
Agile Information Retrieval Experimentation with Terrier
Notebooks∗

Craig Macdonald, Richard McCreadie, Iadh Ounis
University of Glasgow
Glasgow, Scotland, UK

first.lastname@glasgow.ac.uk

ABSTRACT
Teaching modern information retrieval is greatly benefited by giv-
ing students hands-on experience with an open-source search en-
gine that they can experiment with. As such, open source platforms
such as Terrier are a valuable resource upon which learning exer-
cises can be built. However, experimentation using such systems
can be a laborious process when performed by hand; queries might
be rewritten, executed, and model parameters tuned. Moreover,
the rise of learning-to-rank as the de-facto standard for state-of-
the-art retrieval complicates this further, with the introduction of
training, validation and testing (likely over multiple folded datasets
representing different query types). Currently, students resort to
shell scripting to make experimentation easier, however this is far
from ideal. On the other hand, the introduction of experimental
pipelines in platforms like scikit-learn and Apache Spark in con-
junction with notebook environments such as Jupyter have been
shown to markedly reduce to barriers to non-experts setting up and
running experiments. In this paper, we discuss how next genera-
tion information retrieval experimental pipelines can be combined
in an agile manner using notebook-style interaction mechanisms.
Building upon the Terrier IR platform, we describe how this is
achieved using a recently released Terrier-Spark module and other
recent changes in Terrier 5.0. Overall, this paper demonstrates the
advantages of the agile nature of notebooks to experimental IR
environments, from the classroom environment, through academic
and industry research labs.

1 INTRODUCTION
Information retrieval (IR) is an important field in computing science,
and is taught to undergraduate students at universities worldwide.
IR is a dense topic to teach, as it encompasses 30 years of intensive
research and development from academia and industry. Moreover,
IR is constantly evolving as a field, as new techniques are intro-
duced, tested and adopted by commercial search engines. Indeed,
supervised machine learning techniques [9] have systematically
replaced traditional theoretically-founded term weighting models
(e.g. BM25, language models) over the last decade. As such, taught
IR courses need to be flexible in the face of rapid changes in the
broader field, so that students are prepared for the challenges they
will face in industry.

∗ This is an extended version of a demonstration paper that was published at SIGIR
2018.

DESIRES’18, 2018, Bertinoro, Italy
© 2018 Copyright held by the author(s).

As with many computing science subjects, hands-on coding ex-
perience in IR is very beneficial for grasping the concepts being
taught. However, commercial search engines are not publicly avail-
able for students to experiment with. For this reason, academic
research groups have devoted resources to developing open source
search engines [14, 16] that can be used to support learning and
teaching in IR, such as the Terrier IR platform [14], while keeping
them up-to-date with state-of-the-art techniques.

However, while these platforms provide the core functionality of
a search engine and are valuable for supporting hands-on exercises,
significant time and effort is required for students to learn the
basics of experimenting with such a platform. Furthermore, as the
complexity of these platforms grow, the barriers to entry for using
these platforms is increasing. For instance, the rise of learning-
to-rank as the de-facto standard for state-of-the-art retrieval now
requires students to understand and build command pipelines for
document and query feature extraction (along with configuration
and possibly optimisation); dataset folding; and the subsequent the
training, validation and testing of the learned models. As a result,
students either spend significant time manually running commands
or resort to shell scripting to make experimentation easier. In either
case, this is an undesirable burden on the students that wastes
valuable tuition time.

On the other hand, agile experimentation, particularly for non-
IR machine learning applications, is increasingly being facilitated
by the use of experimental pipelines in toolkits like scikit-learn
and Apache Spark. These toolkits break-down the steps involved
in machine learning into small discrete operations, which can be
dynamically chained together - forming a reusable and customis-
able pipeline. For example, in the scikit-learn toolkit from Python,
each supervised technique exposes a fit() method for training,
and a transform()method for applying the trained model. Apache
Spark’s MLib API similarly defines fit() and transform() meth-
ods for the same purpose. These experimental pipelines are very
powerful when combined with recent ‘notebook’ applications, such
as Jupyter, which enable developers to store, edit and re-run por-
tions of their pipelines on-demand.

In this paper, we argue that similar experimental pipelines are
the next step in enhancing the teaching of IR in the classroom. In
particular, experimental pipelines encapsulated as notebooks:

(1) Provide an agile experimental platform that students/re-
searchers/practictioners can easily edit.

