
BO-ECLI Parser Engine: the Extensible European Solution for
the Automatic Extraction of Legal Links

Tommaso Agnoloni
Institute of Legal Information Theory

and Techniques
ITTIG-CNR
Firenze, Italy

tommaso.agnoloni@ittig.cnr.it

Lorenzo Bacci
Institute of Legal Information Theory

and Techniques
ITTIG-CNR
Firenze, Italy

lorenzo.bacci@ittig.cnr.it

Marc van Opijnen
Publications Office of the Netherlands

UBR|KOOP
The Hague, the Netherlands

marc.opijnen@koop.overheid.nl

ABSTRACT
This paper presents the BO-ECLI Parser Engine, an open source Java
framework for the automatic extraction of case-law and legislation
references from case-law texts issued in the European context.

Differences of languages and jurisdictions are tackled with an
extensible design that guides and facilitates the development of
pluggable national extensions, resulting in a considerably reduced
effort with respect to the development of a full national legal link
extractor from scratch.

Thanks to a well-defined pipeline of services that synthesize the
whole extraction process and to an internal annotation system that
is used to convey the information along the pipeline, the software
ensures both overall efficiency and flexibility in absolving language
and jurisdiction dependent tasks.

Services can be provided either by the common part of the soft-
ware or by a national extension. For the implementation of services
performing rule-based textual analysis (like entity identification),
JFlex is used in the common part and recommended in the national
extensions. Finally, through identifier generation services, the BOE-
CLI Parser Engine can produce standard identifiers, like ECLI or
CELEX, for each recognized legal reference.

Starting from a Template project, two different national exten-
sions have been successfully developed and tested in order to sup-
port the extraction of legal links from case-law texts written in the
Italian and Spanish languages.

KEYWORDS
Legal citations, Reference parsing, Multilinguality

1 INTRODUCTION
Among the goals of the European Case Law Identifier (ECLI) es-
tablished in 20101 is the publication of national case-law by courts
of European member States via the ECLI Search Engine on the
European e-Justice Portal. Besides being uniformly identified, deci-
sions should be equipped with a minimal set of structured metadata
describing their main features. Among the (optional) metadata pre-
scribed by the ECLI Metadata Scheme, references metadata describe

1Council conclusions inviting the introduction of the European Case Law Identifier
(ECLI) and a minimum set of uniformmetadata for case law (CELEX:52011XG0429(01)).

In: Proceedings of the Second Workshop on Automated Semantic Analysis of Informa-
tion in Legal Text (ASAIL 2017), June 16, 2017, London, UK.
Copyright © 2017 held by the authors. Copying permitted for private and academic
purposes.
Published at http://ceur-ws.org

relations of the current document with other legal (legislative or
judicial) documents, formally expressed using uniform identifiers
(the aforementioned ECLI for case-law, ELI for legislation, national
identifiers, CELEX identifiers for European legal sources).

These relational metadata are at the same time among the most
useful case-law metadata, in that they allow the enhancement of
legal information retrieval with relational search, and among the
most difficult to have valued, especially for legacy data and for less
resourced languages and jurisdictions.

In the legal domain, citations are an integral part of a text and
their instrumental use for a variety of purposes (substantive, pro-
cedural, argumentative) is a familiar tool for legal professionals
performing their daily duties. Search by relationship [1] is there-
fore popular among users as it conforms with the typical attitude
of legal professionals confronted with the reconstruction of the
sources relevant for a legal issue at hand. Nonetheless it is poorly
supported by typical search engines relying on full text indexing
and necessarily requires an explicit reference tagging to be dealt
with by machines.

Manual reference tagging is an extremely costly procedure, not
viable in the public domain and especially unable to cope with the
growing amount of data published in national case law databases.
Automatic legal reference extraction, on the other hand, has been
successfully applied in several national contexts [2], [3], [4], despite
the complexity of coping with a diversity of styles, variants and
exceptions to existing drafting rules and citation guidelines.

