
First Steps towards Reasoning on Big Data with
DLV

Nicola Leone1, Simona Perri1, Francesco Ricca1,
Pierfrancesco Veltri1,2, and Jessica Zangari1

1 Department of Mathematics and Computer Science,
University of Calabria, Italy
{lastname}@mat.unical.it

2 DLVSystem s.r.l.
P.zza Vermicelli, Polo Tecnologico, Rende, Italy

veltri@dlvsystem.com

Abstract. Answer Set Programming (ASP), that extends Datalog with
powerful knowledge modeling constructs, is suitable for modeling both
database-oriented applications and more complex combinatorial opti-
mization tasks arising in decision-making. However, ASP systems were
not conceived having the challenges of Big Data in mind; thus they are
not applicable tout court in this new setting. This paper moves the first
steps towards enabling the specification of reasoning tasks on Big Data
with ASP. In particular we present our ongoing work in the direction
of extending the well-known DLV system to interact in a plausible way
with Big Data repositories.

Keywords: ASP, Datalog, Big Data

1 Introduction

Modern information systems are facing an unprecedented phenomenon: the mas-
sive production and storage of enormous amounts of data (Big Data). The need
for processing Big Data repositories has recently implied a technological switch
including the development of new hardware and software architectures [10, 8] to
handle the exponentially growing quantity of data coming from network con-
nected devices, large enterprise information systems, etc. Nonetheless, one of
the most relevant challenges in this setting is to get real value from Big Data by
modeling, understanding, and reasoning on the information present in large data
stores [13], thus enabling the development of powerful decision-making systems
and high-revenue applications.

SEBD 2018, June 24-27, 2018, Castellaneta Marina, Italy. Copyright held by the
author(s).

2 N. Leone, S. Perri, F. Ricca, P. Veltri, J. Zangari

The area of computing dedicated to representing and solving complex tasks
using information is called knowledge representation and reasoning (KRR) [9].
A main goal of KRR is to introduce formalisms that simplify the task of design-
ing and building complex applications. Among the mainstream approaches to
KRR, logic-based formalisms are well-known for their expressiveness and pow-
erful knowledge-modeling capabilities. In particular, Answer Set Programming
(ASP) [3], that extends Datalog with powerful knowledge modeling constructs,
is suitable for modeling both database-oriented applications and more complex
combinatorial optimization tasks arising in decision-making [3]. However, ASP
systems were not conceived having the challenges of Big Data in mind; thus they
are not applicable tout court in this new setting.

Recently less expressive logic languages, like Datalog [16], or logic-programs
with a different semantics [14], were implemented on top of Big Data platforms.
However, no ASP system for Big Data is available at the moment (cfr. a recent
survey [12]) and connecting ASP with mainstream technologies for Big Data is
still an open problem.

This paper moves the first steps towards enabling the specification of reason-
ing tasks on Big Data with ASP. In particular we present our ongoing work in
the direction of extending the well-known DLV system [11] (actually, its most re-
cent version [1]) to interact in a plausible way with Big Data repositories. In our
proposal DLV is connected to SQL-based data warehousing tools such as Hive
via a translation component, that allows to demand the computation of space-
demanding tasks/queries to well-assessed Big Data software, and leave to the
standard ASP engine the burden of evaluating more computationally complex
decision-making tasks over a selection of the original data.

2 Answer Set Programming

In this Section, we briefly recall syntax of the ASP language. For ASP semantics
we refer the reader to [7].

