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Abstract. We introduce an order theoretic approach to generalized
metrics that covers various concepts of distance. In particular, we point
out the role of supermodular mappings on lattices, which we then ap-
ply in diverse settings such as comparison of ratings and formal concept
lattices.
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1 Introduction

Generalized metrics recently have become of increased interest for modeling di-
rected distances with values in qualitative measurement spaces including ordered
monoids and lattices. In [8] generalized metrics are proposed which turned out to
be relevant for formal concept analysis and closure operators (see [4], [9], [10]).

In this paper, we will apply generalized metrics in order to compare ratings,
that is comparing the rating methodologies of different rating agencies with
different result scales. We analyze suitable result scales for the rating process
and show that ratings are not limited to chain lattices but can as well use
certain semimodular lattices as target. The paper also considers applications to
formal concept analysis covering the extensional as well as the intensional point
of view.

For our approach supermodularity plays an important role, which goes beyond
ideas of measurement associated with Dempster-Shafer-Theory (see [10]).

2 A prior result on generalized metrics

In this section we recall a theorem on generalized metrics (compare [8]). We start
with
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Definition 1 ([8]) M = (M, ∗, ε,≤) is an ordered monoid if M := (M, ∗, ε)
is a monoid and (M,≤) is a poset such that a ≤ b implies c ∗ a ≤ c ∗ b and
a ∗ c ≤ b ∗ c, for all a, b, c ∈M .

The class of ordered monoids is quite large. Examples are:

– (R,+, 0,≤) and (R+, ∗, 1,≤) under the natural ordering of the real numbers;

– for any set E, (P(E),∪,⊆, ∅) and (P(E),∩,⊆, E);

– a meet-semilattice (L,∧, 1L,≤L) bounded from above by 1L and a join-
semilattice (L,∨, 0L,≤L) bounded from below by 0L.

In order to distinguish the respective order relations, in the following we will use
the symbol ”≤P” for the order relations of a given poset P and ”≤” of a given
ordered monoid M, respectively:

Definition 2 ([8]) Let P = (P,≤P) be a poset and M = (M, ∗, ε,≤) be an
ordered monoid. A mapping

∆ : ≤P −→M

is called functorial w. r. t. (P,M), if

– for all p ∈ P : ∆(p, p) = ε,

– for all p, t, q ∈ P with p ≤P t ≤P q : ∆(p, t) ∗∆(t, q) = ∆(p, q).

Furthermore, ∆ is called weakly positive, if ε ≤ ∆(p, q) for all (p, q) ∈ ≤P.

In case P = (P,≤P) is a lattice, ∆ is called supermodular w. r. t. (P,M) (resp.
modular), if ∆(p ∧ q, q) ≤ ∆(p, p ∨ q) (resp. equality) holds for all p, q ∈ P .

So far, functorial mappings are only defined on the order relation ≤P ⊆ P×P . In
order to extend functorial mappings from the ordering ≤P to its superset P ×P ,
we need

Definition 3 ([8]) Let P be a set, andM = (M, ∗, ε,≤) be an ordered monoid.
A function d : P × P −→ M is called generalized quasi-metric (GQM) w.
r. t. (P,M), if

(A0) for all (p, q) ∈ P × P : ε ≤ d(p, q)

(A1) for all p ∈ P : d(p, p) = ε

(A2) for all p, t, q ∈ P : d(p, q) ≤ d(p, t) ∗ d(t, q)

If in addition, (A3) holds, d is a generalized metric (GM) w. r. t. (P,M):

(A3) for all (p, q) ∈ P × P : d(p, q) = ε = d(q, p) =⇒ p = q
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It is not quite obvious if functorial maps can be extended from ≤P to the superset
P × P , which gives rise to the following

Question: For a given ∆ : ≤P−→M , does there exist a generalized quasi-metric
d : P × P −→M w. r. t. (P,M) which extends ∆ such that d|≤P = ∆?

