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Abstract. This article is a sequel to the paper "Blocks of the Direct
Product of Tolerance Relations" [7]. The square cover number of the
direct product of tolerance spaces and the rectangle cover number of the
direct product of formal contexts is treated. Furthermore, we compare
rectangle and square covers of tolerance spaces.
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1 Introduction

A tolerance relation or simply a tolerance is a reflexive and symmetric binary
relation τ on a non-empty finite set V . The pair (V, τ) =: T is called tolerance

space. An introduction to tolerance spaces together with applications can be
found in [10] and [11].

For a tolerance τ on V , a non-empty subset S ⊆ V induces a square in τ if
S × S ⊆ τ . If S is maximal with respect to set inclusion, then S × S defines a
maximal square.

The set of all maximal squares of T is denoted by Sq(T) and determines the
tolerance τ , that is τ =

⋃
Sq(T). But often not all squares are necessary to cover

τ . This motivates the definition of the square cover number, sc(T), of a tolerance
space T, as the minimal number of maximal squares necessary to cover τ .

sc(T) := min{k | ∃ S ⊆ Sq(T), τ =
⋃

S, |S| = k}. (1)

In [7] the direct product (defined in Section 2) of tolerance spaces was treated
by means of formal concept analysis, which lead to the conjecture:

Conjecture 1. Let T1 and T2 be tolerance spaces. For their direct product

T1 ×̌T2 it holds that sc(T1 ×̌T2) = sc(T1) + sc(T2).

When we analysed Conjecture 1, it turned out that it is not valid in general.
Still, we will provide a sufficient condition for this conjecture to hold (Section
5). The meta framework for this will be formal concept analysis, introduced in



Section 2, together with some tools from graph theory (Section 4). Additionally,
we will treat the rectangle cover number of the direct product of formal contexts
in Section 3 and Section 6 provides example classes of tolerance spaces for which
the square cover number and rectangle cover number are equal. Lastly, Section 7
analyses a construction principle for tolerance spaces, which is based on formal
contexts.

2 Formal Concept Analysis

In this section, we will provide the definitions and facts from formal concept
analysis (see [5]) that will be used in the sequel.

A formal context (or in short context) is a triple K = (G, M, I), where the
incidence I ⊆ G × M is a binary relation. For A ⊆ G and B ⊆ M , we define two
derivation operators:

AI := {m ∈ M | ∀a ∈ A : (a, m) ∈ I} =
⋂

a∈A

{a}I ,

BI := {g ∈ G| ∀ b ∈ B : (g, b) ∈ I} =
⋂

b∈B

{b}I .

If AI = B and BI = A, the pair (A, B) is called a formal concept (or
in short concept) with extent A and intent B. The set of all formal concepts
of K is denoted by B(K) and defines the concept lattice B(K), via the or-
der (A1, B1) ≤ (A2, B2) :⇔ A1 ⊆ A2. The complementary context is defined as
Kc = (G, M, Ic) := (G, M, (G×M)\I) and the dual context as Kd := (M, G, I−1),
with the inverse relation I−1 := {(m, g) ∈ M × G | (g, m) ∈ I}.

Let ∪̇ denote the disjoint union of sets. We define four binary operations on
contexts K1 = (G1, M1, I1) and K2 = (G2, M2, I2).

The direct product K1 ×̌K2 := (G1 × G2, M1 × M2, I1 ×̌ I2 ) with

((g, h), (m, n)) ∈ I1 ×̌ I2 :⇐⇒ (g, m) ∈ I1 or (h, n) ∈ I2,

the cardinal product K1 ×̂K2 := (G1 × G2, M1 × M2, I1 ×̂ I2 ) with

((g, h), (m, n)) ∈ I1 ×̂ I2 :⇐⇒ (g, m) ∈ I1 and (h, n) ∈ I2,

the direct sum K1 ⊕K2 := (G1 ∪̇ G2, M1 ∪̇ M2, I1 ∪̇ I2 ∪̇ G1 × M2 ∪̇ G2 × M1),

and the disjoint union K1 ∪̇ K2 := (G1 ∪̇ G2, M1 ∪̇ M2, I1 ∪̇ I2).



