
WASP: Web Archiving and Search Personalized
Johannes Kiesel

Bauhaus-Universität Weimar
Weimar, Germany

johannes.kiesel@uni-weimar.de

Arjen P. de Vries
Radboud University

Nijmegen, The Netherlands
a.devries@cs.ru.nl

Matthias Hagen
Martin-Luther-Universität

Halle-Wittenberg
Halle, Germany

matthias.hagen@informatik.
uni-halle.de

Benno Stein
Bauhaus-Universität Weimar

Weimar, Germany
benno.stein@uni-weimar.de

Martin Potthast
Leipzig University
Leipzig, Germany

martin.potthast@uni-leipzig.de

ABSTRACT
Logging and re-finding the information we encounter every day
while browsing the web is a non-trivial task that is, at best, in-
adequately supported by existing tools. It is time to take another
step forward: we introduce WASP, a fully functional prototype of a
personal web archive and search system, which is available open
source and as an executable Docker image. Based on the experiences
and insights gained while designing and using WASP, we outline
how personal web archive and search systems can be implemented,
discuss what technological and privacy-related challenges such
systems face, and propose a setup to evaluate their effectiveness.
As a key insight, we argue that the indexing and retrieval for a
personal archive search can be strongly tailored towards a specific
user and their behavior on the visited pages compared to regular
web search.

1 INTRODUCTION
Lifelogging1 has become a common practice, as a result of the om-
nipresence of smartphones, smart watches and fitness trackers, and
emerging technologies such as smart glasses, wearable technologies
and sensor-enabled smart homes. Isn’t it surprising that keeping
track of one’s online activities is comparably underdeveloped? Sig-
nificant amount of work has been invested into understanding
personal information management [10] and developing tools to
support it, including the winner of the SIGIR 2014 Test of Time
Award “Stuff I’ve Seen” (SIS) by Dumais et al. [6]. With a bit of irony
however, neither SIS nor follow-up Phlat [5] are available today,
even if the key insights gained have likely informed the develop-
ment of Windows desktop search and intelligent assistant Cortana.
Likewise, Spotlight onMacOS supports search over local documents
and other digital assets. Both are integrated with the web browsers
from Microsoft and Apple, respectively, to index browsing history.
Meanwhile, the history tabs of modern Web browsers provide ac-
cess to the history of the currently open browser as well as pages
recently visited on other devices. However, current browsers do
not align and integrate the browsing histories across devices, nor,
1https://en.wikipedia.org/wiki/Lifelog

DESIRES 2018, August 2018, Bertinoro, Italy
© 2018 Copyright held by the author(s).

apparently, do the aforementioned tools index the content of web
pages visited, but only their titles and URLs. In fact, the possibility
to track (let alone search) one’s browsing history using off-the-shelf
tools is still fairly limited.

In this context, it is not surprising that personal information
access was one of the major topics discussed at the Third Strategic
Workshop on Information Retrieval in Lorne (SWIRL 2018) [4].
The attendees noted that this problem, open for so long, has not
been addressed adequately, and, worse, that it is an ever more
daunting challenge to help people re-find and re-visit their online
information and prior information interactions with these sources;
as this information today resides in multiple devices and a large
variety of information services, that each construct their own data
silos and search APIs (if such access is offered at all). Specifically,
the report mentions the high cost of entry for scientists as a major
obstacle, where “there is substantial engineering required for a
minimal working system: to fetch data from different silos, parse
different data formats, and monitor user activity.”

We propose to take a pragmatic “shortcut” and to establish em-
pirically how far that workaround can bring us. Increasingly, access
to our digital information takes place through the web browser
as the interface. Therefore, we set out to develop WASP, a proto-
type system for personal web archiving and search. WASP saves
one’s personal web browsing history using state-of-the-art web
archiving technology and offers a powerful retrieval interface over
that history. This browser-focused setup enables the user to recall
information they personally gathered without the need to deal with
the large variety of information sources. Even if we do not cover the
full range of digital objects that may accrue on a person’s desktop
and mobile devices, high-quality archival of web pages visited may
capture a large fraction of the information we interact with.

