
A Comparative Study on Streaming Frameworks for Big Data
Wissem Inoubli 1, Sabeur Aridhi2, Haithem Mezni3, Mondher Maddouri4,

Engelbert Mephu Nguifo5

1University of Tunis El Manar, Faculty of Sciences of Tunis, LIPAH, Tunis, Tunisia
2University of Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

3University of Jendouba, SMART Lab, Jendouba, Tunisia
4College Of Buisness, University of Jeddah, P.O.Box 80327, Jeddah 21589 KSA

5University of Clermont Auvergne, LIMOS, Clermont-Ferrand, France

Abstract. Recently, increasingly large amounts of data are generated from a va-
riety of sources. Existing data processing technologies are not suitable to cope
with the huge amounts of generated data. Yet, many research works focus on
streaming in Big Data, a task referring to the processing of massive volumes
of structured/unstructured streaming data. Recently proposed streaming frame-
works for Big Data applications help to store, analyze and process the contin-
uously captured data. In this paper, we discuss the challenges of Big Data and
we survey existing streaming frameworks for Big Data. We also present an ex-
perimental evaluation and a comparative study of the most popular streaming
platforms.

1. Introduction
In recent decades, increasingly large amounts of data are generated from a variety of
sources. The size of generated data per day on the Internet has already exceeded two
exabytes [6]. Stream processing problems lead to several research questions such as (1)
how to design scalable environments, (2) how to provide fault tolerance and (3) how to
design efficient solutions. In this context, stream processing frameworks are mainly de-
signed to process the huge amount of data streams and to make on-the-fly decisions. With
the rise of big data, various organizations have started to employ stream frameworks to
solve major emerging big data problems related to smart ecosystems, healthcare services,
social media, etc. For example, in smart cities, various sensors such as GPS, weather
conditions devices, public transportation smart cards and traffic cameras are installed on
diverse regions (e.g, water lines, utility poles, buses, trains, traffic lights) [10]. From these
sensors, very large quantities of data are collected. To understand such volume of data,
it is important to reveal hidden and valuable information from the big stream/storage of
data. Social media is another representative data source for big data that requires real-time
processing and results [13]. In fact, a huge volume of data is instantly and continuously
generated from a wide range of Internet applications and Web sites. Examples include
online mobile photo and video sharing services (e.g, Instagram, Youtube, Flickr), social
networks (e.g. Facebook, Twitter), business-oriented networks (e.g. LinkedIn), etc. The
adoption of in-stream frameworks that offer iterative processing and learning capabilities
allows to effectively perform specific tasks such as social network analysis, links predic-
tion, etc. Given the importance of the above discussed real-world scenarios, finding the

LADaS 2018 - Latin America Data Science Workshop

17



relevant framework for the big/high stream-oriented applications becomes a challenging
problem.

Several systems have been proposed in the literature. In this paper, we present a
comparative study of popular stream processing frameworks according to their key fea-
tures. The studied frameworks have been chosen based on their number of contributors.
Our contributions are summarized as follows:

• We present four popular streaming frameworks for big data, their architecture and
their internal behavior.

• We compare the presented frameworks according to their key features.
• We evaluate the performance of the presented frameworks in terms of resources

consumption.

This paper is organized as follows. In Section 2, we present some well-known
stream frameworks for big data. Section 3 is devoted to the comparison of the discussed
frameworks. In Section 4, an experimental evaluation of the presented stream processing
frameworks is provided.

2. Stream processing frameworks for big data
Several streaming frameworks for big data have been proposed to allow real-time large-
scale stream processing. This section sheds the light on the most popular big data stream
processing frameworks and provides a comparison study of them according to their main
features.