We find a positive answer and sufficient conditions in the following

Theorem 1 ([8]) Let P = (P,≤P) be a lattice and let M = (M, ∗, ε,≤) be an
ordered monoid. If a map ∆ : ≤P −→M is weakly positive, supermodular and
functorial w. r. t. (P,M), then

d : P × P −→M, (p, q) 7→ ∆(p ∧ q, q)

is a GQM w. r. t. (P,M).

3 Application to ratings

In this section we formalize the rating process and show how to compare ratings
from different sources.

Let O be a finite set of objects to be rated, prominent examples are financial
entities which issue debt. There are different (credit) rating agencies applying
different ratings, where a (credit) rating is a mapping A : O → C(n):={0, . . . , n}.
”0” represents the lowest (credit) quality, ”n” the highest, and C(n) is called
rating scale. It is clear that C(n) is a complete lattice, naturally and totally
ordered by ”≤”, and n is called length of the chain C(n). Our goal is to compare
the results of two different rating agencies. The two agencies rate the same
objects but they apply different rating methodologies, which leads to the

Question: Given two ratings A and B from different sources, which one is more
progressive?

Progressive in this context means systematically giving a better rating to the
same set of objects. Such ”optimism” might lead to an underestimation of the
underlying risks compared to the less progressive view since the more progressive
view tends to ask for a lower risk premium.

Input: O a set, a finite chain S := C(n) = {0, . . . , n}, two ratings A,B : O → S

Definition 4 (Rating B is progressive given rating A)

D+(A,B) :=
∑

o∈O: A(o)≤B(o)

rank B(o)− rank A(o)

where the natural rank function in a chain is given by rank := s, s ∈ S

We immediately notice:
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– D+(A,B) is well defined and finite if O is finite: since there are only finitely
many objects to be rated, we do not need to worry about non finite or even
non countable sets.

– D+(A,B) ≥ 0

– D+(A,B) = 0 iff ∀o ∈ O : B(o) ≤ A(o)

A little less obvious is the following property: D+(A,B) is ”triangular”, i.e.
∀E : O → S: D+(A,B) ≤ D+(A,E) + D+(E,B). To see this we apply
Theorem 1 as follows:

The set O of all ratings O : A → S is endowed with a natural order: A ≤O B
if A(o) ≤ B(o) for all o ∈ O. We write O = (O,≤O). O is even a lattice where
(A ∨B)(o) = max(A(o), B(o)) and (A ∧B)(o) = min(A(o), B(o)).

For A ≤O E define ∆+ : ≤O→ N ∪ {0} via ∆+(A,E) :=
∑

o∈O rank E(o) −
rank A(o). ∆+ is functorial, since ∆+(A,E) =∆+(A,B)+∆+(B,E) for the
totally ordered triple A ≤O B ≤O E. Since min(a, b) + max(a, b) = a+ b for all
real numbers a, b, ∆+ is even a modular map.

Applying Theorem 1, thus D+, which is the the extension of ∆+, is triangular.

Usually D+(A,B) 6= D+(B,A), i.e. D+ is not symmetric. If D+(A,B) >
D+(B,A) then A is more conservative than B, and B is more progressive than
A. In order to measure a symmetric distance between ratings, we proceed as
follows:

Input: O a finite set, a finite chain C(n), two ratings A,B : O → C(n)

Definition 5 (Distance between ratings A and B)

D(A,B) := D+(A,B) +D+(B,A)

Being the L1-distance of the rankings, D is symmetric: D(A,B) = D(B,A), and
D(A,B) = 0 = D(B,A) if and only if A = B.

We will use D to derive a brute-force algorithm to solve the following issue:
Rating scales do not need to be identical since different raters might use different
rating scales:

Question: how can we compare ratings in case the rating scales are of different
length?

The algorithm we propose will use embeddings (order preserving injections) of
one chain into the other and minimize the distance D over all possible embed-
dings. For example, there are 3 possibilities of embedding C(1) into C(2), and 6
possibilities of embedding C(1) into C(3).