Due to the national specificities, national citation practices, and
language dependency of the task, the problem scales in complexity
when approaching it from a multilingual and multi-jurisdictional
perspective. Previous efforts in such direction within the EU-funded
EUCases project [5] was limited to the extraction of references from
national case law to EU legal sources.

Starting from an analysis of approaches and existing solutions to
the “Linking data” problem [6] and based on the results of a survey
on citation practices within EU and national Member States’ courts
[7], the BO-ECLI Parser Engine presented in this work and devel-
oped within the EU funded project “Building on ECLI”2, tackles
the problem from an EU-wide multilingual and multi-jurisdictional
perspective. The aim of the proposed framework is to lower the en-
try barrier for national data providers willing to develop their own
legal reference extraction solution by providing a proven method-
ology, shared common knowledge and reusable and extendable
components.

2http://bo-ecli.eu

ASAIL 2017, June 16, 2017, London, UK Tommaso Agnoloni, Lorenzo Bacci, and Marc van Opijnen

Figure 1: The overall architecture of the BO-ECLI Parser En-
gine: a common framework with pluggable extensions for
supporting the parsing process of a text written in a specific
language or issued within a specific jurisdiction in order to
get a collection of legal references and the original text with
inline annotations.

2 PARSER ENGINE
The BO-ECLI Parser Engine is an extensible framework for the
extraction of legal links from case-law texts. It is written in Java and
distributed as open source software3. It targets citations to both case-
law and legislation, expressed as lists of textual features (authority,
type of document, document number, date, etc.) or as common
names (i.e. aliases). Multiple citations, intended either as citations to
more than one partition of a single document or as citations to more
than one document issued by a single authority, are also covered
and distinct legal references are generated in correspondence to
each partition and each document. A distinguishable characteristic
of the software consists in the capability to be extended in order
to support the extraction process from texts written in different
languages or issued within different jurisdictions.
In order to realize such design, two practical steps are required:

• dividing the process of legal link extraction into a generic
and customizable sequence of atomic services, following a
pipeline pattern;

• defining an annotation system able to convey the work
done by each service along the pipeline.

Distributed as Java Libraries with a standard Java API, the soft-
ware can either be integrated within an existing environment for an
automatic batch parsing over a large corpus or be wrapped into an
even more interoperable HTTP API and queried by a remote user-
interface. Especially for this use case, the overall efficiency of the
software guarantees a quick response (in terms of user experience)
even with large case-law texts as input.

While the input of the software is as simple as text and additional
metadata, the result of the parsing process consists in a collection of
legal reference objects, possibly accompanied with legal identifiers,
and in the original text with added inline annotations, possibly with
hyperlinks, in correspondence with the recognized citations.

3http://gitlab.com/BO-ECLI/Engine

3 A PIPELINE OF SERVICES
One way to synthesize a generic process of legal link extraction
from texts is, first, to divide it into three consecutive phases:

(1) the entity identification phase, where the fragments of text
that can potentially represent a feature of a citation are
identified and normalized;

(2) the reference recognition phase, where patterns of identi-
fied features are read in order to decide whether they form
a legal reference or not;

(3) the identifier generation phase, where the recognized legal
references are analyzed so that standard identifiers, and
possibly URLs, can be assigned to them.

Secondly, within every single phase, a number of different ser-
vices can be placed, each specialized in performing one task. For
example, within the entity identification phase, there could be a
service specialized in the identification of case numbers.

By modelling the process of legal link extraction with a sequence
of services that belong to these three distinct phases it is possible
to concretely achieve a separation in design between a common
part and an extension part. Specifically, the common part (i.e. the
framework) defines the classes, the interfaces and the methods that
guide the implementation of any specific task and provides the
default implementations for services common to every jurisdiction,
like the generation of a CELEX identifier for legal references to
European legislation. On the other hand, the extension part must
provide the implementations for services like the identification of
national issuing authorities, a strictly language dependent task.