2.1. Apache Spark
Apache Spark [11] is a powerful processing framework that provides an ease of use tool
for efficient analytics of heterogeneous data. It was originally developed at UC Berke-
ley in 2009 [14] . Spark has several advantages compared to other big data frameworks
like Hadoop MapReduce [4] and Storm [12]. A key concept of Spark is Resilient Dis-
tributed Datasets (RDDs). An RDD is basically an immutable collection of objects spread
across a Spark cluster. In Spark, there are two types of operations on RDDs: (1) trans-
formations and (2) actions. Transformations consist in the creation of new RDDs from
existing ones using functions like map, filter, union and join. Actions consist of final re-
sult of RDD computations. Spark Streaming is a Spark library that enables scalable and
high-throughput stream processing of live data streams.

2.2. Apache Storm
Storm [12] is an open source framework for processing large structured and unstructured
data in real time. Storm is a fault tolerant framework that is suitable for real time data
analysis, machine learning, sequential and iterative computation. A Storm program is
represented by a directed acyclic graphs (DAG). The edges of the program DAG repre-
sent data transfer. The nodes of the DAG are divided into two types: spouts and bolts.
The spouts (or entry points) of a Storm program represent the data sources. The bolts rep-
resent the functions to be performed on the data. Note that Storm distributes bolts across
multiple nodes to process the data in parallel. Storm is based on two daemons called Nim-
bus (in master node) and a supervisor for each slave node. Nimbus supervises the slave
nodes and assigns tasks to them. If it detects a node failure in the cluster, it reassigns

LADaS 2018 - Latin America Data Science Workshop

18



the task to another node. Each supervisor controls the execution of its tasks (affected by
the nimbus). It can stop or start the spots following the instructions of Nimbus. Each
topology submitted to Storm cluster is divided into several tasks.

2.3. Apache Flink

Flink [5] is an open source framework for processing data in both real time mode and
batch mode. It provides several benefits such as fault-tolerant and large scale compu-
tation. The programming model of Flink is similar to MapReduce [4] . By contrast to
MapReduce, Flink offers additional high level functions such as join, filter and aggrega-
tion. Flink allows iterative processing and real time computation on stream data collected
by different tools such as Flume [3] and Kafka [7]. It offers several APIs on a more ab-
stract level allowing the user to launch distributed computation in a transparent and easy
way.

2.4. Apache Samza

Apache Samza [9] is an open source distributed processing framework created by
Linkedin to solve various kinds of stream processing requirements such as tracking data,
service logging of data, and data ingestion pipelines for real time services. Since then, it
was adopted and deployed in several projects. Samza is designed to handle large messages
and to provide file system persistence for them. It uses Apache Kafka as a distributed bro-
ker for messaging, and Hadoop YARN for distributed resource allocation and scheduling.
YARN resource manager daemon is adopted by Samza to provide fault tolerance, pro-
cessor isolation, security, and resource management in the cluster. Samza is based on
three layers. The first one is devoted to streaming data and uses Apache Kafka to transit
the data flow. The second layer is based on YARN resource manager to handle the dis-
tributed execution of Samza processing and to manage CPU and memory usage across
a multi-tenant cluster of machines. The processing capabilities are available in the third
layer which represents the Samza core and provides API for creating and running stream
tasks in the cluster [9]. In this layer, several abstract classes can be implemented by the
user to perform specific processing tasks. These abstract classes are implemented with a
MapReduce Framework to ensure the distributed processing.

3. Comparison of stream processing frameworks
In this section, the frameworks presented above are compared according to several fea-
tures (see Table 1) including: data format, types of data sources, programming model,
cluster manager, supported programming languages, latency and messaging capacities.

We notice that Spark importance lies in its in-memory features and micro-batch
processing capabilities, especially in iterative and incremental processing [2]. Although
Spark is known to be the fastest framework due to the concept of RDD, it remains char-
acterized by its low throughput compared to other frameworks, while its micro-batch
concept could guarantee the fault tolerance. Flink shares similarities and characteristics
with Spark. It offers good processing performance when dealing with complex big data
structures such as graphs. Although there exist other solutions for large-scale graph pro-
cessing, Flink and Spark are enriched with specific APIs and tools for machine learning,
predictive analysis and graph stream analysis [1] [14].

