
DRPD: Architecture for Intelligent Interaction
with RDF Prefixes

Dominik Tomaszuk and Karol Litman

Institute of Informatics, University of Bialystok
ul. Ciolkowskiego 1M, 15-245 Bialystok, Poland

d.tomaszuk@uwb.edu.pl and karolks94@gmail.com

Abstract. Internationalized Resource Identifier (IRI) references are an
inseparable part of the Semantic Web. Sometimes the references are dif-
ficult to remember, so many Resource Description Framework (RDF)
serializations, e.g. Turtle, allow to shorten them. This paper describes
how to find the appropriate prefix, and resolved them to the full IRI
reference. Many endpoints that provide information about prefixes and
namespaces can exist in our architecture. The tools that we present are
not as sensitive to failures as centralized solutions and let users use mul-
tiple prefix endpoints at the same time.

Keywords: RDF prefix · namespaces · decentralization · Turtle · REST-
ful web service · API · intelligent clients

1 Introduction

Since Internationalized Resource Identifier (IRI) references can be long, prefixes
are used to create a mapping between the IRI and a namespace prefix. This
mapping enables the abbreviation of IRIs, therefore it achieves a more convenient
way to read and write Resource Description Framework (RDF) documents.

Prefixes occur in various forms in different RDF serializations. Probably the
most popular type of prefix occurs in Turtle [9] and it is called prefixed names.
A prefixed name consists of a prefix label and a local part, separated by a : sign.
The @prefix directive1 associates a prefix label with an IRI. RDF/XML [10]
supports qualified names [3] (so-called QNames), which is subset of Turtle’s
prefixed names. To shorten IRIs, RDFa [11] uses CURIEs [1] (so-called Compact
URIs). Unlike QNames, the part of a CURIE after the : sign does not need to
conform to the rules for XML element names. A similar mechanism is also found
in JSON-LD [7] and it is called a context. The context is used to map short
words (so-called terms) to IRIs.

RDF developers often use IRI references, so they need a tool to remember and
look up prefixes. To provide meaningful prefixes for unknown vocabularies the
prefix.cc web page2 can be used. Unfortunately, this application is centralized.

1 In Turtle 1.1 we can use SPARQL style PREFIX directive as well.
2 http://prefix.cc/

2 D. Tomaszuk et al.

In this paper we present tools and methods that make access to prefixes more
decentralized and less prone to failures. We also propose an architecture for de-
centralization namespace lookup services. Moreover, we introduce a serialization,
which allows to define endpoints that are compatible with our architecture.

The paper is constructed according to sections. In Section 2 we present our
architecture and serialization. In Section 3 we demonstrate our tools and discuss
their user interface. The paper ends with conclusions.

2 System Architecture

Our architecture assumes the existence of many RESTful web services [4] with
their storages. Various types of applications can communicate with these web
services. The diagram of our architecture is shown in Fig. 1. Our demo system
consists of a web service (Subsection 2.1), a console application (Subsection 2.2),
a web application (Subsection 2.3), and a database (Subsection 2.4). All elements
of the system form a coherent whole and are based on the RESTful web service.
The single system in a DRPD architecture is presented in Fig. 2. The main
element of architecture is web service with open API. Different clients (e.g.
console application, web application) can use any endpoints that is compatible
with the API described below. In Subsection 2.2 we also propose Turtled, a
serialization that extends Turtle to support many endpoints resolving prefixes.

Web

Web app Console app

RESTful
web service

Storage RESTful
web service

Storage

Fig. 1. DRPD architecture

2.1 RESTful web service

In our proposed architecture, we assume the existence of many RESTful web
services [4]. The main part of the architecture are web services, which are based

DRPD: Architecture for Intelligent Interaction with RDF Prefixes 3

Web app RESTful
web service

CouchDB

Console app

HTTP request

HTTP response
Turtle or JSON-LD

HTTP request
POST method

IRI /api/prepare
HTTP response

RDF

HTTP
request

HTTP response
JSON

Fig. 2. Single system in a DRPD architecture

on REST architecture. We implemented our web service in the Limonade3 mi-
croframework. This microframework offers a number of functions that facilitate
the implementation of services based on HTTP(S) protocol methods.

The key function of our tool is to modify the Turtle’s documents. This opera-
tion finds prefixes that do not have declared namespaces and choose the best one.
Finally, the document is displayed in the body of the response. The supported
formats are Turtle, JSON-LD, N-Triples, and RDF/XML.

One of the most important functionalities of the web service is searching
for namespaces for a specific prefix. To receive data, the GET method should be
used. When a client calls the web service, documents containing the specified
prefix are retrieved from the database. If there is no namespace, the response
code is 404. The default serialization is JSON-LD, but we support also Turtle.
To receive Turtle data the Accept header with the text/turtle value should be
used. A response return 15 items by default. The limit parameter after query
string is used to change the number of displayed elements.