Input: O a finite set, ratings A : O → C(k), B : O → C(n), k, n ∈ N with k ≤ n

Algorithm 1 (Scaling with minimal distance) –
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– Run through all embeddings Ei : C(k)→ C(n)

– Calculate Ei ◦A and D(B, Ei ◦A) for each embedding Ei

– Pick (one of) the Ei with minimal distance D(B, Ei ◦A)

Comments: This algorithm is based on the implicit assumption, that both rating
agencies are subject matter experts and ”know what they are doing”, which is
reflected in building the minimum of the distances over all possible embeddings.
No (subjective) expert opinion or management discretion is needed to decide
before hand on the best possible embedding: instead, the algorithm increases
objectivity in the sense that the best embedding is chosen purely based on the
input data.

4 Generalized targets for ratings

So far, we only have used finite chains - i.e. totally ordered sets - for the rating
process. In this section we will generalize the target sets of the rating process,
another application of Theorem 1 will help us to answer the following

Questions: Are we limited to totally ordered sets? What about more general lat-
tices as target of ratings? Which lattices will work?

The idea is to use Theorem 1 to ”extend” the distances defined above, which
essentially compares positions in a finite chain. To this end, we need

Definition 6 (Jordan-Dedekind chain condition) A poset P is said to sat-
isfy the Jordan-Dedekind chain condition if any two maximal chains between the
same elements of P have the same finite length, where a chain C ⊆ P is called
maximal if, for any chain D ⊆ P , C ⊆ D implies C = D.

If p, q ∈ P with p ≤ q, then p, q are contained in at least one chain in P . In
order to measure a distance ∆ between p and q using the natural rank function
as introduced in Definition 4, we can take any maximal chain between p and
q, and the Jordan-Dedekind chain condition makes sure that this procedure
is independent of choice of the maximal chain, and thus the following is well
defined: ∆(p, q) := length(C) = rank(q) (in C) for any maximal chain C with
p, q ∈ C.

The lattice depicted in Figure 1 violates the Jordan-Dedekind chain condition
and serves as counter example: the chain on the left side yields ∆(x∧y, x∨y) = 2,
the chain on the right would yield 3 as distance ∆ between x ∧ y and x ∨ y.
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x

y

z

x ∧ y = x ∧ z

x ∨ y = x ∨ z

Fig. 1: A lattice violating the Jordan-Dedekind chain condition

Slightly more general formulated, in a poset P with Jordan-Dedekind chain
condition which has a smallest element 0P we can define rank(q) in the same
way for every element q ∈ P as length(C) for any maximal chain containing 0P
and q. This rank function ∆ : P → N ∪ {0} is weakly positive and functorial. If
∆ happens to be also supermodular, then applying Theorem 1 all together we
get

Corollary 1 Let P be a lattice with Jordan-Dedekind chain condition and su-
permodular rank function ∆. Then

d : P × P −→M, (p, q) 7→ ∆(p ∧ q, q)

is a GQM w. r. t. (P,N ∪ {0}). Furthermore, given two ratings A,B : O → P ,

D+(A,B) :=
∑

o∈O: A(o)≤B(o)

rank B(o)− rank A(o)

is a also a GQM w. r. t. (O,N ∪ {0}).

Remark: The Jordan-Dedekind chain condition per se is not enough, as we can
deduct from the lattice depicted in Figure 2.



T. Gäbel-Hökenschnieder, T. Pfeiffer, and S. E. Schmidt

p ∧ t

p ∧ q q ∧ t

p q t

d(p, t) = rank(p)− rank(p ∧ t) = 3− 0 = 3

d(p, q) = rank(p)− rank(p ∧ q) = 3− 2 = 1

d(q, t) = rank(q)− rank(q ∧ t) = 3− 2 = 1

Hence, d(p, t) = 3 > 2 = d(p, q) + d(q, t), and d is
not a triangular metric.