In the Java domain the described separation between the com-
mon framework and the national extensions is realized through the
Service Provider Interface paradigm, which is part of standard Java
and its adoption is straightforward. Following SPI, the integration
among the framework and all the different national extensions is as
simple as publishing them as standard Java jar libraries and making
them visible in the classpath.

Figure 2: A schematic representation of the execution of a
sequence of atomic tasks through a pipeline of service im-
plementations belonging to the three different phases of the
parsing process.

BO-ECLI Parser Engine ASAIL 2017, June 16, 2017, London, UK

Figure 3: Empty interfaces representing annotation categories like authorities, aliases and types of document are defined in
the framework and are implemented by Java Enumerations provided by the national extensions or by the framework itself,
thus realizing extensible lists of normalized values for annotations that share a common Java type.

4 ANNOTATION SYSTEM
The BO-ECLI Parser Engine framework defines an internal annota-
tion system to allow every service implementation, especially the
ones belonging to entity identification and reference recognition, to
save the specific results of their execution directly in the text. Thus,
every service can be seen as a module that receives an annotated
text as input and produces an annotated text as output, enabling
the complete customizability of the pipeline: depending on the
language, jurisdiction or other specific metadata of the input text,
modules can be replaced, enabled, disabled or arranged differently.
Within the BO-ECLI Parser Engine, annotations are used to assign
a category (hence, a meaning) to a fragment of text, while, through
normalization, annotated fragments of text can acquire a language
independent value. For example, the Italian fragment of text “sent.
della Corte Costituzionale”, meaning a judgment issued by the Ital-
ian Constitutional Court, at a certain point along the pipeline, is
annotated as follows:
[BOECLI:CASELAW_TYPE:JUDGMENT]sent.[/BOECLI] della
[BOECLI:CASELAW_AUTHORITY:IT_COST]Corte Costituzionale[/BOECLI]

The controlled lists for the annotation categories and annotation
values can be provided either by the common framework or by
the national extensions through Java Enumerations. Thanks to the
annotation system, the work of each service is conveyed and shared
along the pipeline in a language independent way.

4.1 Auxiliary methods
One of the peculiarities of the framework is to provide the imple-
mentor with a number of auxiliary methods that are used to produce
all the annotations in a transparent way.

For each annotation category during the entity identification
phase, by passing a fragment of the input text and optionally a
normalized value as argument, an auxiliary method appends to

the output the syntactically correct annotation for such fragment
of text. By exploiting the auxiliary methods, the implementor is
completely guided in producing a syntactically correct annotation
with the allowed values for each annotation category.

Reference recognition service implementations can also benefit
from specific auxiliary methods that are responsible for converting
the annotations of several entities forming a valid pattern into a
unique legal reference annotation.

5 SERVICE IMPLEMENTATION
The implementation of an annotation service belonging to either
the entity identification or the reference recognition phase simply
consists in a piece of software that analyzes an input text, possibly
already enriched with annotations, and produces an equivalent
output text, possibly with altered annotations. Since the framework
provides the methods for accessing the input text and for producing
the output text, it is up to the national implementor to decide, for
each service implementation, the textual tools to be used in order
to perform the matching. For example, those operations could be
realized with the methods of the Java String class, a set of regular
expressions and the Java regex package, proper lexical scanners, i.e.
automata.

The last approach is not only the most powerful and efficient, but
also themost fitting for the implementation of an annotation service.
The default implementations of the annotation services provided
by the framework make use of JFlex4, a well-known lexical scanner
generator for Java. Since the JFlex syntax allows for the insertion
of Java code, a jflex file can directly make use of the auxiliary
methods and Java Enumerations supplied by the framework and
by the national libraries.