(2) Enable reproducibility in information retrieval experiments.
(3) Centralise configuration such that issues are more easily

identified.
(4) Allow for more complex examples released as pre-configured

notebooks.



DESIRES’18, 2018, Bertinoro, Italy Craig Macdonald, Richard McCreadie, Iadh Ounis

Furthermore, we discuss recent advances in the Terrier IR platform
with the Terrier-Spark module and additions to Terrier 5.0 that
enables experimental pipelines moving forward.

The structure of this paper is as follows: Section 2 details recent
feedback in an empirical information retrieval course; Section 3
highlights the main requirements for an experimental IR platform;
Section 4 summarises the current Terrier platform; Section 5 intro-
duces Terrier-Spark and how to conduct IR experiment using it;
Section 6 highlights other relecant changes in Terrier 5.0; Section 7
discusses the advantages of combining Terrier-Spark with Jupyter
notebooks. Concluding remarks follow in Section 8.

2 RECENT EXPERIENCES OF AN
INFORMATION RETRIEVAL COURSE
USING TERRIER

Information retrieval has been taught in Glasgow as an undergrad-
uate and postgraduate elective since the mid-1980s. Its current
incarnation consists of 20 hours of lectures, along with supplemen-
tary tutorials and laboratory sessions, allowing students to gain
hands-on experience in developing IR technologies and critically
assessing their performance. To address this latter point, we set
students with two assessed exercises (aka courseworks), of approxi-
mately 20 hours in length total. These allow the student experience
with empirical, experimental IR, both from core concepts (TF.IDF,
document length normalisation) through to learning-to-rank.

Coursework 1 [8 hours]. Create an index of 50% of the .GOV test
collection using Terrier; Perform retrieval for a variety of standard
weighting models, with and without query expansion, on three
tasks of the TREC 2004 Web track (homepage finding, named-page
finding, topic distillation). They are also asked to compare and con-
trast with a “simple” TF.IDF they have implemented themselves.
Students then analyse the results, including per-topic analysis, pre-
cision recall graphs, etc. Overall, Coursework 1 is designed to famil-
iarise the students with the core workings of a (web) search engine,
and performing IR experiments, as well as analysing their results,
critically analysing the attributes of different retrieval techniques,
and how these affect performance on different topic sets.

Coursework 2 [12 hours]. Use a provided index for the .GOV
test collection that contains field and positional information, along
with a number of standard Web features (PageRank, DFR prox-
imity, BM25 on the title). The students are asked to implement
two proximity features from a number described in [5], and com-
bine these within a LambdaMART learning-to-rank model. Their
analysis must use techniques learned through Coursework 1. e.g.
identifying which queries were most benefitted by further proxim-
ity features, etc. Overall, this coursework allows student hands-on
experience with deploying a learning-to-rank pipeline (training/
validation/testing and evaluation), as well as the notion of posi-
tional information and posting list iterators necessary to implement
their additional proximity features.

Student feedback on the current courseworks. The positive feed-
back on the current coursework exercises is that these form an
effective vehicle for achieving the intended learning outcomes of
the course. In particular, they encompass more than programming
implementations, and that they force the students to understand

the IR concepts already presented in the lectures. Students also
value the reinforcement of the empirical nature of IR as a field, and
the necessity of experimental evaluation.

However, students also note the difficulties in configuring Terrier
(long commandline incantations, and/or awkward editing of the
terrier.properties files). Indeed, not all students are familiar with
commandline scripting technologies on their chosen operating sys-
tem. Some students contrasted this with other courses, such as our
recent Text-as-Data course on text mining/classification/informa-
tion extraction, which uses Python notebooks, and lamented the
lack of a Juypter environment for Terrier.

Overall, from the feedback described above, it is clear that mov-
ing towards providing a notebook environment for performing IR
experiments would aid students. To this end, we have considered
how to modernise the experimental environment for conducting ex-
periments using Terrier. The next few sections detail the underlying
essential requirements for an experimental IR platform (Section 3),
the current Terrier status (Section 4), as well as how adapt Terrier to
support a notebook paradigm leveraging Apache Spark (Section 5).

3 IR PLATFORM REQUIREMENTS FOR
CONDUCTING EMPIRICAL EXPERIMENTS

Below, we argue for, in our experience, the main attributes of an
experimental IR platform. These are described in terms of required
functionalities - in practice, there are non-functional requirements
such as running experiments efficiently on large corpora such as
ClueWeb09.