Fig. 2: A complete lattice satisfying the Jordan-Dedekind chain condition but bearing
a non triangular metric based on the rank function

So with the help of Corollary 1 we can give a positive answer: not only sim-
ple chains are suitable targets for the rating process, much more, there is the
huge class of lattices which allow for a (finite) Jordan-Dedekind chain condi-
tion together with a supermodular rank function as rating targets. In particular,
modular lattices of finite length will work very well, where a lattice is called
modular if it does not contain a sublattice of the form in Figure 1.

But we are not limited to modular lattices. In Figure 3 there is an example of a
lower semimodular lattice which is not modular.

a ∧ b

cb

a

a ∨ b

1

Fig. 3: A non modular lattice satisfying the Jordan-Dedekind chain condition

A lattice L is called lower semimodular if ∀a, b ∈ L : b <· a ∨ b ⇒ a ∧ b <· a,
where we write a <· b if a < b and a < x ≤ b implies x = b. Every modular
is lower semimodular, but the converse is obviously not true. In particular, the
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rank function of the lattice depicted in Figure 3 is only supermodular but not
modular since rank(b)+ rank(c) = 2 < 3 = rank(1) = rank(b∨ c)+ rank(b∧ c).

This behavior of the rank function is somewhat typical, as we can see by the
following characterization of lower semimodular lattices:

Theorem 2 Let L be a lattice bounded from below such that any chain between
any two elements of L is finite. L is lower semimodular if and only if L possesses
a rank function r such that ∀x, y ∈ L:

rank(x) + rank(y) ≤ rank(x ∨ y) + rank(x ∧ y).

L is modular if and only if ∀x, y ∈ L :

rank(x) + rank(y) = rank(x ∨ y) + rank(x ∧ y).

Proof: this is the dual version of Theorem 2.27 from [1].

So lower semimodular lattices, bounded from below such that any chain between
any two elements is finite, are exactly the appropriate class of lattices for our
purposes.

Furthermore, we can generalize the scaling Algorithm 1 to this class of lattices
using rank preserving mappings, where a mapping ϕ between two lattices L and
L′, which both possess a well-defined rank function, is called rank preserving if
rank(u) ≤ rank(v) implies rank(ϕ(u)) ≤ rank(ϕ(v)) for all u, v ∈ L.

Input: O a finite set, ratings A : O → L, B : O → L′ for lower semimodular
lattices L,L′, where the finite number of elements of L′ is denoted by n, and k
denotes the number of elements of L such that k ≤ n.

Algorithm 2 (Extended scaling with minimal distance) –

– Run through all rank preserving injections Ei : L→ L′

– Calculate Ei ◦A and D(B, Ei ◦A) for each embedding Ei

– Pick (one of) the Ei with minimal distance D(B, Ei ◦A)

Actually, this algorithm is the same as Algorithm 1, but applied to rank pre-
serving injections instead of order preserving embeddings.

An example with only two rank preserving injections is depicted in Figure 4.
Should we pick ϕ(1) = a and ϕ(2) = b or should we opt for the other possibility
ϕ(1) = b and ϕ(2) = a? Based on data, we would pick the possibility with the
minimum distance.
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3

2

1

0

L
0

a b

3

L′

Fig. 4: Lattices L,L′ which allow only for two rank preserving injections ϕ : L→ L′

5 Application to concept lattices

In order to keep the paper self-contained, we give a very short summary of formal
concept lattices:

A formal context is a triple K = (G,M, I), where G is a set of objects, M is a
set of attributes, and I ⊆ G ×M is a binary incidence relation that expresses
which objects have which attributes. For subsets X ⊆ G of objects and subsets
Y ⊆M of attributes, one defines the following mappings between the power sets
of G and M :

– G ⊇ X 7→ X. = {m ∈M : (x,m) ∈ I for every x ∈ X}, and dually

– M ⊇ Y 7→ Y / = {g ∈ G : (g, y) ∈ I for every y ∈ Y }.

Clearly, X1 ⊆ X2 implies X.
1 ⊇ X.

