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1 Introduction
Although some negative effects have been noted, positive effects of bush fires on the habitat for
native flora and fauna have been recorded [30]. Reports indicate that areas subject to prescribed
burning have more live trees, greater survival, and reduced fire intensity during wildfires compared
to untreated areas [29]. Prescribed burning leads to fuel reduction [1] and areas with old vegetation
(or areas with excess fuel build-up) are often targeted for treatment [11] and can help mitigate
wildfire hazards [28, 3, 5], and the risk to human life and economic assets [22]. Thus it has been
argued that fuel management is both necessary and important [4].

For the purposes of fuel mangement, forest and national parks are often divided into treatment
units. Deciding on a schedule of treatments is a complex spatio-temporal problem [12, 26] and the
resulting spatial patterns are critical [7, 16]. Operations Research methods have been applied to
some of these problems [19, 20, 2, 23].

Different spatial patterns have been studied [14] and have led to interesting theoretical results.
Patterns include disconnected fuel treatment patches that overlap in the direction of fire spread [8],
or taking into account the natural landscape around us [9]. Also preparing explicitly for possible
future fires when choosing where to apply treatment [31] taking into account fire ignition risk and
probabilities of fire spread [33]. Stochastic programming with sample fires has produced some
spatial and temporal relationships for where to burn [21].
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Fragmenting high fire hazard fuel patches is an aim in fuel management, so that treated units
can act as a barrier between high fuel load units when a wildfire occurs. The vegetation regrows
over time, and long-term planning is necessary to minimise these high-risk connections [32, 20, 24].
Where to locate fuel-breaks is highly connected to locating burn units, and finding the optimal
pattern for these breaks has received attention from researchers [27].

The risk of catastrophic wildfires decreases [16, 15] with extent treated but with an optimal
landscape mosaic [10] hazard reduction can be achieved without excessive costs [17]. Neverthe-
less vegetation regenerates, ages and eventually becomes high fuel load again. Thus multi-period
scheduling of fuel treatment [20, 24] is needed.

Lowering the total fuel load has ecological consequences. Some species may rely on vegetation
that would be classified as high-risk. When choosing which units to burn, we have to take into ac-
count the habitat quality for these species. These might need connected habitats for reducing local
extinction, increasing recolonisation and annual migration [25], so (functional) landscape connec-
tivity has to be taken into account [34]. Little research has been done combining multiple concerns
that arise with fuel treatment in an optimisation framework [6].

In this paper we consider scheduling prescribed burning of parts of a landscape to reduce the
connectivity of high-risk regions in order to reduce the fire hazards. We propose a Mixed Integer
Programming (MIP) model to break these connections, taking into account the quality of the
habitat for animals living there. Research has been done on breaking the connectivity between the
high-risk regions, but not assessing overall and local quality of the habitat. We propose a couple
of solution approaches and demonstrate these on hypothetical landscapes. A number of measures
for the quality of the habitat are considered. We use fuel accumulation curves to categorize old
burn units, or high risk ones (see [13]). We use fire response curves to give relative abundance of a
species in years after burning (see [18]) and take this as a quality measure of the burn unit.

2 Method
Model Description

Consider a landscape comprising a mosaic of spatial units. In the context of fuel management
these are referred to as ‘burn units’. The age of the vegetation in each burn unit determines its
fuel load and hence its risk of wildfire. Vegetation age also characterises the habitat suitability for
particular fauna of each burn unit. In this model we consider a single vegetation type (heathland)
and without specifying a species we consider invertebrates that prefer some predefined vegetation
age. We formulate a model that each year selects the burn units to undergo fuel reduction through
controlled burning or mechanical clearing. The sequence of selections is made so as to minimise the
risk of wildfires. This is achieved by ensuring that after treatment the burn units remaining with
high fuel loads are as fragmented as possible.

On the other hand we also want to take into account the species that might live in the landscape.
As species have preferences for vegetation of a certain age, we assign a quality to each burn unit
according to its area and the relative abundance of species supported by vegetation of that age.
We can then only select a burn unit for treatment if the habitat quality of its neighbours is at least
as high as the habitat quality of the burn unit itself. This way, we take into account the habitat
needs of the species, although we realize that individuals might have to migrate from time to time.

Further constraints included in the model relate to the vegetation. To sustain the vegetation
and associated ecosystem, fire should not occur more frequently than its ‘minimum tolerable fire
interval’. On the other hand, for fire-dependent species the ‘maximum tolerable fire interval’ is also



important.

3 Model implementation
For our analysis we implement the developed Mixed Integer Linear Programming model on 23
randomly generated landscapes (one instance is shown in Figure 1). Each of the landscapes has
45 burn units. We perform experiments with a treatment level of 7 percent of the total area of
the landscape each year. The simulations are then solved for a planning period of 20 years, with a
rolling horizon of 12 years.

The solver we use is Gurobi 7.5 with the Julia 0.6.0.1 programming language using JuMP mod-
eller.