In addition to a detailed technical description of WASP in Sec-
tion 2, this paper reports on the observations that we made (Sec-
tion 3) and the challenges for personal web archiving and search
that we identified (Section 4) through our extensive use of the
WASP prototype—which we provide both open source and as an
executable Docker container so that others can use it within their
research or personal lifelogging setup.2, 3

2https://hub.docker.com/r/webis/wasp/
3https://github.com/webis-de/wasp

https://en.wikipedia.org/wiki/Lifelog
https://hub.docker.com/r/webis/wasp/
https://github.com/webis-de/wasp

DESIRES 2018, August 2018, Bertinoro, Italy Johannes Kiesel, Arjen P. de Vries, Matthias Hagen, Benno Stein, and Martin Potthast

2 THEWASP PROTOTYPE
The WASP4 prototype integrates existing archiving, indexing, and
reproduction technology for the first time into a single application.
Figure 1 illustrates how the user’s browser interacts through WASP
with the World Wide Web under the three usage scenarios archival,
search, and reproduction of web pages, as detailed below.

2.1 Archiving Proxy and Indexing
After starting WASP, the user has to reconfigure his or her browser
to accept WASP as forward proxy and to trust its certificate. WASP
then archives all HTTP(S) requests and responses from and to the
browser in the standardWeb archiving format (WARC) (Figure 1 (a)).
This is achieved using the Internet Archive’s warcprox software,5
whose WARC contain all the information necessary to reproduce
an archived browsing session at a later time.

In order to enable searching the archived content, we devised a
software component that monitors WARC files and automatically
indexes HTML responses and their corresponding requests in an
ElasticSearch index.6 In detail, we use the Lemur project’s WARC
parser7 and Apache’s HttpClient library8 to read HTTP messages
as they are appended to the WARC files. The title and text of the
HTTP responses that have theMIME type HTML are extracted from
responses using the Jericho HTML Parser library.9 The title and
text of the HTTP response is indexed along with the corresponding
HTTP request’s time and URL. Later page revisits (identified by
warcprox through hash value matching on HTTP responses) are
added to the response’s record in the index. When the index is
queried, the aggregation of requests avoids duplicate results in case
a page is visited more than once.

Even if web pages vanish or change, WASP can reproduce the
content the user saw in the past using the Web archiving toolkit
pywb.10 Like our automatic indexing setup described above, pywb
monitors and indexes changes to the web archives. While the Elas-
ticSearch index is tailored toward search within the HTML content
of the archivedweb pages, the pywb index is tailored towards retriev-
ing the HTTP response corresponding to a given HTTP request,
enabling efficient reproduction of pages from the personal archive.

2.2 Search Interface
Access to the archivedweb pages is provided using the ElasticSearch
index detailed in Section 2.1 (Figure 1 (b)). Under a configurable
port, WASP provides the user with a basic search engine. Figure 2
shows a screenshot of the interface. Unlike regular web search
engines, WASP’s interface provides controls to specify the time the
user recall visiting the desired web page 1 , 2 , 3 11 in addition to
the familiar query box 4 . Web pages are retrieved by matching
query words against the title and contents of web pages visited in
the specified time interval. ElasticSearch’s highlight feature is used
to generate query-related snippets for the results 9 .

4WASP is short for Web Archiving and Search, Personalized
5https://github.com/internetarchive/warcprox
6https://www.elastic.co/
7http://www.lemurproject.org/clueweb09/workingWithWARCFiles.php
8https://hc.apache.org/httpcomponents-client-ga/
9http://jericho.htmlparser.net/docs/index.html
10https://github.com/webrecorder/pywb
11Date and time picker widget: https://eonasdan.github.io/bootstrap-datetimepicker/

Index
Search

Interface

WARCspywb

Browser

World Wide Web

warcprox
proxy

(a)

Index
Search

Interface

WARCspywb

Browser

World Wide Web

warcprox

/search

(b)

Index
Search

Interface

WARCspywb

Browser

World Wide Web

warcprox

/archive/<time>/<url>

(c)

Figure 1: Architecture of the prototype: (a) during regular
browsing, the containerworks as a forward proxy that stores
all requests () and responses () in web archive files
(WARCs) and indexes them; (b) when browsing to localhost:
<search-port>/search, the browser shows our search inter-
face (Figure 2), where results link to (c) the reproduction
server, which serves content from the WARC that (fuzzy)
matches a specific time and URL.