Our tool supports namespace declarations for Turtle, RDF/XML, RDFa,
JSON-LD serializations, SPARQL query language, plain text, CSV and TSV
data formats. To receive a declaration in these formats the GET method sould be
used. The returned data can be in plain text or in Turtle.

Being signed in a user receive the access to perform additional operations.
For this purpose, the OAuth2 [5,6] is used to authenticate users, which allows
to identify users using well-known OAuth2 servers such as Google, Facebook,
Twitter, Github, etc. To perform the operations that required authentication,
the Authorization header with the Bearer access-token value should be sent.
An authenticated user can add new namespaces to a given prefix. To successfully

3 https://limonade-php.github.io/

https://limonade-php.github.io/

4 D. Tomaszuk et al.

add a namespace, user should send a JSON-LD document by using the POST

method.
The second operation requiring authentication is voting. Having a namespace,

we can vote ’for’ (plus) or ’against’ (minus) using the POST method. In one prefix
we have the possibility to add one plus and many minuses. If one make a mistake,
she/he can delete the vote by using the DELETE method. If the POST method is
executed successfully the response 201 code is returned, and if the resource is
already exists the 409 code is returned.

Another feature of the web service is the ability to preview popular prefixes
that have the most votes. To receive that answer, a user should send GET method.
The response can be in the JSON-LD or in Turtle. It supports the pagination
using the Hydra vocabulary [7]. In this URL user can set two parameters: offset
and page. The first parameter defines how many prefixes can be displayed per
a page, while the second parameter indicate the current page.

2.2 Turtled and Console Application

In this subsection we propose Turtled. It is a serialization that extends Turtle
to support many decentralized RESTful web services. We expand the Turtle
grammar to the @prefix endpoint directive, which points to various web ser-
vices that resolve prefixes. Listing 1.1 shows an extended grammar of Turtle in
EBNF.

[3] d i r e c t i v e : := pre f i x ID | base | s p a r q lP r e f i x
| sparq lBase | endpoint

[5 e] endpoint : := ’ @pre f ix endpoint ’ IRIREF ’ . ’

Listing 1.1. Turtled grammar

Another independent part of our architecture is the console application,
which aims to show the use of the web service (see Subsection 2.1). This console
application works according to the following steps. In the first step, the script
finds the @prefix endpoint directive in the Turtle/Turtled document that con-
tains the web service IRI references. As a result, the web service returns a re-
sponse about successful or negative modification of the Turtle document. If the
script receive a negative response, it attempt to send to the other existing web
service form the second @prefix endpoint directive.

2.3 Web Application

A web application is designed to support the web service (Subsection 2.1), which
is designed to send HTTP requests and present data in a user-friendly form. Each
webpage is described using RDFa. The application is adapted to mobile devices.
The elements on the webpages have been separated so that a user can click
exactly on one element in the mobile devices.

The application at the top has a menu to help you navigate the site. In the
upper right corner there is the Sign in to get permission button which allows
users to sign in. Being signed in, a user get permission to manage namespaces.

DRPD: Architecture for Intelligent Interaction with RDF Prefixes 5

On the main page of the site there is also a search engine that helps to find a
specific prefix.

After entering the prefix, the middle part of the page is reloaded. Below the
menu there is a header that inform about the current prefix. A user can vote for
the namespace with plus or minus by clicking the appropriate button. When a
user click Add alternative namespace, a text box appears and let a user to add
a new namespace. At the bottom of the page there are a few data formats with
current prefix and namespace.

The web application also can show the popular prefixes. The key feature of
our application is the preparation of Turtled documents (see Subsection 3).

2.4 Database

The part that collects data is a database based on JSON documents and the
REST architecture [4] which is CouchDB [2]. It is document-oriented database
that focuses on having a scalable architecture. CouchDB can be used in scalable
and distributed systems. This database uses replication to propagate application
changes across participating nodes. We choose that database management sys-
tem because it could ensure fault-tolerance, which is important feature for web
application.