R1 Perform an “untrained” run for a weighting model over a
set of query topics, retrieving and ranking results from an
index.

R2 Evaluate a run over a set of topics, based on relevance labels.
R3 Train the parameters of a run, which may require repetitive

execution of queries from an index and evaluation.
R4 Extract a run with multiple features that can be used as input

to a learning-to-rank technique.
R5 Re-rank results based on multiple features and a pre-trained

learning-to-rank technique.
R1 concerns the ability of the IR system to be executed in an

offline batch mode - to produce the results of a set of query topics.
Academic-based platforms such as Terrier, Indri [16], Galago [3]
offer such functionality out of the box. R2 concerns the provision
of evaluation tools that permit a run to be evaluated. Standard tools
exist such as the C-based trec_eval library, but integration in the
native language of the systemmay provide advantages for R3. Other
systems such as Lucene/Solr/Elastic may need some scripting or
external tools (Azzopardi et al. [1] highlight the lack of empirical
tools for IR experimentation and teaching on Lucene, and have
made some inroads into addressing this need).

Indeed, R3 represents the early advent of machine learning into
the IR platform, where gradient ascent/descent algorithms were
used to optimise the parameters of systems by (relatively expensive)
repeated querying and evaluation of different parameter settings.
Effective techniques such as BM25F [20] & PL2F [10]were facilitated
by common use of such optimisation techniques.

Finally, R4 & R5 are concerned with successful integration of
learning-to-rank into the IR system. As with new technologies,



Agile Information Retrieval Experimentation with Terrier Notebooks DESIRES’18, 2018, Bertinoro, Italy

there can be a lag between research-fresh developments and how
they are bled into production-ready systems. Of these, for the pur-
poses of experimentation, R4 is the more important - the ability to
efficiently extract multiple query dependent features has received
some coverage in the literature [11]. R5 is concernedwith taking this
a stage further, and applying a learned model to re-rank the results.

In the following, we will describe how Terrier currently meets
requirements R1-R5 (Section 4), and how it can be adopted within a
Spark environment to meet these in a more agile fashion (Section 5).

4 BACKGROUND ON TERRIER
Terrier [14] is a retrieval platform dating back to 2001 with an ex-
perimental focus. First released as open source in 2004, it has been
downloaded >50,000 times since. While Terrier portrays a Java API
that allows extension and/or integration into a number of appli-
cations, the typical execution of Terrier is based upon procedural
command invocations from the commandline. Listing 1 provides
the commandline invocations necessary to fulfil requirements R1 &
R2 using Terrier. All requirements R1-R5 listed above are supported
by the commandline. Moreover, the use of a rich commandline
scripting language (GNU Bash, for instance) permits infinite com-
binations of different configurations to be evaluated automatically.
Moreover, with appropriate cluster management software, such
runs can be conducted efficiently in a distributed fashion. This
commandline API is also the main methods that students learn to
interact with the IR system.

However, we have increasingly found that a commandline API
was not suited for all purposes. For instance, the chaining of the
outcomes of between invocations requires complicated scripting.
For instance, consider, for each fold of a 5-fold cross validation:
training the b length normalisation parameter of BM25, saving
the optimal value, and using that for input to a learning-to-rank
run, distributed among a cluster environment. Such an example
would require creating tedious amounts of shell scripting, for little
subsequent empirical benefit. In short, this paper argues that IR
experimentation has now reached the stage where we should not
be limited by the confines of a shell-scripting environment.

5 TERRIER-SPARK
To address the perceived limitations in the procedural commandline
use of Terrier, we have developed a new experimental interface
for the Terrier platform, building upon Apache Spark, and called
Terrier-Spark. Apache Spark is a fast and general engine for large-
scale data processing. While Spark can be invoked in Java, Scala
and Python, we focus on the Scala environment, which allows for
code that is more succinct than the equivalent Java (for instance,
through the use of functional progamming constructs, and auto-
matic type inference). Spark allows relational algebra operations
on dataframes (relations) to be easily expressed as function calls,
which are then compiled to a query plan that is distributed and
executed on machines within the cluster.

