
Moving From Item Rating to Features Relevance in
Top-N Recommendation

Vito Walter Anelli1, Tommaso Di Noia1, Eugenio Di Sciascio1, Pasquale Lops2,
and Joseph Trotta1

1 Polytechnic University of Bari, Via E. Orabona, 4, Bai, Italy
{vitowalter.anelli,tommaso.dinoia,eugenio.disciascio,joseph.trotta}@poliba.it

2 University of Bari “Aldo Moro”, Via E. Orabona, 4, Bai, Italy
pasquale.lops@uniba.it

Abstract. Although very effective in computing accurate recommenda-
tions, due to their inner nature, collaborative algorithms work very well
with dense matrices but show their limits when they deal with sparse
ones. In these cases, using only past ratings may lead to unsatisfactory
results in the recommendation list. In this paper we show how to move
from a user-item to a user-feature matrix by exploiting original user
ratings. We then use matrix factorization techniques to compute recom-
mendations.

1 Introduction

Matrix factorization techniques have proven their effectiveness in improving the
performance of recommendation engines in a pure collaborative approach and
are implemented in many industrial and commercial systems [2]. Whenever avail-
able, descriptions of the items can be used as a valuable source of information
to augment the knowledge injected in and exploited by the system to compute
the recommendation list of items. More recently, thanks to the Linking Open
Data initiative, many structured data have become freely available to represent
the content of items in different knowledge domains and then feed recommen-
dation engines [3]. Several works have tried to build recommender systems by
exploiting Linked Open Data (LOD) as side information for representing items,
in addition to the user preferences usually collected through ratings. Properties
gathered from DBpedia, the cornerstone dataset of the LOD cloud, may be used
in different ways: (1) to define semantic similarity measures for providing more
accurate recommendations [8, 4]; (2) to deal with problems as the limited con-
tent analysis or cold-start, e.g. by introducing new relevant features to improve
item representations [10], or to cope with the increasing data sparsity [5]; (3)
to provide a good balance between different recommendation objectives, such as

An extended version of this paper has been published at [1]
IIR 2018, May 28-30, 2018, Rome, Italy. Copyright held by the author(s).

accuracy and diversity [5]. In [7], for instance, effective strategies to incorporate
item features for top-N recommender systems are developed. Recently, an in-
teresting approach called Feature Preferences Matrix Factorization (FPMF) has
been proposed in [6]. FPMF incorporates user feature preferences in a matrix
factorization to predict user likes. It is worth to note that the previously men-
tioned approaches does not rely on features coming from the Linked Open Data

cloud. Features composing the description of an item, whatever the source, are
not considered per se in the recommendation process but are usually exploited
to evaluate the similarity between items or users. We believe that more attention
should be paid to modeling the recommendation problem with a focus on rec-
ommending features rather then items. Expanding an item in its features brings
with it some interesting side effects. On the one hand, all features may represent
relations that, e.g., latent factor models we are not able to look at. On the other
hand, features give us a new set of explicit connections between items to be
exploited with collaborative filtering algorithms. Finally, recommending items
via feature recommendation may lead to an easier generation of explanations for
the recommended list of items. Unfortunately, moving from items to features is
not that straight as in a forest of many features, most of them may result not
relevant to a user. Moreover, once we design an algorithm able to compute a
recommendation list of features, we have to go back to the items space, as the
ultimate goal of a recommender systems is to suggest items to a user. In this
paper we present FF (for Features Factorization), a top-N recommendation
algorithm originally introduced in [1] that relies on user’s feature preferences and
collaborative filtering information in the features space. The main goal of FF is
to compute an ordered list of features preferred by the user and, starting from
such list, to reassemble the relevance values of each returned feature to produce
a top-N list of items to recommend. All the side information adopted by FF with
reference to a specific item i is retrieved from DBpedia in form of triples 〈i, p, e〉.
For each item in the user profile we retrieve its features by querying DBpedia

thus getting them as a set of entities e.
The remainder of the paper is structured as follows. In the next section we

introduce and describe FF. We than close the paper with a section devoted to
Conclusion and future works.

2 Proposed Approach

Motivation. This work aims at investigating the role of feature rating and
relevance in the item rating process. The main intuition behind FF is that items
can be handled as a collection of features on which the recommendation process
is then performed. If we want to discover the contribution of each single feature in
the evaluation, first of all, we need to unpack each item in its composing features.
Then, by combining the overall popularity of each feature in the user profile
(feature relevance) and the rating assigned to items containing that feature we
may estimate the implicit rating the user is giving to that specific feature. The
second observation we based our work on, is that the relevance of an item in

the user profile cannot be entirely encoded in its ratings as the single rating
represents a degree of liking about the specific item.
Data Model. Each item in the user profile is associated with a relevance func-
tion we denote with ρui(·). Its value represents an estimation of how important
is a particular item to the user u. Analogously, we have a value associated to
each feature in the profile computed via the function ρuf (·) computing the rel-
evance of the feature f in the user profile. Actually, each feature is associated
also with a rating ruf (·) which is inferred by considering the rating of all the
items containing f .
Problem Formulation. By considering the data associated to the user profile
as described in the previous section we can move from a rating matrix connecting
user and items to a user-feature matrix where each value is represented by the
pair 〈ρuf (·), ruf (·)〉. In other words, we may consider two user-feature matrices:
the one P containing relevance values ρuf (·), the other R including the inferred
ratings ruf (·).