A difference to a regular search engine results page is that in
WASP, each result item consists of two hyperlinks: one resolving
the URL to the live web 6 as usual, and another one pointing to the
archived version of the web page. This latter hyperlink refers to the
port of the WASP container’s reproduction proxy and the access
time and URL of the web page that should be reproduced. In case
several non-identical versions of the same page are found in the
requested interval, the prototype displays all of them as separate
results. However, we expect that more mature personal web archiv-
ing and search systems will rather condense the different versions
of a web page, especially when the context of the query terms is
similar in the versions. The resulting user experience offers key
advantages with respect to search users’ privacy: search activities
remain local to WASP, and the user is left in control whether to
visit the live web page (without leaking their preferences to another
search engine), or to be satisfied with the archived result.

https://github.com/internetarchive/warcprox
https://www.elastic.co/
http://www.lemurproject.org/clueweb09/workingWithWARCFiles.php
https://hc.apache.org/httpcomponents-client-ga/
http://jericho.htmlparser.net/docs/index.html
https://github.com/webrecorder/pywb
https://eonasdan.github.io/bootstrap-datetimepicker/
localhost:<search-port>/search
localhost:<search-port>/search

WASP: Web Archiving and Search Personalized DESIRES 2018, August 2018, Bertinoro, Italy

1 2 3

4

5

6

7 8

9

Figure 2: Search interface for WASP: 1 shortcuts for fre-
quently used time settings; 2 selected query time interval;
3 date and time picker for exact time specification; 4 query
box; 5 description of current result page; 6 title of result
with links to archived and live version; 7 URL of the result;
8 archive time of the result; 9 snippet for the result.

2.3 Reproduction Server
When using a personal Web archive in a re-finding scenario, WASP
fulfills the need of users to access information from their brows-
ing history using pywb; a state-of-the-art web page reproduction
software which uses intricate URL rewriting and code injection to
serve the archived web pages like they were originally received
(Figure 1 (c)). Through the use of specific URLs, pywb can serve
multiple versions of the same web page. WASP’s search interface
uses this feature to refer the user to exactly that version of the web
page that corresponds to the clicked result link. In order to avoid
confusion on the user’s side as to whether or not they are browsing
within the archive, a small black banner is inserted and fixed to the
bottom right corner of the browser viewport for all pages that are
reproduced from the archive (cf. Figure 3).

3 QUALITATIVE EVALUATION
Given that the WASP prototype became operational only recently,
the ongoing evaluation of its archiving and retrieval quality is still
in its infancy. Nevertheless, since we have been using the prototype,
this section reports on insights gathered so far, namely the results
of an error analysis regarding archiving quality, and an outline of
evaluation methodology regarding retrieval quality.

3.1 Archiving Quality: Error Analysis
When revisiting an archived web page, one naturally expects the
version reproduced from the archive to look and behave exactly

Figure 3: Screenshot of a web page reproduced from the
archive. pywb is configured to insert a small black banner at
the bottom right of the browser viewport to remind users
that they are viewing an archived page.

the same as the live version did at the time of archiving. Yet, tech-
nological difficulties may prevent the faithful reproduction of an
archived web page. Since it is usually impractical for WASP to take
web server snapshots, WASP will only capture a page’s client side.
Therefore, only a subset of the potential server interactions end up
being represented in the archive and available for the reproduction:
the scrolling, clicking, form submissions, video and audio stream
playback, etc. that the user performed on the live web page. If user
interactions on the archived web page trigger unseen requests to
the web server, reproducing the archived web page will either do
nothing, show an error, or stop working.

However, even in the case the user repeats the same basic in-
teractions on the archived page that they performed on the live
page, only about half of web pages can be reproduced flawlessly [9].
These reproduction errors mostly stem from randomized requests.
Indeed, in about two-third of flawed reproductions, the errors are
on the level of missing advertisements or similar. While pywb re-
places the JavaScript random number generator by a deterministic
one, this only affects the archived page and does not fully solve the
problem: different timings in the network communications lead to a
varying execution order and thus a different order of pop-requests
from the “random” number sequence. To greater effect, pywb em-
ploys a fuzzy matching of GET parameters that ignores some of the
parameters that it assumes to have random values (e.g., session ids),
be it by the parameter name or by a hash-like appearance of the
parameter value. While it is unclear how many false positives this
process introduces, it naturally can’t find all random parameters as
there exists no standard whatsoever in this regard.