Apache Spark borrows the notions of dataframes from Pandas1
(a Python data analysis library), and similarly the notion of machine
learning pipeline constructs and interfaces (e.g. fit and transform

1 http://pandas.pydata.org/

bin/trec_terrier.sh -r -Dtrec.topics=/path/to/topics \
-Dtrec.model=BM25

bin/trec_terrier.sh -e -Dtrec.qrels=/path/to/qrels

Listing 1: A simple retrieval run and evaluation using Ter-
rier’s commandline interface - c.f. requirements R1 & R2.

methods) from scikit-learn2 (Python machine learning library),
namely:

• DataFrame: a relation containing structured data.
• Transformer: an object that can transform a data instance
from a DataFrame.

• Estimator: an algorithm that can be fitted to data in aDataFrame.
The outcome of an Estimator can be a Transformer - for in-
stance, a machine-learned model obtained from an Estimator
will be a Transformer.

• Pipeline: A series of Transformer and Estimators chained
together to create a workflow.

• Parameter: A configuration option for an Estimator.
In our adaptation of Terrier to the Spark environment, Terrier-

Spark, we have implemented a number of Estimators and Trans-
formers. These allow the natural stages of an IR system to be com-
bined in various ways, while also leveraging the existing supervised
ML techniques within Spark to permit the learning of ranking mod-
els (e.g. Spark contains logistic regression, random forests, gradient
boosted regression trees, but notably no support for listwise based
learning techniques such as LambdaMART [19], which are often
the most effective [2, 9]).

Table 1 summarises the main components developed to sup-
port the integration of Terrier into Apache Spark, along with their
inputs, outputs and key parameters. In particular, QueryingTrans-
former is the key Transformer, in that this internally invokes Terrier
to retrieve the docids and scores of each retrieved document for
the queries in the input dataframe. As Terrier is written in Java,
and Scala and Java both are JVM-based languages, Terrier can run
“in-process”. Furthermore, as discussed in Section 6 below, further
changes in Terrier 5.0 permit accessing indices on remotely hosted
Terrier servers.

In the following, we provide examples of retrieval experimental
listings using Spark through Scala.

5.1 Performing an untrained retrieval run
Listing 1 shows how a simple retrieval run can be made using
Terrier’s commandline API. The location of the topics and qrels
files as well as the weighting model, are set on the commandline,
although defaults could be set in a configuration file.

In contrast, Listing 2 shows how the exact same run might be
achieved from Scala in a Spark environment. Once the topics files
are loaded into a two-column dataframe (keyed by “qid", the topic
number), these are transformed into a dataframe of result sets, ob-
tained from Terrier (keyed by “⟨qid,docno⟩”). Then a second trans-
former record the relevant and non-relevant documents within the
dataframe, by joining with the contents of the qrels file, before
evaluation.
2 http://scikit-learn.org/

http://pandas.pydata.org/
http://scikit-learn.org/


DESIRES’18, 2018, Bertinoro, Italy Craig Macdonald, Richard McCreadie, Iadh Ounis

Component Inputs Output Parameters
QueryStringTransformer Queries Queries Lambda function to transform query
QueryingTransformer Queries docids, scores for each query number of docs; weighting model
FeaturedQueryingTransformer Queries docids, scores of each feature for each query + feature set
QrelTransformer results with docids results with docids and labels qrel file
NDCGEvaluator results with docids and labels Mean NDCG@K cutoff K

Table 1: Summary of the primary user-facing components available Terrier-Spark.

val props = Map("terrier.home" -> "/path/to/Terrier")
TopicSource.configureTerrier(props)
val topics = "/path/to/topics.401-450"
val qrels = "/path/to/qrels.trec8"

val topics = TopicSource.extractTRECTopics(topics)
.toList.toDF("qid", "query")

val queryTransform = new QueryingTransformer()
.setTerrierProperties(props)
.sampleModel.set("BM25")

val r1 = queryTransform.transform(topics)
//r1 is a dataframe with results for queries in topics
val qrelTransform = new QrelTransformer()

.setQrelsFile(qrels)

val r2 = qrelTransform.transform(r1)
//r2 is a dataframe as r1, but also includes a label column

val meanNDCG = new NDCGEvaluator().evaluate(r2)

Listing 2: A retrieval run in Scala - c.f. requirements R1&R2.

While clearly more verbose than the simpler commandline API,
Listing 2 demonstrates equivalent functionality, and clearly high-
lights the needed data and the steps involved in the experiment.
Moreover, the use of objects suitable to be built into a Spark pipeline
offers the possibility to build and automate pipelines. As we show
below, this functionality permits the powerful features of a func-
tional language to allow more complex experimental pipelines.