LADaS 2018 - Latin America Data Science Workshop

19



Spark Storm Flink Samza
Data format DStream Tuples DataStream Message
Data sources HDFS, DBMS,

and Kafka
Spoots HDFS,

DBMS, and
Kafka

kafka

Programming
model

Transformation
and action

Bolts Actions
functions
(map,groupby,..)

Mapreduce
Job

Programming
languages

Java, Scala and
Python

Java Java java

Cluster manager Hadoop YARN,
Apache Mesos

Zookeeper Hadoop
YARN,
Apache
Mesos

YARN

Latency Few seconds Sub-second Sub-second Sub-second
Messaging Exactly once At least once Exactly once Exactly once
Machine learning
compatibility

SparkMLLIB Compatible
with
SAMOA
API

FlinkML Compatible
with
SAMOA
API

Elasticity Yes Yes No No
Sliding win-
dows/Windowing

time based time based
and count
based

time based time based
and count
based

Auto-
parallelization

On demand Pipelined
processing

Pipelined
processing

On demand

Streaming query SparkSQL No No Yes (Samza-
SQL API)

Data Partitioning Yes No No Yes
API Declaratif Copositionnel Declartaif Copositionnel
Data transport RPC RPC RPC Kafka

Table 1. Comparison of popular stream processing frameworks

In contrast, resource allocation in Storm is ensured in a dynamic and transparent
way. While existing stream processing frameworks implement their own message trans-
port protocol, Samza jobs use a set of named Kafka topics as input/output. Although the
low-level one-message-at-a-time model offers some flexibility to Samza, it presents limi-
tations regarding the frequency of produced errors and the automatic optimization. When
a broker node fails, the messages located in the file system will be lost and cannot be
recovered.

4. Experiments
In this section, we first present our experimental environment and protocol. Then, we
discuss the obtained results. More detailed experiments could be found in [8].

4.1. Experimental environment and protocol

All the experiments were performed in a real cluster called GALACTICA1. The cluster is
composed of 10 machines operating with Linux Ubuntu 16.04. Each machine is equipped
with a 4 CPU, 8GB of main memory and 500 GB of local storage. For our tests, we used
Flink 1.3.2, Spark 1.6.0, Samza 0.10.3 and Storm 1.1.1. All the studied frameworks have

1https://galactica.isima.fr

LADaS 2018 - Latin America Data Science Workshop

20



been deployed with YARN as a cluster manager. For our experimental protocol, we used
Twitter4J API2 to stream tweets that contain the ”Big Data” word in real time. Every
tweet consists of a JSON file with a set of attributes such as tweet creation date, tweet
identifier and user informations. Our experimental protocol consists on executing an Ex-
tract, Transform and Load (ETL) routine that (1) extracts tweets using Kafka in order to
ensure the same streaming rate while evaluating the studied frameworks, (2) transforms
the tweets by keeping only attributes like tweet identifier, tweet content, date, geocoordi-
nate and user informations, and (3) loads the transformed tweets to ElasticSearch. In this
work, we studied: (1) the number of messages processed by each framework in a given
period, (2) the impact of the size of the message on the number of processed messages,
and (3) the resources consumption of the studied frameworks.

4.2. Experimental results

Figure 1 shows that Flink, Samza and Storm have better processing rates compared to
Spark. This can be explained by the latency feature. In fact, the latency of Spark about
seconds while it is about subseconds in the case of Flink, Samza and Storm (see Table 1).

300 600 900

10
3.4

10
3.6

10
3.8

10
4

Window time (s)

N
u
m
b
e
r
o
f
e
v
e
n
t
s

Storm Spark Flink samza

Figure 1. Impact of the window time on the number of processed events (100 KB

per message)

In the next experiment, we changed the sizes of the processed messages. We used
5 tweets per message (around 500 KB per message). The results presented in Figure 2
show that Samza and Flink are very efficient compared to Spark, especially for large mes-
sages.
CPU consumption
As shown in Figure 3, Flink CPU consumption is low compared to Spark, Samza and