4http://jflex.de

ASAIL 2017, June 16, 2017, London, UK Tommaso Agnoloni, Lorenzo Bacci, and Marc van Opijnen

5.1 Default service implementations
A number of implementations for services that belong to each phase
of the legal link extraction process are provided by the framework
by default. Typically, a default implementation is supplied when
the task that the service is in charge of can be considered language
independent, pertains to the European jurisdiction or is common
in the European context.

5.1.1 ECLI identification. An ECLI code can be used within a
case-law text as a feature of a more complete citation or as a citation
by itself. Since the ECLI code has a standardized syntax that doesn’t
depend on the language used in the rest of the case-law text, a
default service for ECLI identification is implemented and supplied
by the framework.

5.1.2 Partitions identification. Apartition is a hierarchical branch
of partition elements like articles, paragraphs, letters, etc. While
the identification of each partition element is a language dependent
task, the framework provides a service that converts sequences of
partition element annotations into unique partition annotations,
correctly composing the branches, especially in case of multiple
citations.

5.1.3 Parties identification. The identification of the names of
the parties in a citation should be generally considered as a language
dependent task. Nonetheless, the framework provides a default
service implementation for the identification of applicants and
defendants relying on heuristics based on positioning, upper and
lower casing, the versus entity and the geographic identification
of a country member of the Council of Europe (as a defendant in
European Court for Human Rights citations).

5.1.4 Reference recognition. After the entity identification phase,
the textual features that can potentially be part of a legal reference
are annotated and normalized, hence they can be treated as lan-
guage independent entities. Although citation practices change
from one jurisdiction to another, the framework provides a number
of default service implementations for reference recognition that
are able to cover the most typical citation patterns and, also, to
support multiple citations.

5.1.5 ECLI generation for European Courts. In those cases where
a standard identifier can be simply generated as a composition of
the features extracted from the textual citation, the framework
provides a default service implementation to automatically assign
an identifier to a legal reference. This is the case for the generation
of ECLI for legal references that have the European Court of Human
Rights as the issuing authority, when the type of document, the
case number and the date are known.

5.1.6 CELEX generation for European legislation. Another ser-
vice implementation supplied by the framework for the automatic
composition of a standard identifier is used for legislation references
to European directives and regulations. For these types of docu-
ment, when the referred document number and year are known, a
CELEX identifier as well as its ELI identifier can be assigned to the
legal reference.

5.1.7 CELEX generation for European aliases. The framework
provides a controlled list of values of the main aliases pertaining

to the European primary legislation, like the Treaty on European
Union or the Treaty on the Functioning of the European Union, so
that a national implementor, by reusing such normalized values,
is guided in the implementation of an identification service that
covers those references expressed in his specific language. More-
over, within the framework, a default service implementation for
identifier generation automatically assigns, for each registered alias
value pertaining to the European legislation, the correct CELEX
identifier.

5.1.8 HTML rendering. At the end of the pipeline of services,
all temporary annotations are discarded and the original input text
is only annotated with the “legal reference” annotation category in
correspondence of the recognized references. A national implemen-
tor can develop a rendering service in order to convert the internal
annotation of legal references to a specific format of his choice. By
default, the framework provides an HTML style rendering service
that transforms the “legal reference” annotation category into the
<a> tag and uses the optional URL assigned during the identifier
generation phase as the value of the href attribute.

6 NATIONAL EXTENSIONS
National extensions are used by the framework to allow the ex-
traction process from texts written in specific languages or issued
within specific jurisdictions. In order to develop a new extension,
the implementor has to:

• extend the controlled lists of normalized values for the
annotations with the values pertaining to the new jurisdic-
tion;

• provide a certain number of service implementations for
entity identification, reference recognition and identifier
generation;

• export the project as a Java jar library for compatibility
with the Service Provider Interface.