5.2 Training weighting models
Listing 3 demonstrates the use of Spark’s Pipeline and CrossVal-
idator components to create a pipeline that applies a grid-search to
determine themost effective weightingmodel and its corresponding
document length normalisation c parameter. Such a grid-search can
be parallelised across many Spark worker machines in a cluster. We
note that while grid-search is one possibility, it is feasible to consider
use of a gradient descent algorithm to tune the c parameter. How-
ever, at this stage we do not yet have a parallelised algorithm imple-
mented that would make best use of a clustered Spark environment.

5.3 Training learning-to-rank models
Finally, Listing 4 demonstrates the use of Spark’s in-built machine
learning Random Forest regression technique to learn a learning-to-
rank model. In this example, the initial ranking of documents is per-
formed by the InL2 weighting model, with an additional three query

//assuming various variables as per Listing 2.
val pipeline = new Pipeline()
.setStages(Array(queryTransform, qrelTransform))

val paramGrid = new ParamGridBuilder()
.addGrid(queryTransform.localTerrierProperties,

Array(Map["c"->"1"], Map["c"->"10"], Map["c"->"100"]))
.addGrid(queryTransform.sampleModel,

Array("InL2", "PL2"))
.build()

val cv = new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(new NDCGEvaluator)
.setEstimatorParamMaps(paramGrid)
.setNumFolds(5)

val cvModel = cv.fit(topics)

Listing 3: Grid searching theweightingmodel and document
length normalisation c parameters using Spark’s CrossVal-
idator - c.f. requirement R3.

val queryTransform = new FeaturesQueryingTransformer()
.setTerrierProperties(props)
.setMaxResults(5000)
.setRetrievalFeatures(List(

"WMODEL:BM25",
"WMODEL:PL2",
"DSM:org.terrier.matching.dsms.DFRDependenceScoreModifier"))

.setSampleModel("InL2")
val r1 = queryTransform.transform(topics)
//r1 is as per Listing 2, but now also has a column of 3
//feature values for each retrieved document
val qrelTransform = new QrelTransformer()

.setQrelsFile(qrels)
val r2 = qrelTransform.transform(r1)

//learn a Random Forest model
val rf = new RandomForestRegressor()

.setLabelCol("label")

.setFeaturesCol("features")

.setPredictionCol("newscore")
rf.fit(r2)

Listing 4: Training aRandomForests based learning-to-rank
model - c.f. requirements R4 & R5.

dependent features being calculated for the top 5000 ranked docu-
ments for each query. Internally, this uses Terrier’s Fat framework



Agile Information Retrieval Experimentation with Terrier Notebooks DESIRES’18, 2018, Bertinoro, Italy

for implementing the efficient calculation of additional query depen-
dent features [11]. The received random forests model can be triv-
ially applied to a further set of unseen topics (not shown). The result-
ing Scala code is markedly more comprehensible to the equivalent
complex commandline invocations necessary for Terrier 4.2 [17].
Moreover, we highlight the uniqueness of our offering - while other
platforms such as Solr and Elastic have Spark tools, none offer the
ability to export a multi-feature representation suitable for conduct-
ing learning-to-rank experiments within Spark (c.f. R4 & R5).

Of course, the pipeline framework of Estimators and Transform-
ers is generic, and one can easily imagine further implementations
of both to increase the diversity of possible experiments: For in-
stance, new Estimators for increased coverage of learning-to-rank
techniques, such as LambdaMART [19]; Similarly, Transformers
for adapting the query representation, for example by applying
query-log based expansions [7] or proximity-query rewriting such
as Sequential Dependence models [12]. Once a suitable Pipeline
is configured, conducting experiments such as learning-to-rank
feature ablations can be conducted in only a few lines of Scala.

6 OTHER CHANGES TO TERRIER 5.0
Wehave alsomade a number of other changes to Terrier, which have
been incorporated into the recently released version 5.0, which aid
in the expanding the possible retrieval concepts that can be easily
implemented using Terrier-Spark, while increasing the flexibility
offered by the platform.

6.1 Indri-esque matching query language
Terrier 5.0 implements a subset of the Indri/Galago query lan-
guage [3, Ch. 5], including complex operators such as #syn and
#uwN. In particular, Terrier 5.0 provides:

• #syn(t1 t2): groups a set of terms into a single term for the
purposes of matching. This can be used for implementing
query-time stemming.

• #uwN(t1 t2): counts the number of occurrences of t1 & t2
within unordered windows of size N .

