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Abstract. In this paper we present RaScAL, an active learning ap-
proach to predicting real-valued scores for items given access to an oracle
and knowledge of the overall item-ranking. In an experiment on six dif-
ferent datasets, we find that RaScAL consistently outperforms the state-
of-the-art. The RaScAL algorithm represents one step within a proposed
overall system of preference elicitations of scores via pairwise compar-
isons.

1 Introduction

Supervised machine learning for regression problems, in which models are trained
to learn the relationship between descriptive features and some continuous-
valued response, is an important sub-field of machine learning. Data rating is
the process of asking human subjects (raters) to provide real-valued labels (rat-
ings or scores) for input data (artifacts); these labels are essential to training
predictive models. Machine learning models for regression problems are typically
trained on datasets using labels elicited via data rating. This scenario is par-
ticularly common in the domain of recommender systems, where the artifacts
being rated are, for example, items from an online store, or films; and the labels
provided are scores on a continuous scale, often [1 . . 10] or [1 . . 5]. Data rating
is not confined to the domain of recommender systems, however, and has also
been used to train models to detect valence and activation of emotions in speech
[10], and to make medical diagnoses [5], among other applications.

When compiling a labelled dataset for training a machine learning model for
a regression problem, researchers typically face two major difficulties: acquiring
sufficient labels for the task at hand (data scarcity), and ensuring the quality of
labels supplied (avoidance of noisy data). The former is particularly problematic
in the area of recommender systems, where models are usually employed to
evaluate very large product sets, which in turn require a large number of labels
to train an accurate model [17]. The latter is problematic in any scenario in
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which the reliability of raters is not guaranteed, as incorrect labels have the
capacity to reduce the accuracy of any predictive model they are used to train.

Data rating is traditionally optimised by addressing the problem from either
of two angles. Active learning for data rating overcomes issues of data scarcity
by identifying items whose labels are likely to contribute most to improving
the performance of the model. By issuing queries only for these most important
items, it can make the most of a labelling budget, and train accurate models using
fewer labels. Elahi et al. [7] have compiled a comprehensive survey of techniques
falling into this category. The problem of noisy data is typically addressed using
rater reliability estimation [19]. Rater reliability estimation, as its name suggests,
seeks to identify reliable raters whose scores are more likely to be accurate. By
directing queries only to reliable raters, it minimises the error in its labels which
in turn improves the overall accuracy of any model trained on this data.

While the techniques described above improve data rating by optimising ei-
ther who is asked for labels, or the choice of items whose labels are requested,
we aim to deliver further performance gains by improving the way we ask the
question. This study forms part of a wider investigation into the viability of a
data rating system which, instead of asking labellers to provide scores for indi-
vidual items in isolation, requests pair-wise comparisons between items. These
comparisons can then be used to build an overall ranking among items. By em-
ploying active learning techniques, we can learn to map these rankings to item
scores. Figure 1 depicts a high-level overview of the process. This paper focuses
on Step 3 in the diagram above; taking an overall ranking among items, and
using active learning techniques to efficiently query for these items’ scores.

In a previous study [13], we showed that items which are ranked compara-
tively show a higher inter-rater reliability than items which are rated individu-
ally. In order to complete the rating process, however, we need to infer concrete
scores from the overall item-ranking, which remains a non-trivial problem. In
this paper we present Rank Scoring via Active Learning (RaScAL), a system
which combines isotonic regression modelling with active learning techniques to
infer a set of scores given access to an oracle and an overall item-ranking.

The rest of this paper is structured as follows. Section 2 discusses related work
in the field of active learning for data rating. Section 3 describes the RaScAL
algorithm in detail. Section 4 outlines the datasets and describes the methods
and evaluation metrics used in our experiment. Section 5 reports the results
of the experiment, while Section 6 discusses conclusions and considers possible
directions of future research which will build on these findings.

2 Related Work

Active learning techniques can be divided broadly into two sub-fields based on
the type of labels sought: active learning for classification, in which labels take
the form of a class identifier, and active learning for regression, which deals with
questions having real-valued (numeric) labels. There has been a wide range of
studies dealing with the former, (see Settles [15] for a comprehensive treatment
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Fig. 1: Research Context. We begin by issuing queries for pairwise comparisons,
and use this information to build up an overall item-ranking, which is then
converted into a set of scores. This paper deals with Step 3 of the workflow;
using active learning to predict scores given an overall ranking among items.

of the recent state-of-the art), but research on the latter is less common. Active
learning for regression has its roots in the statistical field of Optimal Experimen-
tal Design [8], however, in recent years there has been increasing interest from
researchers in the area of machine learning [12,18,4].