A term is either a simple term or a functional term. A simple term is either
a constant or a variable. If t1 . . . tn are terms and f is a function symbol of
arity n, then f(t1, . . . , tn) is a functional term. If t1, . . . , tk are terms and p is
a predicate symbol of arity k, then p(t1, . . . , tk) is an atom. A literal l is of the
form a or not a, where a is an atom; in the former case l is positive, otherwise
negative. A rule r is of the form α1| · · · | αk :– β1, . . . , βn, not βn+1, . . . , not βm.
where m ≥ 0, k ≥ 0; α1, . . . , αk and β1, . . . , βm are atoms. We define H(r) =
{α1, . . . , αk} (the head of r) and B(r) = B+(r) ∪B−(r) (the body of r), where
B+(r) = {β1, . . . , βn} (the positive body) and B−(r) = {not βn+1, . . . , not βm}
(the negative body). If H(r) = ∅ then r is a (strong) constraint; if B(r) = ∅ and
|H(r)| = 1 then r is a fact. A rule r is safe if each variable of r has an occurrence
in B+(r). An ASP program is a finite set P of safe rules. A program (a rule,
a literal) is said to be ground if it contains no variables. A predicate is defined

We remark that this definition of safety is specific for rules featuring only classical
literals. For a complete definition we refer the reader to [5].

Big Data with DLV 3

by a rule if the predicate occurs in the head of the rule. A predicate defined
only by facts is an EDB predicate, the remaining predicates are IDB predicates.
The set of all facts in P is denoted by Facts(P); the set of instances of all EDB
predicates in P is denoted by EDB(P).

3 The DLV2 System

dlv2 [1] is the new version of the Answer Set Programming (ASP) system DLV.
The system has been completely re-engineered: it now combines I-DLV [4], a
fully-compliant ASP-Core-2 grounder, with the well-assessed solver wasp [2].
Besides performance improvements w.r.t. to its predecessor, dlv2 is enriched
with novel features such as support to annotations and directives that customize
heuristics of the system and extend its solving capabilities. Moreover, the system
offers some means to ease the interoperability with external sources of knowledge.
In particular, by means of some I-DLV features, it supports connections with
relational and graph databases via explicit directives for importing/exporting
data and calls to Python functions via external atoms. An accurate description
of the system and the underlying techniques is out of the scope of this paper; we
refer the interested reader to [4, 1]. Rather, in the following, we describe in more
detail external atoms, since our proposal for integrating Big Data computation
and ASP explicitly relies on them.

External Computation in DLV2 As anticipated above, the new dlv2 system,
via its grounder I-DLV, supports a special form for atoms, namely external
atoms, geared towards external computations, whose extension is specified by
means of external defined Python functions.

Formally, an external atom is of the form &p(t0, . . . , tn; u0, . . . , um), where
n + m ≥ 0, &p is an external predicate, t0, . . . , tn are intended as input terms,
and are separated from the output terms u0, . . . , um by a semicolon (“;”). In
the following, we denote an external atom by &p(In;Out), where In and Out
represent input and output terms, respectively.

An external literal is either not e or e, where e is an external atom, and the
symbol not represents default negation. An external literal is safe if all input
terms are safe, according to the safety definition in ASP-Core-2 standard [5].
External literals can appear only in the rule bodies, and each instance of an
external predicate must appear with the same number of input and output terms
throughout the whole program.

Given an external atom &p(In;Out) and a substitution σ, a ground instance
of such external atom is obtained by applying σ to variables appearing in In and
Out, obtaining σ(&p(In;Out)) = &p(Ing;Outg). The truth value of a ground
external atom is given by the value f&p(Ing, Outg) of a decidable n + m-ary
two-valued oracle function, where n and m are the lengths of Ing and Outg, re-
spectively. A negative ground external literal not e is true/false if e is false/true.

Intuitively, output terms are computed on the basis of the input ones, accord-
ing to a semantics which is provided externally (i.e., from the outside of the logic

4 N. Leone, S. Perri, F. Ricca, P. Veltri, J. Zangari

program) by means of the definition of oracle functions written in Python. Basi-
cally, for each external predicate &p featuring n/m input/output terms, the user
must define a Python function whose name is p, and having n/m input/output
parameters. The function has to be compliant with Python version 3.