• #1(t1 t2): counts the number of exact matches of the bigram
t1 & t2.

• #combine(t1 t2): allows the weighting of t1 & t2 to be ad-
justed.

• #tag(NAME t1 t2): this allows to assign a name to a set of
terms, which can be then be formed as a set of features
by the later Fat layer. In doing so, such tagged expression
allows various sub-queries to form separate features during
learning-to-rank. This functionality is not present in Indri
or Galago.

For example, Metzler and Croft’s sequential dependence proxim-
ity model [12] can be formulated using combinations of #uwN
and #owN query operators. Such a query rewriting technique can
be easily implemented within Terrier-Spark by applying a Query-
StringTransformer that applies a lambda function upon each query,
allow users to build upon the new complex query operators imple-
mented in Terrier 5.0. Figure 1 demonstrates applying sequential
dependence to a dataframe of queries, within a Jupyter notebook.
This is achieved by instantiating a QueryStringTransformer upon
a dataframe of queries, using a lambda function that appropriately
rewrites the queries.

6.2 Remote Querying
As discussed in Section 5 above, Terrier-Spark has initially been
designed for in-process querying. However, concurrent changes to
Terrier for version 5.0 have abstracted the notion of all retrieval
access being within the current process or accessible from the
same machine. Indeed, a reference to an index may refer to an
index hosted on another server, and made accessible over a RESTful
interface. While this is a conventional facility offered by some other
search engine products (and made available through their Spark
tools, such as for Elastic’s3 and Solr’s4), this offers a number of
advantages for teaching. Indeed, often IR test collection can be too
large to provide as downloads - allowing a remote index accessible
over a (secured) RESTful HTTP connection would negate the need
to provide students with the raw contents of the documents for
indexing. Moreover, unlike conventional Spark tools for Elastic and
Solr, the results returned can have various features pre-calculated
for applying and evaluating learning-to-rank models.

To make this more concrete, consider the TREC Microblog track
which used an “evaluation-as-a-service” methodology [8]. In this,
the evaluation track organisers provided a search API based upon
Lucene, through which the collection can be accessed for complet-
ing the evaluation task. The advancements described here would
allow a Terrier index to be provided for a particular TREC collection,
easily accessible through either the conventional Terrier comman-
dline tools, or through Terrier-Spark. A run in that track could
then be crafted and submitted to TREC wholly within a Jupyter
notebook, facilitating easy run reproducibility.

7 CONDUCTING IR EXPERIMENTS WITHIN
A JUPYTER NOTEBOOK ENVIRONMENT

Spark can be used in a number of manners: by compiling Scala
source files into executable (Jar) files, which are submitted to a Spark
cluster, or through line-by-line execution in spark-shell (a Read-
Eval-Print-Loop or REPL tool). However, each has its disadvantages:
the former only permits slow development iterations through the
necessity to recompile at each iteration; on the other hand, the
REPL spark-shell environment does not easily record the developed
code, nor allow parts of the code to be re-executed.

Instead, we note that the use of a Spark environment naturally
fits with the use of Scala Jupyter notebooks56. Jupyter is an open-
source web application that allows the creation and sharing of
documents that contain code, equations, visualisations and narra-
tive text. Increasingly entire technical report documents, slides and
books are being written as Jupyter notebooks, due to the easy inte-
gration of text, code and resulting analysis tables or visualisations.

Jupyter notebooks are increasingly used to share the algorithms
and analysis conducted in machine learning research papers, sig-
nificantly aiding reproducibility [15]. Indeed, in their report on the
Daghstuhl workshop on reproducibility of IR experiments [6], Ferro,
Fuhr et al. note that sharing of code and experimental methods
would aid reproducibility in IR, but do not recognise the ability of
notebooks to aid in this process.

3 https://www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html
4 https://github.com/lucidworks/spark-solr 5 http://jupyter.org/ 6 We note that
Jupyter notebooks are extensible through plugins to Scala and other languages, i.e.
not limited to Python.

https://www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html
https://github.com/lucidworks/spark-solr
http://jupyter.org/


DESIRES’18, 2018, Bertinoro, Italy Craig Macdonald, Richard McCreadie, Iadh Ounis

Figure 1: Example of applying a Transformer to apply sequential dependency proximity to a dataframe of queries.