The idea that subjective judgements are prone to systematic rater biases
first gained widespread acceptance through the work of psychologists Tversky
and Kahnemann [20]. This idea has had consequences for any field of research in
which judgement-based data is collected; and has been applied to sound quality
evaluation [22], crowdsourcing [6], and collaborative filtering [1] among others.

The study described in this paper explores the possibility of using active
learning techniques to efficiently infer a set of scores given an overall ranking
among items and access to an oracle which can provide a score for any item on
request. To the best of our knowledge, this particular problem has not previ-
ously been addressed in any great detail in the literature. However, the broader
scenario of preference elicitation via rankings, rather than scores, is not new.
Raykar et al. [14], were motivated by (among other reasons) the realisation that
“in many scenarios, it is more natural to obtain training data for pair-wise pref-
erence relations rather than the actual labels for individual examples”, to discard
raw scores in datasets originally used for regression, and instead train a model
to learn the ranking function over items.

The transformation of rankings to ratings has been successfully employed in
an industry setting. Bockhorst et al. [3], reporting on their experience implement-
ing a model to predict customer satisfaction scores, realised that self-reported
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scores showed high variability. They recognised that a more accurate model could
be trained by collecting rankings from customers, rather than scores, and then
transforming those rankings to real-valued scores using an isotonic regression.
The work described in this paper extends the work of Bockhorst et al. by adding
active learning to the rank transformation process, which, we hypothesize, can
significantly increase the learning rate.

3 RaScAL

The RaScAL algorithm is an active learning approach to predicting real-valued
scores for items given an overall item-ranking. Previously, we have shown that
data collected via pairwise comparisons is more reliable than that collected
through queries for absolute item scores. Pairwise comparisons allow us to build
an overall ranking among items but do not allow us to infer scores. RaScAL
enables us to bridge this gap. By issuing a small number of queries for abso-
lute scores for selected items, we can make predictions for the remaining items,
assigning scores in such a way that the rank ordering is preserved.

For example, consider three films, F1, F2 and F3, with corresponding scores
Sc1, Sc2 and Sc3 where the rank order of the scores is known i.e. Sc1 ≤ Sc2 ≤
Sc3. After issuing queries for the scores of F1 and F3, imagine we get Sc1 =
3 and Sc3 = 5 We then know that the score for F2 will be between 3 and
5, inclusive. Technically, we achieve this by using the queried points to fit an
isotonic regression [2], which we then use to predict the scores of the remaining
items.

RaScAL differs from previous research in how it selects items to be queried.
When faced with the problem of transforming rankings to a set of scores, Bock-
horst et al. fit an isotonic regression model using training examples (scores)
sampled uniformly from the set of labels [3]. For example, given 101 items and a
labelling budget of 11 queries, the uniform sampling approach would query the
first item, and every tenth item thereafter. This approach works well when the
distances between scores are relatively uniform; however, if these scores are not
uniformly distributed, this method is prone to underfit the data. RaScAL im-
proves the robustness of this approach by selecting queries so as to minimise the
expected error of the predicted scores. This is best illustrated with an example.

Table 2 (a) describes an artificial dataset which we will use to illustrate the
RaScAL query selection strategy. This data is visualised in Figure 2 (b). We
assume that the ranks of each item in the dataset are known before the labelling
process begins, and the aim of the exercise is to accurately predict the scores of
each item (which would be unknown) using as few queries as possible. We refer
to each item in the dataset as Ix where x is the rank position of the item in
question.