Example 1. As a simple example, let us consider the following rule, that makes
use of an external predicate with two input and one output terms:

append(X,Y,Z) :– string(X), string(Y), &append strings(X,Y;Z).

A program containing this rule must come along with the proper definition of
append strings within a Python function, as, for instance, the following:

def append strings(X,Y): return str(X)+str(Y)

According to the given definition, as they are completely evaluated by I-DLV as
true or false, external predicates do not appear in the produced instantiation.

External atoms can be both functional and relational, i.e., they can return
a single tuple or a set of tuples, as output. In Example 1, &append strings
is functional : the associated Python function returns a single value for each
combination of the input values. In general, a functional external atom with
m > 0 output terms must return a Python sequence containing m values. If
m = 1, the output can be either as sequence containing a single value, or just
a value, as in the example; if m = 0, the associated Python function must be
boolean. A relational external atom with m > 0 is defined by a Python function
that returns a sequence of m-sequences, where each inner sequence is composed
by m values.

Example 2. The following rule uses a relational external atom:
prime factor(X,Z) :– number(X), &compute prime factors(X;Z).

Intuitively, given a number X, the rule computes prime factors of X, demanding
this task to a relational external atom, that receives as input the number X, and
returns as output its factors. The semantics has to be provided via a Python
function called compute prime factors returning a sequence of numbers each
one representing a different factor of X.

4 Big DLV: ASP + Big Data

In this section we describe the main idea underlying our approach for integrating
ASP computation, and in particular the dlv2 system, with Big Data sources.
We first introduce a motivating example that will be used through the rest of
the paper for illustrating the idea underlying our approach. Then, we provide
some details about the usage of external atoms for our purposes.

4.1 KRR with Big Data

The following example showing a possible use case can be useful to grasp the
intuition behind our approach.

https://docs.python.org/3

Big Data with DLV 5

Let us consider the following scenario: Giovanni wants to go out for dinner
and wants to invite a given number of people, possibly inviting friends of friends,
in order to spend some funny and pleasant time. Invited people should be selected
from a social network, choosing among the Giovanni’s friendship net. In such
social network subscribed people can add friends and mark some of these as
close friends; moreover, the social network performs some stats on the degree
of dislike among two people in the network. The following ASP program can
be used to explore the friendship relations of such social network and then to
provide Giovanni with suitable suggestions on people that could be invited.

nfriends(10). averageAge(25).
r1 possible friend(Y) :– close friend(giovanni, Y).
r2 possible friend(X) :– possible friend(Y), close friend(Y,X).
r3 suggested friend(Y,A) :– possible friend(Y), person(Y,A), A > 18.
r4 invite(X) | -invite(X) :– suggested friend(X).
r5 :– #count{X : invite(X)}! = N,nfriends(N).
r6 :– #sum{A,X : suggested friend(X,A,), invite(X)} < AV G ∗N,

nfriends(N), averageAge(AV G).
r7 :∼ invite(X), suggested friend(X,), dislike(giovanni,X,D). [D@1, X]

The former two rules compute the transitive closure of the friendship relation
of Giovanni, restricting the computation to close friends only; rule r3 suggests
a person Y if he is a possible friend and is older than 18; rule r4 guesses if a
suggested friend should be invited or not; rule r5 ensures that the number of
invited friends is exactly the desired one; r6 imposes that the average age of
the invited friends is not smaller than a given value; eventually, rule r7 prefers
solutions in which the total degree of dislike among Giovanni and invited people
is minimized.

Intuitively, computing the transitive closure of the friendship relation in a
social network could be very expensive when performed on a huge database.
Thus, traditional main memory ASP systems cannot handle it; indeed, also the
simple import of the friend relation is not feasible in practice. So, the idea is
to delegate this heavy part of the computation to an external Big Data source.
The remaining part that takes as input a heavily reduced part of the friendship,
instead, can be conveniently expressed in a purely declarative way by means of
ASP rules as reported above. We remark that from a computational perspective,
this latter part encodes a NP-hard task that cannot be expressed by means of
canonical RDB query languages such as SQL, Datalog, etc.