Another interesting problem for web archiving we noticed are
push notifications: while they are properly recorded, it remains a
difficult choice if and when to trigger them during the reproduction
of a web page. Should the trigger time be based on the time spent
on the page or based on other events?

DESIRES 2018, August 2018, Bertinoro, Italy Johannes Kiesel, Arjen P. de Vries, Matthias Hagen, Benno Stein, and Martin Potthast

Finally, we found that differences between browsers can also af-
fect the reproduction quality. Though this had only minor effects on
our experience with WASP so far, the ongoing development of the
web technology stack may render old web pages in the archive less
reproducible in the long run. For an example, consider the ongoing
demise of Flash as a major container for dynamic content. In this
regard, old versions of browsers and even old versions of operating
systems may need to be kept, which is a definite requirement for
web archiving in general, and also possible based on WASP’s use of
Docker containers, though not necessarily important for our usage
scenario of personal web archiving.

3.2 Retrieval Quality Evaluation: An Outline
In principle, it should be easier to re-find something in a personal
web archive than using some commercial search engine on the
live web. Since a personal archive will typically be many orders of
magnitude smaller, not as many candidate results for simple queries
exist as on the live web. Ideally, compared to finding a needle in
the huge haystack of the web, with a tailored search interface for
one’s smaller personal archive, the ratio of needles to hay is much
higher in a re-finding scenario than in general web search. Still,
since WASP is a prototype that was created very recently, we can
only provide anecdotes of retrieval problems and sketch how we
want to evaluate whether WASP actually helps to re-find needles.

The main evaluation scenarios we envision is re-finding some-
thing a user recalls having seen earlier on the web. Such re-finding
intents will be different from the frequent re-visit patterns users
show on the web [1] since their purpose is not to visit some favorite
page but to check some information seen before. In this regard, we
do not believe that, at the time of visiting a web page the first time
around, users will have enough foresight and presence of mind to
anticipate its future uses and hence place a bookmark, rendering a
search in their personal archive indispensable.

We used WASP for one week in an informal self-experiment to
figure out what problems arise and what should thus be integrated
in a formal evaluation. The most obvious problem that differs from
the general web search scenario is that of dealing with several
versions of the same web page. During our short-term usage of
WASP, we found that most retrieved web pages are actually relevant,
but that the result lists are cluttered with different versions of the
same web page that were—with respect to our information needs—
practically identical; as predicted by a recent retrievability study of
Web archive search [12]. A probably even more difficult problem,
but one that our scenario shares with general web search, arises
from the fact that nowadays web pages request a large part of
their content dynamically and only if necessary. A good example
of this is the Twitter timeline: while scrolling through the timeline,
more tweets are requested from the server. Since WASP is currently
limited to indexing HTML responses, it catches only some parts
of the tweets (see Figure 4), which turn out to be HTML templates
requested via Ajax for integration into the Twitter page.

Based on these observations, we propose the following evalua-
tion setup for personal web archives. Since re-finding in personal
web archives has not been part of any evaluation campaign so far,
a respective set of topics and user interactions has to be built up

(a)

(b)

Figure 4: Example of dynamic HTML content in WASP:
(a) original tweet as it appeared while scrolling down the
Twitter timeline (b) Twitter card as it was requested for dis-
play, archived, and indexed.

front. Besides monitoring user queries against WASP’s search func-
tionality for users who agree to share parts of their browsing and
search activity, one will periodically trigger active users of WASP
with a re-finding game similar to PageHunt [11]. The user will
be shown the screenshot of a page they have seen, or only parts
thereof (e.g., only the color scheme of the layout), or will be asked
to re-find a piece of information they have seen a given period of
time ago (e.g., three days ago, two weeks ago, etc.). Their task will
be to come up with a sequence of queries (and clicks) such that
in the end the prescribed web page appears in the top-k ranks of
WASP’s retrieval component. In such cases, the desired item will
be known for evaluation purposes and the re-finding task can have
several difficulty levels (showing full information vs. only color
scheme, target information at top of a page or only requested upon
interaction, etc.). To measure retrieval success, the length of real
and the comparably artificial re-finding query and click sequences
can be measured as well as the specificity of the queries contrasted
by the size of the personal collection. But of course, the overall
interesting measure will be for how many real re-finding tasks the
users are able to pull out the desired result from their personal
archive—their needle stack.