Jupyter notebooks are interactive in manner, in that a code block
in a single cell can be run independently of all other cells in the note-
book. As a result, Jupyter is also increasingly used for educational
purposes - for example, teaching programming within undergradu-
ate degree courses [4, 18], as well as a plethora of data science or
machine learning courses [15]. O’Hara et al. [13] described four uses
for notebooks in classroom situations, including lectures, flipped-
classrooms, home/lab work and exams. For instance, the use of
notebooks within a lecturing situation easily permits the students
to replicate the analysis demonstrated by the lecturer.

We argue that these general advantages of notebooks can be ap-
plied to experimental information retrieval education, through the
use of a Spark-integrated IR platform, such as that described in this
paper. Indeed, we believe that the changes described in Sections 5
& 6 should address these these feedbacks, allow students to more
easily configure the retrieval platform (all configuration of Terrier
is presented on the screen), make more powerful experimentation
available to a wider and less experienced audience not wishing to
engage in complicated shell-scripting.

We believe that Terrier-Spark can bring these same advantages
to conducting modern (e.g. learning-to-rank) IR experiments, com-
bined with the accessible and agile nature of a notebook environ-
ment. Moreover, an integrated Juypter environment also facilitates,
for instance in the IR teaching environment, the creation and pre-
sentation of inline figures (e.g. created using the Scala vegas-viz
library7), such as per-query analyses and interpolated precision-
recall graphs. Figures 2 - 4 provide screenshots from such a note-
book89 In particular: Figure 2 demonstrates the querying of the
7 https://github.com/vegas-viz/. 8 We use the Apache Toree
kernel for Jupyter, which allows notebooks written in Scala and
which automatically interfaces with Apache Spark. 9 The orig-
inal notebook can be found in the Terrier-Spark repository, see
https://github.com/terrier-org/terrier-spark/tree/master/example_notebooks/toree.

Terrier for two different retrieval models; Figure 3 shows analy-
sis on the results, by ranking queries based on the difference of
their evaluation performance between rankings; Finally, Figure 4
demonstrates the same information as a per-query analysis figure.

8 CONCLUSIONS
In this paper, we have described the challenge of teaching a modern
undergraduate- and postgraduate-level elective course on infor-
mation retrieval. We highlight the main requirements of an ex-
perimental IR platform, then further describe Terrier-Spark, an
extension of Terrier IR platform to perform IR experimentation
within the Spark distributed computing engine, which not only
addresses these requirements, but can allow complex experiments
to be easily defined within a few lines of Scala code. Terrier-Spark
and Terrier 5.0 have been released as open source. In addition, we
also argue that Jupyter notebooks for IR can aid not only agile IR
experimentation by students, but also in research reproducibility in
information retrieval by facilitating easily-distributable notebooks
that demonstrate the conducted experiments.

Overall, we believe that notebooks are an important aspect of
data science, and that we as an IR community should not fall behind
other branches of data science in using notebooks for empirical
IR experimentation. The frameworks described here might be ex-
tended to other languages (e.g. a Python wrapper for Terrier’s
RESTful interface), or even to other IR platforms. In doing so, we
bring more powerful and agile experimental IR tools into the hands
of researchers and students alike. Terrier-Spark has been released
as open source, and is available from

https://github.com/terrier-org/terrier-spark

along with example Jupyter notebooks.

https://github.com/vegas-viz/
https://github.com/terrier-org/terrier-spark/tree/master/example_notebooks/toree
https://github.com/terrier-org/terrier-spark


Agile Information Retrieval Experimentation with Terrier Notebooks DESIRES’18, 2018, Bertinoro, Italy

Figure 2: Conducting two different retrieval runs within a Jupyter notebook using a function defined in Terrier-Spark.

REFERENCES
[1] Leif Azzopardi et al. 2017. Lucene4IR: Developing Information Retrieval Evalua-

tion Resources Using Lucene. SIGIR Forum 50, 2 (2017), 18.
[2] Olivier Chapelle and Yi Chang. 2011. Yahoo! Learning to Rank Challenge

Overview. Proceedings of Machine Learning Research 14 (2011).
[3] Bruce Croft, Donald Metzler, and Trevor Strohman. 2009. Search Engines: In-

formation Retrieval in Practice (1st ed.). Addison-Wesley Publishing Company,
USA.

[4] Lynn Cullimore. 2016. Using Jupyter Notebooks to teach computational
literacy. (2016). http://www.elearning.eps.manchester.ac.uk/blog/2016/
using-jupyter-notebooks-to-teach-computational-literacy/

[5] Ronan Cummins and Colm O’Riordan. 2009. Learning in a Pairwise Term-term
Proximity Framework for Information Retrieval. In Proceedings of SIGIR.