4.2 Interfacing DLV2 with Hive via External Atoms

In order to delegate the computation of data-intensive rules to Big Data tailored
software, one can make use in the ASP program of a new external atom. Roughly,
the external atom connects to a DB, may export some input facts to the DB,
converts some given rules to queries, executes them on the DB and returns as
output the extension of a specific predicate. In order to enable the external

6 N. Leone, S. Perri, F. Ricca, P. Veltri, J. Zangari

evaluation on a DB db, the ASP program should contain a rule r having in the
body an external atom called &bigasp, that receives as input:

db the name of the ODBC DSN (Data Source Name);
user the name of the user who connects to the DB;

password the password of that user;
rules a string containing some Datalog rules that define the operations

that will be performed on the DB;
output a string representing the name of the relation to be imported in

the ASP program;
input [optional] a string containing a set of ASP facts that have to be

exported to the DB.

During the evaluation, dlv2 invokes the external atom, imports the results of the
evaluation and fills in the extension of the predicate output that has to appear
as head in the rule r. Note that, this approach could be adopted to retrieve data
from diverse Big Data sources.

Let us consider again our running example. We can delegate the computation
of the transitive closure of the friendship relation to an external Big Data plat-
form by replacing the first three rules in the program above with the following
one:

suggested friend(Y,A) :– &bigasp(“my db”, “my user”, “my pass”, “
possible friend(Y) :– close friend(giovanni, Y).
possible friend(X) :– possible friend(Y), close friend(Y,X).
suggested friend(Y,A) :– possible friend(Y), person(Y,A), A > 18.”,
“suggested friend”;Y,A).

Apart from connection parameters and the name of the output relation, the
external atom takes as input the extracted rules; it invokes the machinery for
enabling their evaluation on the external my db and returns the results as a
sequence of tuples representing the suggested friends with their age. Such tuples
populate the extension of the suggested friend relation so that the traditional
ASP evaluation can continue.

5 System Architecture

We now describe an architecture where we indicate the software components that
can be used to realize our idea. The general architecture of a framework for Big
Data Analytics with ASP is composed by 3 macro-components as illustrated
in Figure 1. In particular, the data layer of the system could rely on Hive,
a data warehouse software project built on top of Hadoop for providing data
summarization, query and analysis.

The choice of this tool is due to the fact that Hive is the mainstream for
OLAP analysis over Big Data. Hive brings three main advantages: (i) it exploits

http://hive.apache.org/

Big Data with DLV 7

Fig. 1. General architecture of the framework for ASP reasoning over Big Data

the computational power of Hadoop clusters, (ii) it implements a standard re-
lational model, that is equivalent to the data model supported by ASP, and
(iii) it supports a querying language called H-QL, which is very close to the
standard SQL. On top of Hive we find BigDLV, the core of our framework for
Big Data Analytics. BigDLV should allow for reasoning in ASP over data stored
and pre-processed within Hive. In particular, BigDLV should be able to extract
extensions of input predicates from the underlying Big Data repository and,
moreover, delegate parts of the computation to Hive. Figure 1 shows the inter-
nal architecture of BigDLV and focuses possible interactions with the underlying
layers. This component encapsulates the dlv2 system which allows to define ex-
ternal atoms as discussed in Section 3: when an input program embeds a Datalog
rule to be evaluated against the Hive repository, DLV2, by means of an external
atom, invokes a Python component, called DataSQL, managing the interaction
between DLV2 and Hive. DataSQL is in turn composed by two sub-modules,
the Compiler and the Executor. The former compiles the rules received from
DLV2 into an SQL query, while the latter runs the compiled query over Hive
and retrieves the result. Results from Hive are first filtered out by the Executor
and then returned back to DLV2. An end-user could ask the framework to store
the final output of the whole evaluation process into the cluster. Note that,
the Compiler module interacts directly with Hive in order to get information
about table schemata matching the rule predicates. The implementation of the
Compiler can follow the lines of [15] and thus supporting only stratified Datalog
programs. Communication between DataSQL and Hive can be performed via
PyHive , providing a collection of python DB-API interfaces for Hive.