The two products fulfill De Morgan laws

(K1 ×̌K2)c = Kc
1 ×̂Kc

2 and (K1 ×̂K2)c = Kc
1 ×̌Kc

2, (2)

the relation I1 ×̌ I2 can be expressed as

I1 ×̌ I2 = (G1 × M1) ×̂ I2 ∪ I1 ×̂(G2 × M2), (3)

and we will denote the incidence relation of the direct sum by I1 ⊕ I2.

A context K is crossed, if the adjacency matrix AI of its incidence I has at
least one full row and one full column. If AI has at least one empty row and one
empty column, we say that K is co-crossed. In case of two crossed contexts, we
can express the concept lattice of the cardinal product as the direct product (in
terms of Universal Algebra) of each factors concept lattice (see [3]).

B(K1 ×̂K2) ∼= B(K1) × B(K2). (4)

The concept lattice of the direct sum is isomorphic to the direct product of
each components concept lattice too1.

B(K1 ⊕ K2) ∼= B(K1) × B(K2). (5)

Let P = (P, ≤P, 0P, 1P) and L = (L, ≤L, 0L, 1L) be bounded posets such that
P ∩ L = ∅. The poset S = (S, ≤, 0, 1), with P ∗ := P\{0P, 1P}, L∗ := L\{0L, 1L},
S∗ := P ∗ ∪ L∗, S := S∗ ∪ {0, 1} and ≤:=≤P ∪ ≤L ∪{0} × S ∪ S × {1}, is called
the horizontal sum of (P,L) and is denoted by P +̂L := S.

For the disjoint union of two contexts, the resultant concept lattice is the
horizontal sum of each components concept lattice.

B(K1 ∪̇ K2) ∼= B(K1) +̂B(K2). (6)

Next, since a concept (A, B) with non-empty sets A and B induces a maximal

rectangle A × B in I, we define the rectangle cover number (see also [12]), rc(K),
of a context K as

rc(K) := min{k | ∃ F ⊆ B(K), I =
⋃

(A,B)∈F

A × B, |F| = k}. (7)

The Boolean rank, rB(C), of an n × m Boolean matrix C is the least integer
k such that Boolean m × k and k × n matrices with C = A ◦ B exist (see [1]). In
[1] it is implicitly shown that:

rc(K) = rB(AI). (8)
1 The condition to be crossed is not necessary for Identity 5.



Lastly, we recall some aspects of dimension theory. For a concept lattice B(K),
its 2-dimension, dim2(B(K)), is the smallest number of chains of cardinality 2 in
whose direct product it can be order-embedded. Since the n-fold direct product of
chains of cardinality 2 is isomorphic to the powerset lattice of the n-element set
n, there exists φ : B(K) → P(n) with (A, B) ≤ (C, D) ⇐⇒ φ(A, B) ≤ φ(C, D).

A Ferrers relation is a relation F ⊆ G×M such that (g, m), (h, n) ∈ F implies
(g, n) ∈ F or (h, m) ∈ F . This is equivalent to B(G, M, F ) being a chain. The
length l of F is defined as l(F ) = |B(G, M, F )| − 1. For a context K its Ferrers

2-dimension, fdim2(K), is the smallest number of Ferrers relations Ft, t ∈ T with
l(Ft) < 2, so that I =

⋂
t∈T Ft.

The above defined dimensions are equal and are related to the rectangle cover
number via the complementary context, that is:

rc(K) = fdim2(Kc) = dim2(B(Kc)). (9)

3 The Rectangle Cover Number of the Direct Product of

Formal Contexts

In this section, we will treat the rectangle cover number of the direct product
of two contexts K1 and K2. From Identity 3, it follows that rc(K1 ×̌K2) ≤
rc(K1) + rc(K2). We will provide a sufficient condition for equality. Therefore,
we will need a proposition about the Ferrers 2-dimension of the direct sum of
two contexts. This proposition and its use in Theorem 1 is inspired by [14].
Proposition 1. For the direct sum of two contexts K1 = (G1, M1, I1) and K2 =
(G2, M2, I2), it holds that fdim2(K1 ⊕ K2) = fdim2(K1) + fdim2(K2).
Proof. The claim follows from Identity 9 with interchanged roles of K and Kc,
and the structure of the relation (I1 ⊕ I2)c depicted in Figure 1.