Figure 1: Randomly generated landscape with 45 units. Colours are only for distinction between
burn units.

4 Results
We solve the 23 randomly generated scenarios with the rolling horizon approach (with a 12-year
window) to optimality. The mean fire risk and global habitat value are shown in Figure 2.

Our objective is to get an overall minimum in the weighted connections between high-risk burn
units. We see that the initial risk is quickly brought close to 0, while maintaining habitat of good
quality (both local and global). For the landscape previously shown on Figure 1 we now show the
initial conditions (random ages) and the solution after 3 and 19 years (Figures 3, 4 and 5).

4.1 Myopic approach

If the rolling horizon window is too short results may be unsatisfactory. We demonstrate this fact
comparing the results obtained with a rolling horizon of 12 years versus the ones in which the
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Figure 2: Mean fire risk and mean global habitat value for the 23 scenarios by year

Figure 3: Ages of cells on random initial conditions for a given landscape

rolling horizon is set up to be just two years, in both cases using the model is run without habitat
constraints.

Out of the 23 scenarios three of them turned to be infeasible when solved with the myopic
approach. Units have to burnt if their age will exceed the parameter maxTFI, but the myopic
approach has led in some scenarios to situations in which the amount to be burnt on one year is
higher than that allowed by the budget

Year Long term Myopic
16 0.936 2.258
17 0.920 2.076
18 0.991 1.899
19 0.815 2.036
20 0.828 2.045

Table 1: Mean fire risk in the last years of simulation, long rolling horizon window versus myopic
approach.



Figure 4: Ages of cells after 3 years Figure 5: Ages of cells after 19 years

Table 1 reports the results obtained with both approaches, only in the last years of the planning
horizon, when the solution is more stable. We can see that, even removing the scenarios in which
the myopic approach was infeasible, the myopic approach yielded results much worse than that
obtained with a longer planning horizon.

4.2 Lexicographical approach

On some situations it might seem unrealistic to allow a fuel management schedule that improves
habitat quality while increasing the fire risk. For that purpose we have also shown that a lexi-
cographical approach can also be used to get a good solution in terms of habitat value without
increasing fire risk.

4.3 Alternative neighbourhood

Finally we aim to show how our model can easily reflect different neighbourhood definitions. For
example a landscape could be located in some place where wind primarily blows in one direction, and
hence fire propagation would occur mainly in that direction. If that were the case our model could
easily reflect that information by just changing a neighbourhood matrix (in the model formulation
the neighbourhood information is given by the set Φi). An example of this alternative way of
defining neighbours is shown in Figure 6. Another example where fire propagation might occur
mainly in one direction (and thus neighbourhoods defined in a similar way) is if the landscape has
a high slope and fires are primarily topographical.

With the neighbours defined as given by Figure 6 we solve the lexicographical model explained
on the previous section (minimize high fuel load connectivity through all planning horizon and
then maximize habitat value without increasing fire risk), and using the same parameters. Figure 7
shows the state of the landscape n the last year of the planning period. It can be seen that the
model makes use of the new definition of neighbours, as fuel load is accumulated in burn units that
are geographically adjacent but were not defined as neighbours, and thus they do not pose a high
fire risk.



Figure 6: If the landscape has predominant
winds and fires that occur in that landscape are
wind-driven, the neighbourhood matrix could
reflect this fact. Lines on this image show
which units are defined as neighbours in case
of west-east winds.

Figure 7: Solution on the last year of simula-
tion with dark units reflecting burn units that
have old fuel (their age is older than 10).

5 Conclusions
We presented a mixed integer programming model for a landscape divided into polygons represent-
ing realistic treatement units. The model aims to reduce the adjacency of high fuel load areas.
We show that adopting a medium-term approach to fuel reduction using our model yields is much
more effective than adopting a myopic approach. In this latter case it frequently arises that fuel
reduction targets cannot be met within budget constraints.

There are ecological consequences from prescribed burning. We considered habitat quality for
invertebrates on a heathland landscape. We showed that a significant range of habitat quality
outcomes can be obtained without compromising the optimal fuel load goal. It is sensible therefore
for habitat considerations to be included in fuel reduction plans. We show that this can be achieved
for invertebrates by requiring the habitat quality in the neighbourhood of a planned burn be at least
as good as the habitat quality of the area to be burnt. We also take into account landscape-level
habitat quality. This consideration of local and global habitat differs from previous work. We also
imposed some ecological requirements in the form of minimum and maximum tolerable fire intervals
for the vegetation.

For any particular landscape, factors such as topology and prevailing winds will determine con-
nectnedness between high fuel load areas. We have illustrated that this can be handled with a
redefinition of the neighbourhood of each treatment unit. In fact where fire spread is predom-
inantly in certain directions geographically adjacent treatment units might not be in the same
neighbourhood from a fuel connectedness perspective. This creates opportunities for maintaining
habitat quality for species requiring older vegetation without compromising fuel reduction plans.
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