The first 3 queries in the RaScAL algorithm are always the same. We begin
by establishing the upper and lower limits of the scores by querying for the
lowest and highest ranked items, and then query for the item in middle of the
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Rank Score Rank Score

1 1.20 10 4.90
2 1.70 11 5.50
3 1.80 12 7.10
4 1.80 13 7.80
5 2.10 14 8.50
6 2.20 15 9.10
7 2.40 16 9.70
8 2.60 17 10.00

(a)
(b)

(c) (d)

Fig. 2: RaScAL illustrative example. (a) Example data values. (b) Example data
visualised as scatter plot. (c) Calculating the next query for the RaScAL algo-
rithm. The grey boxes represent the maximum possible error. (d) Step-by-step
illustration of RaScAL query selection strategy

ranking4. In this case we issue a query for {I1, I9, I17}. This query splits the
data into two sequences of items. The first sequence, S1, consists of the items
I2 . . . I8. Assuming that the oracle returns perfect scores, the potential scores
for items in this sequence are bounded by the values of I1 and I9, meaning all
scores fall within the range {1.2 . . 2.8}. The second sequence, S2, consists of the
items I9 . . . I17. The potential scores for items in this sequence are bounded by
the values of I9 and I17, meaning all scores for this sequence fall within the
range of {2.8 . . 10}. By performing a simple linear interpolation between the
labelled points, we fit an isotonic regression model which can then be used to
predict the scores of the remaining items. The result of the first iteration of the
RASCAL algorithm for this example are shown in Figure 2 (c). The red dots
represent queried items; while the red line joining these dots depicts the fitted
isotonic regression function which allows us to make predictions for each of the

4 When there is an even number of items in the set, it is not possible to split it into
two equally sized subsets, and the ‘middle’ rank must be rounded either up or down.
Given that we have no prior knowledge of the distribution of scores there is no
theoretical reason for preferring one over the other. In this study, however, we chose
to round down when confronted with this problem
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remaining items. The grey boxes show the bounds within which all remaining
labels must fall. These bounds can be used to select the next items for which to
query the oracle as they also bound the error of scores inferred using the isotonic
regression.

If we predicted the value of 1.2 for each of I2 to I8 and each of the items I2
to I8 had a score of 2.8, we could expect a maximum error of (2.8−1.2) for each
of the unrated items. This expected error is approximated by the area of the
grey box in Figure 2 (c). However, the isotonic regression diagonally bisects this
box, reducing the maximum error by half. In the worst case scenario, the total
error for S1 (assuming all items have a score of 1.2, or all items have a score of
2.8) is 1

2 × (2.8 − 1.2) × (9 − 1 − 1) = 5.2. In the worst case scenario, the total
error for S2 (assuming all items have a score of 2.8, or all items have a score of
10) is 1

2 × (10 − 2.8) × (17 − 9 − 1) = 25.2. As S2 has a greater potential error
than S1 we next query the oracle for the score for the item in the middle of S2.

The calculation of maximum expected error can be formalised as:

Ê =
(Rankj −Ranki − 1) ∗ (Yi − Yj)

2
(1)

where Ê is the maximum expected error for an unlabelled segment, Ranki and
Rankj are the rank positions of the items bounding the segment, and Yi and Yj

are the labelled scores for these items. The numerator represents the bounding
box between labelled items i and j, corresponding to the shaded grey areas in
Figure 2 (c). The isotonic regression bisects this rectangle, effectively halving the
maximum expected error for the segment.

After querying the oracle for the score for the middle item in S2 and bisecting
this segment, we are left with three segments. We repeat the process, finding the
segment with the maximum possible error and querying the item which bisects
that segment, until no labelling budget remains. Algorithm 1 formalises the
description of the RaScAL process. Figure 2 (d) shows the sequence of queries
which would be made on the example data described above with a labelling
budget of 8 queries. Figure 3 compares the isotonic functions fitted by uniform
sampling vs that fitted by RaScAL, with a labelling budget of 4 queries. It is
evident from these graphs that the RaScAL approach fits the data more closely.

4 Experimental Framework

In order to investigate the performance of RaScAL in accurately mapping rank-
ings to scores we performed an experiment using both synthetically generated
and real-world datasets. In Section 4.1 we describe the datasets used for this
experiment, while Section 4.2 discusses the experimental evaluation process.

4.1 Datasets

The MovieLens 100k dataset [11] consists of 100,000 scores (on a scale of [1 . . 5])
for over 1,500 films. We aggregated all scores on a per-item basis, using the
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Fig. 3: Comparison of uniform sampling and RaScAL approaches to query selec-
tion.