2 and Y1 ⊇ Y2 implies Y /
1 ⊆ Y /

2 . By a formal
concept of the context K is understood a pair (X,Y ) with X ⊆ G, Y ⊆M such
that X. = Y and Y / = X. The set X is called the extent of the concept, and
the set Y is referred to as intent of the concept. (X1, Y1) is called a subconcept
of (X2, Y2) if X1 ⊆ X2, and we write (X1, Y1) � (X2, Y2). The class BK of all
formal concepts of a given context K turns out to be ordered by �, and even to
be a complete lattice (cfr. Theorem 3 in chapter 1 of [9]), where supremum resp.
infimum of two formal concepts are defined by

– (X1, Y1) ∨ (X2, Y2) = ((X1 ∪X2)./, Y1 ∩ Y2), resp.

– (X1, Y1) ∧ (X2, Y2) = (X1 ∩X2, (Y1 ∪ Y2)/.)

The lattice BK is called concept lattice of the context K = (G,M, I).

One consequence is that the mapping G ⊇ X 7→ X./ ⊆ G is a closure mapping,
and therefore #(X) ≤ #(X./), where #(A) is the count measure of a set A, i.e.
counting the number of elements of A. After these preparations we can derive

Proposition 1 For α := (A1, A2), β := (B1, B2) ∈ BK with α ≤ β, the map

∆ : ≤BK−→ N ∪ {0}, (α, β) 7→ ∆(α, β) := #(B1 −A1). (1)

is functorial, weakly positive and supermodular.
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Proof. Let γ := (C1, C2) such that α ≤ β ≤ γ.

– Firstly, we can calculate

∆(α, γ) = #C1 −#A1

= (#C1 −#B1) + (#B1 −#A1)

= ∆(β, γ) +∆(α, β).

Secondly, we see that

∆(α, α) = #(A1 −A1) = #∅ = 0.

Hence, ∆ is functorial.

– ∆ is weakly positive, since 0 ≤ ∆(α, β) holds for all α, β ∈ BK.

– To show that ∆ is supermodular, we start to calculate ∆(α ∧ β, β) and
∆(α, α ∨ β) separately:

∆(α ∧ β, β) = ∆
(
(A1 ∩B1, (A2 ∪B2)/.), (B1, B2)

)
= #

(
B1 − (A1 ∩B1)

)
= #B1 −#(A1 ∩B1).

∆(α, α ∨ β) = ∆
(
(A1, A2), (A1 ∪B1)./, A2 ∩B2)

)
= #

(
(A1 ∪B1)./−A1))

= #
(
A1 ∪B1)./

)
−#A1.

Consequently, since X 7→ X./ is a closure mapping:

∆(α ∧ β, β) = #B1 −#(A1 ∩B1)

= #(A1 ∪B1)−#A1

≤ #
(
A1 ∪B1)./

)
−#A1

= ∆(α, α ∨ β).

Hence, ∆ is supermodular. 3

All together, we now can introduce a generalized metric for concept lattices as
follows:

Theorem 3 Let ∆ be as in (1) and α := (A1, A2), β := (B1, B2) ∈ BK.

Then the map

d : BK×BK −→ N ∪ {0}, (α, β) 7→ d(α, β) := ∆(α ∧ β, β)

is a GM.
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Proof. This is a consequence of Proposition 1 together with Theorem 1. 3

In our considerations we have focused on the extent. Likewise, there is also an
intensional point of view for generalized metrics. In general, there are always
two types of generalized metrics:

1 dext(α, β) := #(B1 −A1)

2 dint(α, β) := #(B2 −A2)

6 Conclusions

– In order to compare ratings, we propose a sound directed metric in order to
measure how progressive or conservative ratings are.

– Scaling: For chains S, S′ of different size we propose an algorithmic solution.

– Posets as target: As target other then simply chains there is the huge
class of lattices which allow for a (finite) Jordan-Dedekind chain condition
together with a supermodular rank function. In particular, lower semimod-
ular lattices of finite length will work very well. Also, our scaling algorithm
based on minimal distances extends to this class of lattices.

– Formal concept analysis: Our concept of generalized metrics carries over
to concept lattices, where we can cover the extensional as well as the inten-
sional point of view.
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