4 DISCUSSION AND LESSONS LEARNED
Our primary goal with WASP was to develop a vertical prototype
of a web archiving and retrieval framework, which archives every
web page and every request made by a web page, and then indexes
everything archived. Based on first practical experiences with using
WASP for our own respective web traffic, however, there are still

WASP: Web Archiving and Search Personalized DESIRES 2018, August 2018, Bertinoro, Italy

many things to be sorted out before we can claim a flawless retrieval
experience. Unsurprisingly, the devil is in the details, but somewhat
surprisingly, we will be forced to revisit the basic notions of what
is a web page, what needs to be archived, and what needs to be
indexed. This section discusses lessons learned, outlining a number
of exciting future directions for research and development on web
archiving and retrieval in general, and for WASP in particular.

4.1 Which pages to archive?
AlthoughWASP currently follows “archive first, ask questions later,”
users of a personal archiving system likely do not wish for all their
traffic to be archived, even if stored within their personal data
space. Without specific measures, sensitive data will end up in the
archive, e.g., banking pages, health-related browsing, as well as
browsing sessions with privacy-mode enabled (where users expect
all traces of their activities to be purged after the browser is closed);
users may not expect for such data to emerge in search results,
weeks, months, or even years later. Furthermore, just as some users
regularly clean or clear their browsing history, they will wish to
clean or clear their archive. Similarly, it will be necessary to protect
the personal archive from unauthorized access, analyze known
and new attack vectors on the archiving setup, and formalize the
security implications that stem from the use of such a system.

Based on these deliberations, it is clear that the user must be
given fine-grained control over what sites or pages are archived, al-
lowing for personal adjustments and policies. The recorded archive
needs to be browseable, so that individual entries can be selected for
removal. For more convenient browsing (both for cleaning and gen-
eral re-finding), we suggest a screenshot-based interface as shown
in Figure 5. At present, users can already influence which pages
should not be archived using proxy-switching plugins available
for all modern browsers that seamlessly integrate with WASP’s
proxy-based architecture (e.g., cf. Figure 6). Of course, specifying
wildcard expressions hardly qualifies as a user-friendly interface for
non-computer scientists, so that a better interface will be required
in practice (e.g., using classification techniques similar to [7]).

Under some circumstances personal archiving systems could
act on their own behalf to allow for an improved experience of
the archived page, by archiving content the users did not request
themselves. This possibility leads to several new research ques-
tions. For example, should all videos on a visited page be requested
and archived, so that the user can watch them later on from their
archive? Or in general, should the system predict and simulate
interactions that the user may later want to do on the archived
page to archive the corresponding resources while they are still
available? Moreover, should the system perform such a simulation
multiple times in order to detect the randomness in the web page’s
requests and consider this information in the reproduction?

4.2 Which pages to index?
While a comprehensive archive is necessary for a high-quality
reproduction of web pages, not everything that the browser receives
is actually of interest to the user. From our ownweb browsing habits,
we can informally tell that many pages opened are not relevant for
future retrieval, because they are dismissed upon first glance (e.g.,
pop-ups) or not even looked-at at all.

Figure 5: Screenshot mode mockup; the screenshot in the
2nd row and 2nd column is highlighted by mouse-over.

Figure 6: Firefox toolbar indicating archiving is activated.
The context-menu of this icon allows to turn of the proxy-
usage. thereby implementing a “pause-archiving” button.

