, the collection Library is made of documents struc-
tured with Publication, Author and Title metadata infor-
mation (i.e. three Struct elements). Metadata entities are
linked together with the node relation (organized as a tree)
and linked to a collection by a metadata link type relation.

Services as scenarios tell what happens to the elements in
the collection and through the structures. Taken together
the services describe scenarios, activities, tasks, and oper-
ations, and those ultimately specify the functionalities of a
DL. Human information needs, and the processes of satisfy-
ing them in the context of DLs, are well suited to descrip-
tion with services, including these key types: fact-finding,
learning, gathering, and exploring. In our example we make
available two basic services: Front Desk and Search. The
Front Desk is responsible for managing communications be-
tween actors and it is asynchronous (sync attribute is set
to nowait), while the Search service executes queries on the
DL and it is synchronous.

Finally, a Society is a set of entities and the relations be-
tween them. The entities include actors as well as hardware
and software components, which either use or support ser-
vices. A society is the highest-level component of a DL,
which exists to serve the information needs of its entities
and to describe the context of its use. DLs are used for
collecting, preserving, and sharing information artifacts be-
tween society members. Figure 3 shows the societal model
for our example. It involves two Actors: Student and Li-
brarian. The scenario represents a Student trying to borrow
a paper from the Library ; he interacts with the Front Desk
service requesting the paper and obtaining a response mes-
sage about its availability. The Front Desk service forward
the borrow request to the Librarian actor. Then, the Li-
brarian sends a doc request message to the Search service,
which queries the document collection (get operation) using
metadata information provided by the borrow request, and
waits the result to send back the response. The service re-
turns an is available boolean message which is propagated
as a response to the Librarian and eventually to the Student.

Figure 3: A Societal Model.

5. THE MODELING ENVIRONMENT
We have generated a modeling environment for VisMODLE
using the metamodeling tool AToM3 [2]. This is a tool for
the description and automatic generation of modeling envi-
ronments for DSVLs. It allows defining the DSVL syntax by
means of metamodeling and model manipulation by means

of graph transformation. Recently, AToM3 has been pro-
vided with the possibility to describe multi-view DSVLs [3],
such as the UML or VisMODLE. These are notations made
of a set of different diagram types, each one describing a
different aspect or viewpoint of the system.

Figure 4: Defining the Environment for VisMODLE.

Figure 4 shows a moment in the definition of the modeling
environment for VisMODLE. Window “1” contains the com-
plete metamodel for the language. A tool to specify its dif-
ferent viewpoints is shown in window “2”. We have defined
four viewpoints: Collection, Structural, Service and Societal.
The metamodel of each one of them is specified as a subset of
the complete VisMODLE metamodel, as window “3” shows
for the case of the Structural viewpoint. In addition, there is
a special viewpoint which contains the full metamodel: the
repository. It is used for ensuring consistency between differ-
ent models. In the figure, relations between the viewpoints
represent transformations, expressed by graph grammars,
which are automatically generated from the metamodels for
model consistency purposes [3].

Figure 5: Modeling Environment for VisMODLE.

Figure 5 shows the generated modeling environment. The
background window shows the four different views created
by the DL designer for our Library example. The window on
top shows one of them (the structural model). Note how,
the generated environment allows the final user to create
models, ensure their consistency, load and save projects. We
have added additional functionality to the tool in order to
generate XUL code for the UI and to invoke the necessary
services. This is explained in the next section.

6. GENERATING THE USER INTERFACE



The model of the specific DL drives the UI generation. The
UI layout is generated mainly from the information provided
by the structural and collection models. In particular, code
is automatically generated by “LibGen” when the DL de-
signer modifies these types of models, thus immediately see-
ing the result of a change. It is also possible to produce
code in a batch style. The UI events are managed by invok-
ing the appropriate services according to the imported XUL
templates, as shown in Figure 1.