Dataset # Items Scale Mean IQR Min Max

MovieLens 1,682 [1 . . 5] 3.076 0.782 1 5
Jester 100 [−10 . . 10] 0.824 2.239 -3.834 3.665
Boredom Videos 125 [1 . . 10] 6.484 0.694 4.903 7.750
Book Crossing 675 [1 . . 10] 7.401 3.000 1 10
Bi-Modal 100 [0 . . 100] 49.670 48.821 0.077 96.850
Multi-Modal 100 [0 . . 100] 42.149 68.974 1.927 99.164

Table 1: High-level distributional features of the datasets used in this evaluation

mean over all raters as the item’s final score5. Individual scores were provided
in integer format; however, after averaging scores many items ended up with a
real-valued label.

The Jester dataset, originally provided by Ken Goldberg [9], is a dataset
of scores for jokes provided by users on a [−10, 10] scale. Unlike many collabo-
rative filtering datasets, in which users provide scores on an integer scale, the
jester dataset collected scores using a slider, allowing users to provide real-valued
scores. Overall item scores were calculated as the mean score across all users.

The Boredom Videos corpus was gathered by Soleymani et al. [16] using the
crowdsourcing platform Amazon Mechanical Turk6. Respondents were asked to
rate videos on a scale of [1 . . 10] based on how boring they found them to be. As
with the Jester dataset, overall items scores were calculated as the mean score
across all users.

The Book Crossing dataset was collected by Ziegler et al. [21] from the Book
Crossing online community. It contains a mixture of implicit and explicit scores.
An implicit score indicates that a book has been read, while explicit scores are
provided as a value on an integer scale of [1 . . 10]. For this experiment, we only

5 A superior algorithm which takes a probabilistic approach to aggregating scores has
been proposed by Raykar et al. [14]. Although this approach has been shown to more
accurately approximate the true rating; this aspect of rating elicitation is outside the
scope of the current work as it would add unnecessary complexity to the experiment.

6 https://www.mturk.com

https://www.mturk.com
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Algorithm 1 RaScAL algorithm

struct Segment:
property first
property last
property max error

Segment(first, last, scores)
max error ← max error(first, last, scores[first], scores[last]) . see

Equation 1

Input:
Items . Rank ordered list of items
N . The number of items in Items

Output:
Fitted Isotonic Regression . A model which can predict scores for all items

Require:
isotonic, a function which fits an isotonic regression given a set of items and
corresponding scores
sort, a function which sorts the segment vector by maximum expected error
query, a function which requests a score for a given item from an oracle

1: Scores← [ ]
2: Scores[0]← query(Items[0])
3: Scores[N − 1]← query(Items[N − 1])
4: new seg ← segment(0, N − 1, Scores)
5: segments← [new seg]
6: repeat
7: segments.sort() . Sort segments on s.max error descending
8: s← segments.pop()
9: mid point← s.first + (s.last− s.first)/2

10: score← query(Items[mid point])
11: Scores[mid point]← score
12: seg low ← segment(s.first, mid point, Scores)
13: seg high← segment(mid point, s.last, Scores)
14: segments.append([seg low, seg high])
15: until Label budget exhausted OR all items ranked
16: return isotonic(Items, Scores)



From Rankings to Ratings: Rank Scoring via Active Learning 9

(a) MovieLens (b) Jester

(c) Boredom Videos (d) Book Crossing

Fig. 4: Visual representation of the label values from real-world datasets

used explicit scores. We selected only the first 675 books, giving us 684 explicit
scores in total. This dataset was unique in our experiment in that most items
were rated by only one user. As scores were provided on an integer scale, this
resulted in a large number of ties among items, as can be seen in Figure 4.

In addition to the real-world datasets described above, we created two arti-
ficial datasets using random sampling from known distributions. The Bi-Modal
dataset consists of 100 scores in total. 50 scores were drawn from a normal dis-
tribution with mean 25 and standard deviation 10, with the remaining scores
drawn from a normal distribution with mean 75 and standard deviation 10. The
Multi-Modal dataset also consists of 100 scores, though these scores are drawn
from 3 uniform distributions; 50 scores from a uniform distribution with range
[1 . . . 20], 15 scores from a uniform distribution with range [21 . . . 70] and the
remaining 35 scores drawn from a uniform distribution with range [71 . . . 100].

In their original formats, the target variable of each dataset is a numeric
score. For each dataset we convert these scores to ranks. These ranks are then
used as the input data for the RaScAL algorithm. Where ties were encountered,
distinct ranks were assigned based on the order in which they occurred in the
dataset. This means that an item with a rank value of 2 and an item with a rank
value of 3 may have the same actual score.