6.1 Template
Along with the framework project, a Template project has been
developed in order to facilitate and encourage the adoption of the
software for the extraction of legal links in new languages and
jurisdictions. The Template project provides a national implementor
with:

• a complete Java project with organized packaging;
• a configuration file for setting general parameters like the

author, language and jurisdiction of the extension;
• plain files of reusablemacros of regular expressions to facil-

itate the parsing of the annotations and to set up common
language dependent expressions;

• several Java Enumerations extending the controlled lists
of normalized values for annotations with customizable
constants;

• a full pipeline of services pertaining to the different phases
of the legal links extraction process with dummy imple-
mentations in jflex.

BO-ECLI Parser Engine ASAIL 2017, June 16, 2017, London, UK

6.2 The Italian and Spanish extensions
So far, following the Template project, two national extensions have
been successfully developed for allowing the extraction of case-law
and legislation references from case-law texts in the Italian and
Spanish languages. This section contains some brief considerations
concerning the development of such extensions.

6.2.1 Incremental annotations. The design of the BO-ECLI Parser
Engine, composed by a sequence of entity identification services
in charge of atomic tasks and accompanied with an incremental
annotation system, makes the identification or disambiguation of
complex entities possible, while keeping the code separated, read-
able and upgradable. For example, it has been possible to correctly
annotate the Italian Administrative Regional Tribunals in all their
textual variants as well as the Spanish Provincial Court of Appeals,
through the execution of distinct services responsible for the iden-
tification of geographic entities, followed by the identification of
sections and then the identification of local courts:
1) T.A.R. Sezione distaccata di Latina
2) T.A.R. Sezione distaccata di [BOECLI:GEO:IT_LT]

Latina[/BOECLI]
3) T.A.R. [BOECLI:SECTION:IT_LT]Sezione distaccata

di Latina[/BOECLI]
4) [BOECLI:CASELAW_AUTHORITY:IT_TARLT]T.A.R.

Sezione distaccata di Latina[/BOECLI]

The decoupling between annotation tasks hugely reduces the effort
needed for covering all the possible linguistic variants of such
complex entities since regular expressions are based on previous
annotation values that come from controlled lists, rather than on
their textual variants.

In the example above, the fragment of Italian text is correctly
annotated as a “case-law authority” with the value IT_TARLT.

6.2.2 Custom identifier generation. For both extensions it has
been possible to develop custom identifier generation services based
on a composition of the features of the legal references.

Within the Italian extension, a service implementation is in
charge of the automatic generation of the ECLI for case-law refer-
ences of high courts (Constitutional Court, Supreme Court, Council
of State and Court of Auditors) and another one is responsible
for composing the national URN-NIR identifier for references to
legislation, while in the Spanish extension the ECLI can be automat-
ically produced when the ROJ (a Spanish identifier) is present in the
citation and hence among the features of the case-law reference.

6.2.3 Vocabulary extension. For both the extensions, the lists of
controlled values have been effectively extended by customizing the
Java Enumerations provided by the Template project. National case-
law authorities values are expressed following the ECLI convention
for Court codes and include high courts as well as regional and
local courts, while aliases values for national legislation include,
for example, civil and penal codes.

6.2.4 Pipeline. The pipeline included in the Template project,
that provides a number of suggested service implementations as
well as a default order of execution, has been used in both the
extensions and it has proven effective with only minor adjustments.

7 CONCLUSIONS
We presented the BO-ECLI Parser Engine, an open source frame-
work for the automatic extraction of case-law and legislation refer-
ences from case-law texts issued in the European context.

Through a detailed description of its architecture and design,
the paper showed how national extensions can be developed and
plugged within the framework in order to add support for the
extraction process to different languages and jurisdictions. Specifi-
cally, thanks to a decomposition of the whole process into atomic
tasks and to an internal annotation system, the framework is able
to provide a number of common services and resources that can be
reused and extended by the national implementors.

By defining and providing a complete stack for legal links ex-
traction, the implementation of a national extension is guided and
straightforward, and the effort needed for the development of a
fully functional national extractor is considerably reduced.