The generated UI is built upon a set of XUL template files
that are automatically specialized depending on the attributes
and relationships designed in the modeling phase. The lay-
out template for the UI is divided into two columns (see
Figure 6, that shows the UI generated for the actor Librar-
ian in our example). The left part is made of three boxes:
Collection, MetaData and MetaData Operations. The right
part manages visualization and multimedia information ob-
tained from documents. The basic features provided with
the UI templates are: document loading and visualization,
and metadata organization and management.

Figure 6: Generated UI for the Example.

The Collection box (“B” in the figure) manages the visu-
alization of documents. The list of documents is obtained
from the attribute documents of the collections specified in
the DL design (i.e. long1.pdf and long2.pdf in the collection
Library of our example). The visualization template works
according to the (MIME) data type specified in the model-
ing phase. In fact, by selecting a document, the correspond-
ing file is uploaded and visualized (starting the appropriate
viewer, see “A” in the figure) within the generated UI, and
in addition can be afterwards managed (print, save. . . ).

The MetaData box (“C” in the figure) manages the tree
structure used for representing the metadata information.
The tree structure of the metadata is generated according
to the metadata categorization modeled by the designer in
the structural model (model to the right of Figure 5). In
our example a tree has been generated with a root metadata
node Publication that contains two children metadata nodes
Title and Author. The XUL template contains all the basic
layout and action features for managing a tree structure.

The MetaData operations box (“D” in the figure) is activated
by clicking on a node of the metadata box. It manages

metadata operations, such as insertion, deletion or editing.

These automatically generated interfaces have a standard
template design that can be integrated by the users/designers
simply adding code or additional style templates in the ap-
propriate template placeholders. In VisMODLE, the soci-
etal model drives the linking among the visual interface tem-
plates (XUL code) and the services implementation (Java
template code for browsing, indexing, searching, ...) in order
to generate the full DL system (actors, services, collections
and their interactions).

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a novel MDD approach for
the generation of DLs. For this purpose, we have designed
the VisMODLE DSVL, generated a customized modeling
environment, and built a code generator able to produce
the full application. In the present paper, we have focused
on the automatic generation of the UI, using XUL.

Currently, we are working in extending VisMODLE with
a behavioral diagram, and in adding analysis and simula-
tion capabilities to the framework. Moreover, we intend to
support XDoclet for the specification of the VisMODLE ser-
vices. It allows automatic code generation, compliant with
a standard definition which simplify coding for various tech-
nologies, such as: Java, Web Services and Web Portals.

8. REFERENCES
[1] D. Castelli, C. Meghini, and P. Pagano. Foundations of

a multidimensional query language for digital libraries.
In ECDL, pages 251–265, 2002.

[2] J. de Lara and H. Vangheluwe. AToM3: A Tool for
Multi-Formalism Modelling and Meta-Modelling. In
Proc. of FASE’2002, volume 2306 of LNCS, pages
174–188. Springer, 2002.

[3] E. Guerra, P. Dı́az, and J. de Lara. A formal approach
to the generation of visual language environments
supporting multiple views. In VL/HCC, pages 284–286.
IEEE Computer Society, 2005.

[4] T. Kochtanek and K. Hein. Delphi study of digital
libraries. Inf. Proc. Manag., 35(3):245–254, 1999.

[5] S. Y. Lee, M.-L. Lee, T. W. Ling, and L. A.
Kalinichenko. Designing good semi-structured
databases and conceptual modeling. In ER, pages
131–145, 1999.

[6] J. C. R. Licklider. Libraries of the Future. MIT Press,
Cambridge, Mass., 1965.

[7] Q. Limbourg, J. Vanderdonckt, B. Michotte,
L. Bouillon, and V. López-Jaquero. Usixml: A language
supporting multi-path development of user interfaces.
In R. Bastide, P. A. Palanque, and J. Roth, editors,
EHCI/DS-VIS, volume 3425 of LNCS, pages 200–220.
Springer, 2004.

[8] K. Maly, M. Zubair, H. Anan, D. Tan, and Y. Zhang.
Scalable digital libraries based on ncstrl/dienst. In
ECDL, pages 168–179, 2000.

[9] B. Wang. A hybrid system approach for supporting
digital libraries. JDL, 2(2-3):91–110, 1999.