Besides accidental page visits, another example of irrelevant
pages may be found in more complex web applications. Take web-
based RSS feed readers the likes of Feedly as an example: there is
no need to index every page and every state of every page of the
feed reader. Rather, the feed items to which the user pays attention
are of interest for indexing, since only they are the ones the user
may eventually remember and wish to revisit. In this regard, two
cases can be distinguished, namely the case where feed items are
displayed only partially, so that the user has to click on a link
pointing to an external web page to consume a piece of content, and
the case where feed items are displayed in full on the feed reader’s
page. The former case is straightforward, since a click indicates user
attention, so that the feed reader’s page can be entirely ignored. In
the latter case, however, every feed item the user reads should be
indexed, whereas the ones the user skips should not so as not to
pollute the user’s personal search results.

More generally, all kinds of portal pages and doorway pages,
ranging from newspaper front pages via social network pages to
search results pages are candidates for omission. Analyzing the
user’s browsing behavior gives evidence which page they suffi-
ciently scrutinized for it to be indexed. If a user spends time reading
the headlines and excerpts of a front page, this would suggest to
index that page, but may be difficult to discern in practice. Other-
wise, a user’s behavior may be used as implicit relevance feedback
to be incorporated into tailored retrieval models.

DESIRES 2018, August 2018, Bertinoro, Italy Johannes Kiesel, Arjen P. de Vries, Matthias Hagen, Benno Stein, and Martin Potthast

4.3 What is the document unit for indexing?
In its present form, WASP archives everything that runs under a
given URL—including GET parameters, but excluding fragment
identifiers—as one unit. Just like in regular search, not every piece
of content is relevant for indexing. Main content extraction is an
obvious solution to this problem, but the current state-of-the-art
frequently fails on pages where many small pieces of content can
be found. Furthermore, many websites today spread one coherent
piece of content over many sub-pages (so-called pagination). For
instance, news publishers often employ pagination, forcing readers
to switch pages (possibly to serve extra display ads or improve
engagement metrics that determine the value of the display ads
shown on the publisher’s site). For archive retrieval purposes, how-
ever, pagination can be detrimental, penalizing the relevance of a
paginated news article to a query, since only parts of the article are
scored at a time.

On the other hand, physical pages are also not necessarily atomic:
many web pages built with modern web design tools are single-
page applications, where different pieces of content are shown upon
user request under the same URL. For instance, a blog platform
may show each blog post requested by a user simply by loading
it in the background using a JavaScript-based AJAX request, and
replacing the currently shown post with a new one. In this case,
the perfect web archive search would identify the single posts
and index them separately, injecting code upon reproduction that
replaces the displayed post with the desired one. Currently, we
are technologically far from such a feature. In a different case,
like the Twitter timeline, a web page consists of several (possibly
independent) content segments. Again, each such segment should
be indexed separately for an appropriate relevance computation. To
meet this challenge, web pages should be segmented into coherent
units of content that belong together on a page, and each segment
identified should be treated as a document unit. However, just like
with most of the aforementioned problems, page segmentation, too,
is still in its infancy.

For an optimization, the click behavior and dwell times on certain
pages may be the best features to determine what parts should be
indexed, whether pages should be merged into one, or one divided
into many. Furthermore, such information on user behavior would
be very useful for ranking results in the personal search. Currently,
however, such behavioral data is probably not even available to
commercial search engines.

5 RELATEDWORK
WASP is directly related to prior work on desktop search, including
the already mentioned Stuff I’ve Seen [6]. However, apart from not
indexing all documents that may exist on a desktop, the intended
usage differs slightly as well: WASP aims to track everything a user
has seen, as they saw it, and in that sense provides some notion
of versioning. While not yet implemented, a future version should
explore the functionality once implemented in diff-IE, i.e., to rank
pages that evolved differently from static ones, and this way provide
immediate insight in changes of the web over time [13].

WASP is also related to search tools for web archives, such as
ArchiveSpark [8]. However, due to handling a single user’s view of
the online world only, the system aspects to be addressed include

less emphasis on scalability. Developments in the UI/UX of web
archive search are, however, likely transferable, in both directions—
as argued in Section 4.2, what we learn from observing interactions
with personal web archives may very well carry over to the large
web archives of interest to Digital Humanities researchers [3].