Table 1 summarises the high-level distributional features of each of the datasets
used, after pre-processing, where described above, was carried out. The distribu-
tion of scores for the Bi-Modal and Mult-iModal datasets are visualised in Figure
5. The distribution of labels for each of the real-world datasets are visualised in
Figure 4.
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Fig. 5: Showing the distribution of scores for the Bi-Modal and Multi-Modal
artificial datasets

4.2 Evaluation Metrics

We compare the RaScAL algorithm, described in Section 3, to the uniform-
sampling approach employed by Bockhorst et al. [3]7 . We begin the evaluation
by allowing three queries (the minimum required for the RaScAL algorithm). The
evaluation then proceeds in single-instance batches, with each batch affording
one additional query to the query budget of each algorithm. After each batch is
complete, the returned scores are used to fit an isotonic regression which in turn
is used to predict the scores of the remaining unlabelled items. We calculate
the Root Mean Squared Error (RMSE) after each stage is complete and use
the results to construct a learning curve plotting the RMSE of each algorithm’s
predictions against the number of labels requested. We use the trapezoidal rule8

to approximate the Area Under the Learning Curve (AULC) which serves as
an overall indicator of the learning rate, or accuracy of each approach. A lower
AULC indicates a faster learning rate, and hence overall algorithm efficiency.

5 Results

Table 2 shows the AULC for RaScAL and uniform sampling on each of the
datasets under examination. The RaScAL algorithm consistently outperformed

7 Source code available at https://github.com/joneill87/RaScAL
8 pracma https://cran.r-project.org/web/packages/pracma/pracma.pdf

https://github.com/joneill87/RaScAL
https://cran.r-project.org/web/packages/pracma/pracma.pdf
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the uniform sampling baseline on all datasets. The improvement is particularly
pronounced on the Book Crossing and Movie Lens datasets, where the scarcity
of raters and the integer-valued scores led to a significant number of ties.

Dataset RaScAL Uniform Sampling

Movie Lens 5.00 13.63
Jester 4.87 7.96

Boredom Videos 2.10 3.88
Book Crossing 10.05 55.40

Bi-Modal 69.15 98.23
Multi-Modal 56.76 91.58

Table 2: AULC for the RaScAL and Uniform Sampling algorithms on all datasets

Figure 6 depicts the learning curves for the RaScAL and baseline algorithms
on each of the datasets under investigation. Figure 4 (d) shows that the Book
Crossing dataset consists of densely packed scores, where there are far fewer
items than there are distinct scores. It is clear from Figure 6 (d) that the RaScAL
algorithm quickly identifies the key points in the ranking where the item scores
increase, and reduces the error to 0 using only 10% of the labels (64 labels in
total).

The RaScAL algorithm also outperforms the uniform sampling baseline in
cases where there are few ties, but the distribution of scores is not uniform.
Figure 6 (f) shows the learning curve decreasing rapidly and consistently for the
RaScAL algorithm on the Multi-Modal dataset. This is due to its ability to issue
more queries in areas of greater uncertainty.

The less uniform the distribution, the greater the improvement in learning
rate. In the case of a perfectly uniform distribution of scores, the behaviour of
RaScAL will mimic exactly the behaviour of the uniform sampling algorithm, so
this approach should be preferred to uniform sampling in all cases.

6 Conclusions and Future Work

In this paper we presented RaScAL, an active learning approach to transforming
rankings into scores. By simulating a data rating exercise we demonstrated that
RaScAL performs at least well as, and often better than, a non active-learning
baseline.

The task of recovering latent scores given a total rank ordering is one step
within an overall system of preference elicitation of scores via pairwise compar-
isons. In the current study we have assumed knowledge of the overall ranking
among items. In the final system, this ranking will need to be constructed by
efficiently selecting of pairs of items for comparison and using rank aggregation
to combine multiple 2-item rankings into an overall ranking. We anticipate that
this will be achieved using a variant on the Bradley-Terry model.
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(a) MovieLens (b) Jester

(c) Boredom Videos (d) Book Crossing

(e) Bi-Modal (f) Multi-Modal

Fig. 6: Learning curve for each dataset used in this experiment.

Once this system has undergone end-to-end validation we aim to verify our
findings using actual labellers labelling real data in a crowd-sourced environment.
We hypothesize that if we elicit labels using pairwise comparisons as opposed to
direct scores, the increased reliability of the resulting data will allow us to train
more effective models using fewer labels.
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