Fig. 1. The relation I1 ⊕ I2 and (I1 ⊕ I2)c of the direct sum of K1 and K2.

I1 ⊕ I2 M1 M2

G1 I1 G1 ×M2
G2 G2 ×M1 I2

(I1 ⊕ I2)c M1 M2

G1 Ic
1 ∅

G2 ∅ Ic
2

Theorem 1. Let K1 and K2 be co-crossed contexts. For the rectangle cover

number of their direct product it holds that:

rc(K1 ×̌K2) = rc(K1) + rc(K2).



Proof. First, we notice that Kc
1 and Kc

2 are crossed contexts. From Proposition 1,
and Identity 2, 4, 5 and 9, we conclude that

rc(K1 ×̌K2) = fdim2((K1 ×̌K2)c)
= fdim2(Kc

1 ×̂Kc
2)

= dim2(B(Kc
1 ×̂Kc

2))
= dim2(B(Kc

1) × B(Kc
2))

= dim2(B(Kc
1 ⊕ Kc

2))
= fdim2(Kc

1 ⊕ Kc
2)

= fdim2(Kc
1) + fdim2(Kc

2)
= rc(K1) + rc(K2).

Remark 1. In case that the hypothesis for both factors to be co-crossed does
not hold, the simplest example to consider would be I := ({g}, {m}, {g} × {m}).
It is crossed and for any non-empty context K, it holds that rc(K ×̌ I) = 1 <
rc(K) + 1 = rc(K) + rc(I).

Without providing a formal definition, we restate Theorem 1 for Boolean
matrices. Since in this case the term direct product would not be appropriate,
we will use the established notion Cartesian sum from graph theory (see [9]).
Identity 8 implies:

Corollary 1. Let A1 and A2 be Boolean matrices with at least one empty row

and one empty column. For the Boolean rank of their Cartesian sum it holds that

rB(A1 ×̌ A2) = rB(A1) + rB(A2).

4 Edge Clique Covers of Simple Graphs

In order to analyse the square cover number of tolerance spaces, we will use
some results from graph theory which will be introduced in this section. A graph

is considered as a relational structure G = (V, E) with vertex set V and an
irreflexive, symmetric binary relation E ⊆ V × V . Let Eref denote the reflexive

closure of E. The reflexive closure of G is defined as Gref := (V, Eref). It follows
that the graph Gref defines a tolerance space. On the contrary, let T be a tolerance
space, then GT denotes the underlying graph.

As usual, Kn denotes the complete graph with n vertices and Km,n the
complete bipartite graph with disjoint vertex sets A and B, such that |A| = m
and |B| = n. An n-clique (or just clique) of G is a complete subgraph Kn ≤ G.
Every clique of a graph G induces a clique in the reflexive closure Gref and every
isolated vertex of G induces a 1-clique in Gref . The difference between cliques
and reflexive cliques is that the latter one can be identified with a formal concept
and especially with a maximal square in Eref in the sense of tolerance relations.
Figure 2 provides an example.



Fig. 2. The reflexive closure of a 4 cycle is depicted.
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a 0 1 0 1
b 1 0 1 0
c 0 1 0 1
d 1 0 1 0
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a

d

b

c
a b c d

a 1 1 0 1
b 1 1 1 0
c 0 1 1 1
d 1 0 1 1

The edge clique cover number of a graph G, θe(G), is the smallest number of
cliques such that their edges cover the edges of G. For a graph with n vertices,
we have that θe(G) ≤ ⌊n2/4⌋, in which equality holds for the graph K⌊n/2⌋,⌈n/2⌉
(see [13]).

θe(K⌊n/2⌋,⌈n/2⌉) = ⌊n2/4⌋. (10)

The following proposition relates θe to the square covering number.

Proposition 2. Let G be a graph and T be a tolerance space. It holds that

θe(G) = sc(Gref) and sc(T) = θe(GT).

Another graph parameter related to cliques is the vertex clique cover number,
θv(G), that is the smallest number of cliques, such that their vertices cover all
vertices of G.