We find that a new blend of techniques that have been proposed
previously will be necessary to design the right user experience,
and we realize that we have only scratched the surface so far. For
example, searching the social web is different from searching the
web, as shown convincingly in [2]. We also highlight the immediate
relevance of research into focused retrieval carried out in context of
INEX. The question of how to determine a retrieval unit has clearly
not been solved, yet, and the usage scenario of personalized web
archive search that we envision has increased the urgency to revisit
that line of research.

6 SUMMARY
This paper introduces WASP, a prototypical implementation of a
personal web archive and search system, it provides a first qualita-
tive evaluation of such a system, and outlines future steps in this
regard, as well as discusses the challenges that such systems face.
WASP combines state-of-the-art archiving and retrieval technology
to which it adds an intuitive and tailored search interface. Gener-
ally, the use case for personal web archive search is more the one
of a re-finding engine. We identify current limitations in archiv-
ing technology for this use case and discuss how the evaluation
of a search engine has to be adapted for search in personal web
archives (e.g., to several versions of a single web page when it is
revisited). In the same context, we discuss what content should be
archived and what content should be indexed, highlighting privacy
issues (e.g., archiving in incognito mode) and advantages (re-finding
information using only local data).

REFERENCES
[1] E. Adar, J. Teevan, and S.T. Dumais. 2008. Large scale analysis of web revisitation

patterns. In CHI ’08. 1197–1206.
[2] O. Alonso, V. Kandylas, S.-E. Tremblay, J.M. Hofman, and S. Sen. 2017. What’s

Happening and What Happened: Searching the Social Web. InWebSci ’17. 191–
200.

[3] Anat Ben-David and Hugo Huurdeman. 2014. Web Archive Search as Research:
Methodological and Theoretical Implications. Alexandria 25, 1-2 (2014), 93–111.

[4] J. Shane Culpepper, Fernando Diaz, and Mark D. Smucker. 2018. Report from
the Third Strategic Workshop on Information Retrieval in Lorne (SWIRL 2018).
Technical Report.

[5] E. Cutrell, D. Robbins, S. Dumais, and R. Sarin. 2006. Fast, Flexible Filtering with
Phlat. In CHI ’06. 261–270.

[6] S. Dumais, E. Cutrell, J.J. Cadiz, G. Jancke, R. Sarin, and D.C. Robbins. 2003. Stuff
I’Ve Seen: A System for Personal Information Retrieval and Re-use. In SIGIR ’03.
72–79.

[7] C. Eickhoff, K. Collins-Thompson, P.N. Bennett, and S.T. Dumais. 2013. Designing
Human-Readable User Profiles for Search Evaluation. In ECIR 2013. 701–705.

[8] H. Holzmann, V. Goel, and A. Anand. 2016. ArchiveSpark: Efficient Web Archive
Access, Extraction and Derivation. In JCDL ’16. 83–92.

[9] Milad Alshomary Benno Stein Matthias Hagen Martin Potthast Johannes Kiesel,
Florian Kneist. 2018. Reproducible Web Corpora: Interactive Archiving with
Automatic Quality Assessment. Journal of Data and Information Quality (2018).

[10] W. Jones. 2010. Keeping found things found: The study and practice of personal
information management. Morgan Kaufmann.

[11] H. Ma, R. Chandrasekar, C. Quirk, and A. Gupta. 2009. Improving search engines
using human computation games. In CIKM ’09. 275–284.

[12] Th. Samar, M.C. Traub, J. van Ossenbruggen, L. Hardman, and A.P. de Vries. 2018.
Quantifying retrieval bias in Web archive search. International Journal on Digital
Libraries 19, 1 (01 Mar 2018), 57–75.

[13] J. Teevan, S. Dumais, and D. Liebling. 2010. A Longitudinal Study of How
Highlighting Web Content Change Affects People’s Web Interactions. In CHI ’10.

	Abstract
	1 Introduction
	2 The WASP Prototype
	2.1 Archiving Proxy and Indexing
	2.2 Search Interface
	2.3 Reproduction Server

	3 Qualitative Evaluation
	3.1 Archiving Quality: Error Analysis
	3.2 Retrieval Quality Evaluation: An Outline

	4 Discussion and Lessons Learned
	4.1 Which pages to archive?
	4.2 Which pages to index?
	4.3 What is the document unit for indexing?

	5 Related Work
	6 Summary
	References