https://github.com/dropbox/PyHive

https://www.python.org/dev/peps/pep-0249

8 N. Leone, S. Perri, F. Ricca, P. Veltri, J. Zangari

6 Ongoing and Future Work

In this paper we described our idea for interfacing dlv2 with Big Data. Currently,
we are implementing all the components mentioned in Section 4 and 5. Moreover
we are developing a case of study that combines a Datalog sub-program modeling
a heavy data-mining task (demanded to a Big Data platforms), with another
component that models a computationally hard decision-making task (demanded
to the ASP system). The case of study is part of the research project S2BDW we
are currently involved in and that focuses on a prognostic problem for foreseeing
possible breaks on trains by analyzing data coming from sensors. Currently, we
are focusing on applications in which the computation demanded to the external
sources involves Big Data but returns an output which can be profitably handled
in main memory. As a future work, we plan to better analyze the theoretical
boundaries and limitations of our approach, in order to determine which kind of
reasoning can be outsourced (e.g., going along the lines of [6]).

Acknowledgments. Work partially supported by MISE under project “Smarter
Solutions in the Big Data World (S2BDW)” (n. F/050389/01-02-03/X32).

References

1. Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F.,
Veltri, P., Zangari, J.: The ASP system DLV2. In: LPNMR. Lecture Notes in
Computer Science, vol. 10377, pp. 215–221. Springer (2017)

2. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: LPNMR.
Lecture Notes in Computer Science, vol. 9345, pp. 40–54. Springer (2015)

3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

4. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: I-DLV: the new intelligent grounder
of DLV. Intelligenza Artificiale 11(1), 5–20 (2017). https://doi.org/10.3233/IA-
170104, http://dx.doi.org/10.3233/IA-170104

5. Calimeri, F., Ianni, G., Krennwallner, T., Ricca, F.: The answer set programming
competition. AI Magazine 33(4), 114 (2012)

6. Fan, W., Geerts, F., Libkin, L.: On scale independence for querying big data. In:
PODS. pp. 51–62. ACM (2014)

7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP. vol. 88, pp. 1070–1080 (1988)

8. Ghemawat, S., Gobioff, H., Leung, S.: The google file system. In: SOSP. pp. 29–43.
ACM (2003)

9. van Harmelen, F., Lifschitz, V., Porter, B.W. (eds.): Handbook of Knowledge Rep-
resentation, Foundations of Artificial Intelligence, vol. 3. Elsevier (2008)

10. Harrison, G.: Next Generation Databases NoSQLand Big Data. Apress 2015 (2015)
11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:

The DLV System for Knowledge Representation and Reasoning. ACM TOCL 7(3),
499–562 (2006)

12. Lierler, Y., Maratea, M., Ricca, F.: Systems, engineering environments, and com-
petitions. AI Magazine 37(3), 45–52 (2016)

Big Data with DLV 9

13. Sivarajah, U., Kamal, M.M., Irani, Z., Weerakkody, V.: Critical analysis of big
data challenges and analytical methods. Journal of Business Research 70, 263 –
286 (2017). https://doi.org/https://doi.org/10.1016/j.jbusres.2016.08.001

14. Tachmazidis, I., Antoniou, G., Faber, W.: Efficient computation of the well-founded
semantics over big data. TPLP 14(4-5), 445–459 (2014)

15. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries
in database and logic programming systems. Theory and Practice of Logic Pro-
gramming 8(2), 129–165 (2008)

16. Yang, M., Shkapsky, A., Zaniolo, C.: Scaling up the performance of more powerful
datalog systems on multicore machines. VLDB J. 26(2), 229–248 (2017)