Lastly, we describe the concept lattice of a graph G and the relationship
between graph homomorphisms (edge preserving maps) and certain maps between
concept lattices of graphs. In [15], concept lattices of graphs are studied under the
name neighborhood ortholattice. It is shown that B(G) is a complete ortholattice,
that is a complete bounded lattice with an involutory antiautomorphism c, such
that x ≤ c(x) implies x = 0. We define an abstract orthogonality relation through
x ⊥ y :⇐⇒ x ≤ c(y).

An orthomap between complete ortholattices preserves order and orthogonality,
and maps only the bottom element of the domain lattice to the bottom element
of the codomain lattice. The next theorem relates graph homomorphisms to
orthomaps.

Theorem 2 ([15]). A graph homomorphism from G1 to G2 exists if and only

if there exists an orthomap from B(G1) to B(G2).

Furthermore, it is shown in [15] that the concept lattice of Kn is isomorphic
to the powerset lattice of an n-element set: B(Kn) ∼= P(n).



5 The Square Cover Number of the Direct Product of

Tolerance Spaces

This section treats Conjecture 1, i.e., for tolerance spaces T1 and T2:
sc(T1 ×̌T2) = sc(T1) + sc(T2).

First, similar to Remark 1, we see that Conjecture 1 is false for an arbitrary
tolerance space T1, and T2 = ({v}, {v}, {v} × {v}). Second, due to Identity 3, it
always holds that sc(T1 ×̌T2) ≤ sc(T1)+sc(T2). The question for which tolerance
spaces equality holds remains. An analogue to Theorem 1 can not exist, since
tolerance spaces, due to their reflexivity, can not be co-crossed.

In order to be able to make use of the the rectangle cover number, we will
relate the square cover number, sc(T), to the rectangle cover number, rc(T).
Since every square is also a rectangle, it holds that for any tolerance space, the
rectangle cover number is less or equal to the square cover number.

rc(T) ≤ sc(T). (11)
But, the reverse inequality is wrong in general. To see this, we notice that

rc(T) = rB(Aτ ) ≤ |V | (see [1]). Consequently, a tolerance space with square cover
number larger than |V | would provide a counter example. From Identity 10 and
Proposition 2, we conclude that 6 = sc(Kref

2,3) > rc(Kref
2,3) = 5 (see Fig. 3).

Fig. 3. The graph K2,3 and the adjacency matrix of Kref
2,3.

v1

v2

a

b

c v1 v2 a b c

v1 1 0 1 1 1
v2 0 1 1 1 1
a 1 1 1 0 0
b 1 1 0 1 0
c 1 1 0 0 1

This motivates the following definition.
Definition 1. We will say that a tolerance space T has the balanced covering
property (in short BCP) if sc(T) = rc(T).

This definition leads immediately to:
Theorem 3. Let T1 and T2 be tolerance spaces with the BCP, such that rc(T1 ×̌T2) =
rc(T1) + rc(T2). It follows that sc(T1 ×̌T2) = sc(T1) + sc(T2).

Proof. It always holds that sc(T1 ×̌T2) ≤ sc(T1) + sc(T2). From the BCP of T1

and T2, and Inequality 11, we conclude the reverse direction
sc(T1) + sc(T2) = rc(T1) + rc(T2) = rc(T1 ×̌T2) ≤ sc(T1 ×̌T2).



6 Tolerance Spaces with the balanced covering property

In this section, we will provide examples of tolerance spaces which have the BCP.

Example 1. The following is inspired by [8]. A covering H ⊆ P(V ) of V is

irredundant if H\{X} is not a covering of V for any X ∈ H. An irredundant

covering induces the tolerance τH :=
⋃

{X×X | X ∈ H} with underlying tolerance

space TH := (V, τH). It follows that sc(TH) ≤ |H|. Since, H is an irredundant

covering, for every X ∈ H there exists v ∈ X, such that X × X is the only

maximal square which is covering (v, v). Hence, the squares X × X with X ∈ H
are mandatory (see [1] for mandatory factors in the sense of factor analysis) for

every covering of τH, which implies sc(TH) = rc(TH) = |H|.
Furthermore, note that tolerances induced by irredundant coverings can be

considered as the reflexive closure of graphs G with θe(G) = θv(G) (see [2]

Theorem 1) and that equivalence relations are a special case of such tolerances.