Along with the common framework, a Template project was also
created in order to encourage and facilitate the development of new
national extensions. Moreover, the paper presents two concrete
national extensions that have already been developed by different
teams, proving both the feasibility and the straightforwardness of
the whole approach.

The BOECLI Parser Engine, as well as the Template and the
Italian and Spanish extensions, are open source projects. Their code
and documentation are currently hosted on the GitLab software
development platform5.

ACKNOWLEDGEMENT
This publication has been produced with the financial support of
the Justice Programme of the European Union. The contents of this
publication are the sole responsibility of the authors and can in no
way be taken to reflect the views of the European Commission.

REFERENCES
[1] Marc van Opijnen and Cristiana Santos. On the concept of relevance in legal

information retrieval. Artificial Intelligence and Law, 25(1):65–87, 2017.
[2] Lorenzo Bacci, Enrico Francesconi, and MariaTeresa Sagri. A proposal for intro-

ducing the ecli standard in the italian judicial documentary system. In Proceedings
of the 2013 Conference on Legal Knowledge and Information Systems: JURIX 2013:
The Twenty-sixth Annual Conference, pages 49–58. IOS Press, Amsterdam (NL),
2013.

[3] Marc van Opijnen, Nico Verwer, and Jan Meijer. Beyond the experiment: The
extendable legal link extractor. InWorkshop on Automated Detection, Extraction and
Analysis of Semantic Information in Legal Texts, June 8-12 2015. held in conjunction
with the 2015 International Conference on Artificial Intelligence and Law (ICAIL)
San Diego, CA, USA. Available at SSRN: https://ssrn.com/abstract=2626521.

[4] A. Mowbray, P. Chung, and G. Greenleaf. A free access, automated law citator with
international scope: the lawcite project. European Journal of Law and Technology,
7(3), 2016. Available at: http://ejlt.org/article/view/496/691.

[5] Pavel Popov, Alexander Konstantinov, Hristo Konstantinov, and Livio Robaldo.
EUCases project Deliverable D3.6, Report on Linking Tools’. 2014. Available
at: http://eucases.eu/fileadmin/eucases/documents/eucases_d3.6_linkingtools_
report_revised.pdf.

[6] Tommaso Agnoloni and Lorenzo Bacci. BO-ECLI project deliverable D2.1 Linking
Data - analysis and existing solutions. 2016. Available at: http://bo-ecli.eu/uploads/
deliverables/DeliverableWS2-D1.pdf.

[7] Marc van Opijnen, Ginevra Peruginelli, Eleni Kefali, and Monica Palmirani. On-
line Publication of Court Decisions in the EU - Report of the Policy Group of the
Project, ’Building on the European Case Law Identifier’. 2017. Available at: http:
//bo-ecli.eu/uploads/deliverables/Deliverable%20WS0-D1.pdf.

5https://gitlab.com/BO-ECLI

https://ssrn.com/abstract=2626521
http://ejlt.org/article/view/496/691
http://eucases.eu/fileadmin/eucases/documents/eucases_d3.6_linkingtools_report_revised.pdf
http://eucases.eu/fileadmin/eucases/documents/eucases_d3.6_linkingtools_report_revised.pdf
http://bo-ecli.eu/uploads/deliverables/DeliverableWS2-D1.pdf
http://bo-ecli.eu/uploads/deliverables/DeliverableWS2-D1.pdf
http://bo-ecli.eu/uploads/deliverables/Deliverable%20WS0-D1.pdf
http://bo-ecli.eu/uploads/deliverables/Deliverable%20WS0-D1.pdf

	Abstract
	1 Introduction
	2 Parser Engine
	3 A pipeline of services
	4 Annotation system
	4.1 Auxiliary methods

	5 Service implementation
	5.1 Default service implementations

	6 National extensions
	6.1 Template
	6.2 The Italian and Spanish extensions

	7 Conclusions
	References