[6] Nicola Ferro, Norbert Fuhr, et al. 2016. Increasing Reproducibility in IR: Findings
from the Dagstuhl Seminar on "Reproducibility of Data-Oriented Experiments in
e-Science". SIGIR Forum 50, 1 (2016).

[7] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. 2006. Generating
Query Substitutions. In Proceedings of WWW.

[8] Jimmy Lin and Miles Efron. 2013. Evaluation As a Service for Information
Retrieval. SIGIR Forum 47, 2 (Jan. 2013), 8–14.

[9] Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and
Trends® in Information Retrieval 3, 3 (2009).

[10] Craig Macdonald, Vassilis Plachouras, Ben He, Christina Lioma, and Iadh Ou-
nis. 2006. University of Glasgow at WebCLEF 2005: Experiments in per-field

normlisation and language specific stemming. In Proceedings of CLEF.
[11] Craig Macdonald, Rodrygo L.T. Santos, Iadh Ounis, and Ben He. 2013. About

Learning Models with Multiple Query-dependent Features. ToIS 31, 3 (2013).
[12] Donald Metzler and W. Bruce Croft. 2005. A Markov random field model for

term dependencies. In Proceedings of SIGIR.
[13] Keith J. O’Hara, Douglas Blank, and James Marshall. 2015. Computational Note-

books for AI Education. In Proceedings of FLAIRS.
[14] Iadh Ounis, Gianni Amati, Vassilis Plachouras, Ben He, Craig Macdonald, and

Christina Lioma. 2006. Terrier: A High Performance and Scalable Information
Retrieval Platform. In Proceedings of OSIR.

[15] Fernando Perez and Brian E Granger. 2015. Project Jupyter: Computational
narratives as the engine of collaborative data science. Technical Report. http:
//archive.ipython.org/JupyterGrantNarrative-2015.pdf

[16] Trevor Strohman, Donald Metzler, Howard Turtle, andW Bruce Croft. 2005. Indri:
A language model-based search engine for complex queries. In Proceedings of the
International Conference on Intelligent Analysis, Vol. 2. Citeseer, 2–6.

[17] Terrier.org. 2016. Learning to Rank with Terrier. (2016). http://terrier.org/docs/
v4.2/learning.html

[18] John Williamson. 2017. CS1P: Running Jupyter from the command line. (2017).
https://www.youtube.com/watch?v=hqpuC0YLbpM

[19] Qiang Wu, Chris J. C. Burges, Krysta M. Svore, and Jianfeng Gao. 2008. Ranking,
Boosting, and Model Adaptation. Technical Report MSR-TR-2008-109. Microsoft.

[20] Hugo Zaragoza, Nick Craswell, Michael Taylor, Suchi Saria, and Stephen Robert-
son. 2004. Microsoft Cambridge at TREC-13: Web and HARD tracks. In Proceed-
ings of TREC.

http://www.elearning.eps.manchester.ac.uk/blog/2016/using-jupyter-notebooks-to-teach-computational-literacy/
http://www.elearning.eps.manchester.ac.uk/blog/2016/using-jupyter-notebooks-to-teach-computational-literacy/
http://archive.ipython.org/JupyterGrantNarrative-2015.pdf
http://archive.ipython.org/JupyterGrantNarrative-2015.pdf
http://terrier.org/docs/v4.2/learning.html
http://terrier.org/docs/v4.2/learning.html
https://www.youtube.com/watch?v=hqpuC0YLbpM


DESIRES’18, 2018, Bertinoro, Italy Craig Macdonald, Richard McCreadie, Iadh Ounis

Figure 3: Comparing the results of two different retrieval runs.

Figure 4: Graphically displaying the per-query differences between different retrieval runs.


	Abstract
	1 Introduction
	2 Recent Experiences of an Information Retrieval Course using Terrier
	3 IR Platform Requirements for Conducting Empirical Experiments
	4 Background on Terrier
	5 Terrier-Spark
	5.1 Performing an untrained retrieval run
	5.2 Training weighting models
	5.3 Training learning-to-rank models

	6 Other Changes to Terrier 5.0
	6.1 Indri-esque matching query language
	6.2 Remote Querying

	7 Conducting IR Experiments within a Jupyter notebook environment
	8 Conclusions
	References