Next, we will describe the structure of the graphs G = (V, E) whose underlying
relation E is the complement of a tolerance induced by an irredundant covering.

Theorem 4. Let T = (V, τ) be a tolerance space and G = (V, E) the graph

defined through G := Tc. If the tolerance τ is induced by an irredundant covering

H ⊆ P(V ) with |H| = n, then G is a connected graph with Kn as a retract2.

Proof. In [8] it is shown that B(G) is an atomistic boolean lattice if τ is induced
by an irredundant covering. Since we only consider finite tolerance spaces, this
means that B(G) is isomorphic to a powerset lattice. We denote the isomorphism
by Φ and show that it is an orthomap.

Since it is an isomorphism it preserves order and only the bottom element
of the domain lattice is mapped to the bottom element of the codomain lattice.
Consequently, just the preservation of orthogonality is left to show:

x ⊥ y ⇒ x ≤ c(y) ⇒ Φ(x) ≤ Φ(c(y)) = c(Φ(y))3 ⇒ Φ(x) ⊥ Φ(y).

The same holds for the inverse Φ−1 so that we have orthomaps B(G) → P(n)
and P(n) → B(G). Theorem 2 implies the existence of two graph homomorphisms
φ1 : G → Kn and φ2 : Kn → G. Since φ2 must be an embedding, it can be
defined such that φ1 ◦ φ2 = idG holds.

Lastly, we notice that G must be connected. Otherwise B(G) would be equal
to the horizontal sum of the connected components of G (see Identity 6). But
B(G) ∼= P(n) implies that for n ≥ 3 and n = 1, the concept lattice B(G) can not
2 A graph G is a retract of H if there exist graph homomorphisms φ : G → H and
ψ : H → G such that the composite ψ ◦ φ is the identity on G.

3 The last equality is a consequence of the fact that the isomorphic image of an
orthocomplemented lattice is again an orthocomplemented lattice. Just define
c(Φ(x)) := Φ(c(x)). Since the powerset lattice has a unique orthocomplementation,
this is the only possible choise for c.



be horizontally decomposed. For n = 2, the graph G must have two connected
components such that their concept lattice is a chain. This is a contradiction,
since the underlying relation of a graph can not be a Ferrers relation.

Example 2. In this example we generalize the construction of (K⌊n/2⌋,⌈n/2⌉)ref

(see Section 4 and Figure 3). For this purpose let K be a context. We consider

T := (K∪̇Kd)ref , the reflexive closure of the union of K and Kd. This construction

yields the reflexive closure of a bipartite graph with disjoint vertex sets G and M ,

such that we draw a line from g ∈ G to m ∈ M whenever gIm holds. It follows

that every element of I induces a maximal clique in this bipartite graph and

hence a maximal square in (I ∪̇ I−1)ref (Fig. 4). In [6] the concepts of B(T) are

Fig. 4. The reflexive closure of I ∪̇ I−1, where EX denotes the identity on X .

(I ∪̇ I−1)ref : G M

G EG I
M I−1 EM

characterized. Let {a}, A ⊆ G and {b}, B ⊆ M . The following types of concepts

can occur. First, concepts which represent a row or column in (I ∪̇ I−1)ref ,

({a}, {a} ∪ AI), ({b}, BI ∪ {b}), ({a} ∪ B, {a}), (A ∪ {b}, {b}),

and second concepts from B(K), that is (A, AI), (B, BI), as well as the above

mentioned squares ({a} ∪ {b}, {a} ∪ {b}). It follows that for |G| + |M | < |I|, we

have that rc(T) = |G| + |M | < sc(T) = |I|. In the next step we remove elements

from I until |G| + |M | = |I|, which gives us rc(T) = sc(T) ≤ |G| + |M |. If

|G| + |M | > |I|, it still holds that rc(T) = sc(T).

Finally, we notice that a graph G with Gc = (K ∪̇ Kd)ref consists of complete

graphs K|G| and K|M |, such that their vertices are symmetrically connected

through the context Kc.

Example 3. A further example is the symmetrization Ks of a context K (see

[7]). It is defined as Ks := K⊕Kd = (G ∪̇ M, G ∪̇ M, I ∪ I−1 ∪ G × G ∪ M × M)
(Fig. 5). Every concept (A, B) of K induces a maximal square (A ∪ B) × (A ∪ B).