Each occurring document in the database is an object representing a names-
pace. The database diagram is shown in Fig 3.

document JSON

+ namespace: string

+ prefix: string

+ pluses: object

+ minuses: object

+ score: int

pluses

+ Google: string []

+ Facebook: string []

+ Github: string []

+ Reddit: string []

minuses

+ Google: string []

+ Facebook: string []

+ Github: string []

+ Reddit: string []

document JSON

+ _id: string

+ account_id: string

+ expires: object

+ minuses: object

Fig. 3. Database diagram

3 Demonstration

The RESTful web service can be tested at https://prefix.chemskos.com/

api/. One of the main functionalities is finding namespaces of prefix. This oper-
ation requires GET method. Listing 1.2 shows the namespaces related to prefixes.

https://prefix.chemskos.com/api/
https://prefix.chemskos.com/api/

6 D. Tomaszuk et al.

cu r l −X GET ’ https :// p r e f i x . chemskos . com/ api / foa f ’\
−H ’ accept : t ext / tu r t l e ’

Listing 1.2. Request in curl showing namespaces

The obtained data can be in JSON-LD or Turtle formats. If there are not
any prefixes, it will be returned 404 error. Listing 1.3 shows response containing
namespaces in Turtle format.

@pref ix pres : <http :// i i . uwb . edu . p l / p r e f i x r e s o l v e r#> .
[] <pres : namespaces> (

[
<pres : namespace> ”http :// xmlns . com/ f o a f /0 .1/” ;
<pres : score> 1 ;

]
) .

Listing 1.3. Response showing namespaces

The response to access the namespace declaration is shown in Listing 1.4. The
supported formats are Turtle, RDF/XML, RDFa, JSON-LD, SPARQL, CSV,
and TSV. Additionally, we add support for a plain namespace that can be used
independently of RDF serialization. This can defined by Well-Known URIs [8].

cu r l −X GET \
’ https : // p r e f i x . chemskos . com/ api / f o a f / formats / rd f /xml ’ \
−H ’ accept : t ext / pla in ’

Listing 1.4. Request in curl for declaration namespace

Namespaces are added using POST method. The active access token is neces-
sary to perform function. The request has been shown on Listing 1.5.

cu r l −X POST \
’ https : // p r e f i x . chemskos . com/ api / foa f ’ \
−H ’ accept : app l i c a t i on / ld+json ’ \
−H ’ Author izat ion : Bearer access−token ’ \
−d ’{
”@context ” : {” pres ” : ” http :// i i . uwb . edu . p l / p r e f i x r e s o l v e r #”} ,
”@id ” : ” https :// p r e f i x . chemskos . com/ api / f o a f ” ,
” pres : namespace ” : ” http :// namespace . com/ns#”
} ’

Listing 1.5. Request in curl for creating a new namespace

Displaying popular prefixes can be presented in JSON-LD or Turtle serial-
izations. The request has been shown on Listing 1.6

cu r l −X GET \
’ https : // p r e f i x . chemskos . com/ api /popular ’ \
−H ’ accept : t ext / tu r t l e ’ \

Listing 1.6. Request in curl showing popular prefixes

The last functionality is submitting Turtled or Turtle documents. After mod-
ification the RDF file can be downloaded. Listing 1.7 shows the submission of
Turtled. After transformation N-Triples is expected.

cu r l −X POST \
’ https : // p r e f i x . chemskos . com/ api / prepare ’ \
−H ’ accept : app l i c a t i on /n−t r i p l e s ’ \
−F f i l e=@pa th t o f i l e . t t l

Listing 1.7. Submitting Turtled document

DRPD: Architecture for Intelligent Interaction with RDF Prefixes 7

The source code can be found on https://github.com/KarolLitman/Dictionary-
of-RDF-Prefixes-webservice.

The API documentation was created, which facilitates the understanding
of the service in a readable manner. The documentation consists of queries
that can be performed on the RESTful web service. Additionally, by clicking
on a given method, a user obtains sample source code, structure of the query,
required parameters and displaying all possible errors in the method. Swag-
ger4 was used to create the API documentation. It can be found on https:

//prefix.chemskos.com/api/doc/. The documentation shows samples of us-
age in various programming languages.

The web application can be viewed at https://prefix.chemskos.com/. The
application at the top has a menu to help users navigate the site. The menu
contains hyperlinks for the Home page, Popular page and Prepare document
page. In the right corner there is the Sign in to get permission button which
allows a user to sign in. In Fig. 4 the web page with found prefix is presented.

Fig. 4. Web page with found prefix

The use of the web application has been presented on the screencast and
published on https://www.youtube.com/watch?v=-hSYA8epMlA. The
source code can be found on https://github.com/KarolLitman/Dictionary-of-
RDF-Prefixes-webapp.

The use of the console application has been presented on the screencast and
published on https://www.youtube.com/watch?v=O4tjuo1BB24. The
screencast shows how the application deals with broken endpoints. The source
code can be found on https://github.com/KarolLitman/Dictionary-of-RDF-Prefixes-
bashscript.