In FF, the relevance of a feature pe is computed as its probability of belonging
to the set Iu representing the items already rated by a user u. More formally we
have:

ρuf (pe) =

∑
i∈Iu
|{〈i, p, e〉 | 〈i, p, e〉 ∈ DBpedia}|

|Iu|
The idea behind this computation is quite straight: the more a feature is

connected to the items in the user profile, the higher its relevance for the user.
Once we have computed the relevance of all the features in the user profile,

we can move to the computation of the relevance for the items i ∈ Iu. This can
be computed as the normalized summation of the relevance for all the features
it is composed by. In formulas, we have

ρui(i) =

∑
〈i,p,e〉∈DBpedia ρ

uf (pe)

|{〈i, p, e〉 | 〈i, p, e〉 ∈ DBpedia}|

Given a feature pe, the computation of the feature rating ruf (pe) exploits both
the rating and the relevance of each item i ∈ Iu containing pe.

ruf (pe) =

∑
〈i,p,e〉∈DBpedia rui · ρui(i)∑

〈i,p,e〉∈DBpedia ρ
ui(i)

(1)

top-N Recommendation. The profiles we built contain only the features
the user met before, but usually the number of those features is dramatically
smaller than the overall number of features and this results in P and R being
very sparse. In order to complete the information they contain, we compute, via
Biased Matrix Factorization, the missing values ρ̂uf (pe) for P and r̂uf (pe) for
R. We run matrix factorization independently on P and R. ρ̂uf (pe) and r̂uf (pe)
represent the predicted relevance and the predicted rating for all those features
not belonging to any of the items in Iu. As the resulting matrices contain both
content-based and collaborative informations (due to the matrix factorization),
we refer to them as hybrid profile.

With the hybrid profile we can estimate a ranked list for all the remaining
items within the collection. In fact, the ranking of an item in the list is com-
puted by considering the rating of the features belonging to the item and their
relevance.

r̂ui(i) =
∑

(〈i,p,e〉∈DBpedia)∧(i∈Iu)

ρuf (pe)·ruf (pe)+
∑

(〈i,p,e〉∈DBpedia)∧(i 6∈Iu)

ρ̂uf (pe)·r̂uf (pe)

It is important to point out that these estimations do not correspond to an
actual rating but the correct item ranking is yet preserved. In order to improve
the results of the final recommendation process, we may reduce the number of
features considered while computing the final rank based on their relevance and
popularity [1].

3 Conclusion and Future Works

In this paper we presented FF, a novel algorithm that bases on feature recom-
mendation as an intermediate step for computing top-N items recommendation
lists. The main idea behind FF is that feature relevance in a user profile plays a
key role in the selection and rating of an item in a collection. As future work,
we are investigating the behavior of FF with respect to novelty and diversity of
results. We are also interested in exploring the behavior of FF approach with
different collaborative filtering algorithms, other than factorization techniques
in the item-feature space and in particular with Factorization Machines [9].

References

1. Anelli, V.W., Di Noia, T., Lops, P., Di Sciascio, E.: Feature factorization for top-n recommenda-
tion: From item rating to features relevance. In: Proceedings of the 1st Workshop on Intelligent
Recommender Systems by Knowledge Transfer & Learning co-located with ACM Conference
on Recommender Systems (RecSys 2017), Como, Italy, August 27, 2017. pp. 16–21 (2017)

2. Bell, R.M., Koren, Y.: Lessons from the netflix prize challenge. Acm Sigkdd Explorations
Newsletter 9(2), 75–79 (2007)

3. Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support
content-based recommender systems. In: Proceedings of the 8th International Conference on
Semantic Systems. pp. 1–8. ACM (2012)

4. Di Noia, T., Ostuni, V.C., Rosati, J., Tomeo, P., Di Sciascio, E., Mirizzi, R., Bartolini,
C.: Building a relatedness graph from linked open data: A case study in the IT do-
main. Expert Syst. Appl. 44, 354–366 (2016). https://doi.org/10.1016/j.eswa.2015.08.038,
https://doi.org/10.1016/j.eswa.2015.08.038

5. Musto, C., Basile, P., Lops, P., de Gemmis, M., Semeraro, G.: Introducing linked open data
in graph-based recommender systems. Information Processing & Management 53(2), 405–435
(2017)

6. Nasery, M., Braunhofer, M., Ricci, F.: Recommendations with optimal combination of feature-
based and item-based preferences. In: Proceedings of the 2016 Conference on User Modeling
Adaptation and Personalization, UMAP. pp. 269–273 (2016)

7. Ning, X., Karypis, G.: Sparse linear methods with side information for top-n recommendations.
In: Sixth ACM Conference on Recommender Systems, RecSys. pp. 155–162 (2012)

8. Piao, G., Breslin, J.G.: Measuring semantic distance for linked open data-enabled recommender
systems. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing. pp. 315–
320 (2016)

9. Rendle, S.: Factorization machines. In: Proceedings of the 2010 IEEE International Conference
on Data Mining. pp. 995–1000. ICDM ’10, IEEE Computer Society, Washington, DC, USA
(2010). https://doi.org/10.1109/ICDM.2010.127, http://dx.doi.org/10.1109/ICDM.2010.127

10. Schmachtenberg, M., Strufe, T., Paulheim, H.: Enhancing a location-based recommendation
system by enrichment with structured data from the web. In: 4th International Conference on
Web Intelligence, Mining and Semantics WIMS. pp. 17:1–17:12 (2014)