More generally, every concept of Ks has the form (A ∪ D, B ∪ C), in which

(A, B) and (C, D) are concepts of K. Hence, a minimal rectangle cover of K
induces a set of maximal squares which cover I and I−1, but G × G and M × M
may not be covered. It follows that rc(K) ≤ rc(Ks) ≤ rc(K) + 2 and that rc(K) ≤
sc(Ks) ≤ rc(K) + 2. If sc(Ks) = rc(K), the BCP sc(Ks) = rc(Ks) follows from

Inequality 11.



Fig. 5. The symmetrization of K.

Ks G M

G G×G I
M I−1 M ×M

A graph G with Gc = K ⊕ Kd consists of two empty graphs on G and M ,

such that their vertices are symmetrically connected via Kc

7 Construction of Tolerance Spaces

In this section, we will analyse a construction principle for tolerance spaces
which is based on formal contexts. Example 2 and 3 suggest that we consider a
triple (A,K,B) with tolerance spaces A = (G, G, α), B = (M, M, β) and a context
K = (G, M, I). That triple defines the tolerance space T := (G∪M, I ∪I−1∪α∪β)
(Fig. 6).

Fig. 6. The triple (A,K,B) defines the tolerance space T.

τ : G M

G α I
M I−1 β

Fig. 7. The bipartite structure of the triple (A,K,B).

... ...

α

β
I

...



The interaction of α, I and β determines the structure of the tolerance space.
This fact can be interpreted as a bipartite graph defined through I, such that α
and β are tolerance relations on the disjoint vertex sets (Fig. 7). In the context
of clique partitions of graphs, this was already observed in [4].

If I is the empty relation, then rc(T) = rc(A)+rc(B) and sc(T) = sc(A)+sc(B).
For ||G| − |M || ≤ 1 and I = G × M , as well as α, β equal to the identity rela-
tion, the square cover number sc(T) is maximal. In this case, an increase of the
elements of α and β can only reduce the square cover number. Generally, if I
has many edges, more edges in α and β are necessary for a small square cover
number, because one has to connect the edges of I into just a few maximal squares.

For arbitrary I, α and β, we state the following theorem.

Theorem 5. Let (A,K,B) be defined as above. For A, C ⊆ G and B, D ⊆ M ,

let A × B and C × D be subsets of I. If A × C ⊆ α and D × B ⊆ β, then

(A∪D)×(B ∪C) is a rectangle of the underlying tolerance space. This rectangle is

maximal if A, B, C and D are maximal with respect to the above stated inclusions.

For A = C and B = D a (maximal) square is induced.

Proof. If C × D ⊆ I, then D × C ⊆ I−1. The rest of the proof is graphical (Fig.

8).

Fig. 8. The structure of maximal rectangles.

C

A A

B

D

C

D

B

Note that in order to induce a maximal rectangle, neither A × B and C × D
have to be maximal in I, nor A × C and D × B have to be maximal in α and β.

Corollary 2. Let T = (A,K,B) be defined as above. A concept (A, B) ∈ B(K)
induces a maximal rectangle in T if there exists no rectangle C × D ⊆ I such that

A × C ⊆ α and D × B ⊆ β. Furthermore, (A, C) ∈ B(A) and (D, B) ∈ B(B)
induce a maximal rectangle in T if there exist no rectangles A × B ⊆ I and

C × D ⊆ I.



8 Conclusion

This paper analysed rectangle covers of the direct product of formal contexts. If
the contexts are co-crossed, then the rectangle cover number of the direct product
is equal the sum of each factors’ rectangle cover number.

In the next step, we treated the square cover number of the direct product
of tolerance spaces. If each factor has the balanced covering property (BCP),
which means that its square cover number is equal to its rectangle cover number,
then additivity of the rectangle cover number with respect to the direct product
transfers to the square cover number.

Lastly, we provided a variety of examples for tolerance spaces which have the
BCP, analysed the corresponding graphs and introduced a construction principle
for tolerance spaces based on formal contexts.

Acknowledgments. Finally, we want to express our thanks to the anonymous
referees for their suggestions to improve our paper.
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