4 http://docs.swagger.io/spec.html

https://github.com/KarolLitman/Dictionary-of-RDF-Prefixes-webservice
https://github.com/KarolLitman/Dictionary-of-RDF-Prefixes-webservice
https://prefix.chemskos.com/api/doc/
https://prefix.chemskos.com/api/doc/
https://prefix.chemskos.com/
https://www.youtube.com/watch?v=-hSYA8epMlA
https://github.com/KarolLitman/Dictionary-of-RDF-Prefixes-webapp
https://github.com/KarolLitman/Dictionary-of-RDF-Prefixes-webapp
https://www.youtube.com/watch?v=O4tjuo1BB24
https://github.com/KarolLitman/Dictionary-of-RDF-Prefixes-bashscript
https://github.com/KarolLitman/Dictionary-of-RDF-Prefixes-bashscript
http://docs.swagger.io/spec.html

8 D. Tomaszuk et al.

4 Conclusions

Decentralization is the key to resilience in Internet applications. In this paper
we present a DRPD architecture that are decentralized. We demonstrate four
elements of our architecture: RESTful web service with documented API, web
application with client-side that remote calling resources from our endpoint, con-
sole application that also use our web service, and RESTful document-oriented
database. Moreover, we propose Turtled serialization that supports endpoints
that are compatible with our architecture.

We have taken an initial step in easier delivery of prefixes and namespaces.
In future work we would like to extend this work to other serializations that use
prefixes. The next key challenge will be to provide more decentralized way of
addressing the prefix endpoints e.g. using Magnet URI scheme or ni URI scheme.

References

1. Ben Adida, Shane McCarron, Ivan Herman, and Mark Birbeck. RDFa Core 1.1 -
Third Edition. W3C recommendation, W3C, March 2015. http://www.w3.org/

TR/2015/REC-rdfa-core-20150317/.
2. J Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB: The Definitive

Guide: Time to Relax. O’Reilly Media, Inc., 2010.
3. Tim Bray, Andrew Layman, Richard Tobin, and Dave Hollander. Namespaces in

XML 1.1 (Second Edition). W3C recommendation, W3C, August 2006. http:

//www.w3.org/TR/2006/REC-xml-names11-20060816/.
4. Roy T Fielding and Richard N Taylor. Architectural styles and the design of

network-based software architectures, volume 7. University of California, Irvine
Doctoral dissertation, 2000.

5. D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, RFC Editor,
October 2012. http://www.rfc-editor.org/rfc/rfc6749.txt.

6. M. Jones and D. Hardt. The OAuth 2.0 Authorization Framework: Bearer Token
Usage. RFC 6750, RFC Editor, October 2012. http://www.rfc-editor.org/rfc/
rfc6750.txt.

7. Markus Lanthaler, Gregg Kellogg, and Manu Sporny. JSON-LD 1.0.
W3C recommendation, W3C, January 2014. http://www.w3.org/TR/2014/

REC-json-ld-20140116/.
8. M. Nottingham and E. Hammer-Lahav. Defining Well-Known Uniform Resource

Identifiers (URIs). RFC 5785, RFC Editor, April 2010. http://www.rfc-editor.
org/rfc/rfc5785.txt.

9. Eric Prud’hommeaux and Gavin Carothers. RDF 1.1 Turtle. W3C recommenda-
tion, W3C, February 2014. http://www.w3.org/TR/2014/REC-turtle-20140225/.

10. Guus Schreiber and Fabien Gandon. RDF 1.1 XML Syntax. W3C
recommendation, W3C, February 2014. http://www.w3.org/TR/2014/

REC-rdf-syntax-grammar-20140225/.
11. Manu Sporny, Ivan Herman, Ben Adida, and Mark Birbeck. RDFa 1.1 Primer

- Third Edition. W3C note, W3C, March 2015. http://www.w3.org/TR/2015/

NOTE-rdfa-primer-20150317/.

http://www.w3.org/TR/2015/REC-rdfa-core-20150317/
http://www.w3.org/TR/2015/REC-rdfa-core-20150317/
http://www.w3.org/TR/2006/REC-xml-names11-20060816/
http://www.w3.org/TR/2006/REC-xml-names11-20060816/
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6750.txt
http://www.rfc-editor.org/rfc/rfc6750.txt
http://www.w3.org/TR/2014/REC-json-ld-20140116/
http://www.w3.org/TR/2014/REC-json-ld-20140116/
http://www.rfc-editor.org/rfc/rfc5785.txt
http://www.rfc-editor.org/rfc/rfc5785.txt
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
http://www.w3.org/TR/2015/NOTE-rdfa-primer-20150317/
http://www.w3.org/TR/2015/NOTE-rdfa-primer-20150317/

	DRPD: Architecture for Intelligent Interaction with RDF Prefixes