Storm. Flink exploits about 10% of the available CPU, whereas Storm CPU usage varies
between 15% and 18%. However, Flink may provide better results than Storm when
CPU resources are more exploited. In the literature, Flink is designed to process large
messages, unlike Storm which is only able to deal with small messages (e.g., messages
coming from sensors). Unlike Flink, Samza and Storm, Spark collects events’ data every
second and performs processing task after that. Hence, more than one message is pro-
cessed, which explains the high CPU usage of Spark. Because of Flink’s pipeline nature,
each message is associated to a thread and consumed at each window time. Consequently,
this low volume of processed data does not affect the CPU resource usage. Samza exploits

2http://twitter4j.org/en/index.html

LADaS 2018 - Latin America Data Science Workshop

21



300 600 900

10
2.5

10
3

Window time (s)

N
u
m
b
e
r
o
f
e
v
e
n
t
s

Storm Spark Flink Samza

Figure 2. Impact of the window time on the number of processed events (500 KB

per message)

0 100 200 300
0

20

40

60

80

100

Runtime (S)

C
P
U

U
s
a
g
e
(
%
)

Spark

CPU

0 100 200 300
0

20

40

60

80

100

Runtime (S)

Storm

CPU

0 100 200 300
0

20

40

60

80

100

Runtime (S)

Flink

CPU

0 100 200 300
0

20

40

60

80

100

Runtime (S)

Samza

CPU

Figure 3. CPU consumption

about 55% of the available CPU because it is based on the concept of virtual cores and
each job or partition is assigned to a number of virtual cores. In fact, it deploys several
threads (one for each partition), which explains the intensive CPU usage by Samza com-
pared to the other frameworks.
RAM consumption
Figure 4 shows the cost of event stream processing in terms of RAM consumption. Fig-
ure 4 shows the cost of event stream processing in terms of RAM consumption. Spark
reached 6 GB (75% of the available resources) due to its in-memory behavior and its
ability to perform in micro-batch (process a group of messages at a time). Flink, Samza
and Storm did not exceed 5 GB (around 61% of the available RAM) as their stream mode
behavior consists in processing only single messages. Regarding Spark, the number of
processed messages is small.

0 100 200 300
0

2,000

4,000

6,000

Runtime (S)

R
A
M

U
s
a
g
e
(
M
B
)

spark

RAM

0 100 200 300
0

2,000

4,000

6,000

Runtime (S)

Storm

RAM

0 100 200 300
0

2,000

4,000

6,000

Runtime (S)

Flink

RAM

0 100 200 300
0

2,000

4,000

6,000

Runtime (S)

Samza

RAM

Figure 4. RAM consumption

LADaS 2018 - Latin America Data Science Workshop

22



0 100 200 300
0

500

1,000

1,500

2,000

Runtime (S)

D
is
k
r
e
a
d
/
W
r
it
e
(
K
B
)

Spark

Disk Read

Disk Write

0 100 200 300
0

500

1,000

1,500

2,000

Runtime (S)

Storm

Disk Read

Disk Write

0 100 200 300
0

500

1,000

1,500

2,000

Runtime (S)

Flink

Disk Read

Disk Write

0 100 200 300
0

500

1,000

1,500

2,000

Runtime (S)

Samza

Disk Read

Disk Write

Figure 5. DISC R/W consumption

0 100 200 300
0

200

400

600

Runtime (S)

N
e
t
w
o
r
k
T
r
a
�
c
(
K
B
)

Spark

Input Bandwidth

Output Bandwidth

0 100 200 300
0

200

400

600

Runtime (S)

Storm

Input Bandwidth

Output Bandwidth

0 100 200 300
0

200

400

600

Runtime (S)

Flink

Input Bandwidth

Output Bandwidth

0 100 200 300
0

200

400

600

Runtime (S)

Samza

Input Bandwidth

Output Bandwidth

Figure 6. Bandwidth consumption

DISC R/W consumption
Figure 5 depicts the amount of disk usage by the studied frameworks. The curves de-
note the amount of Read/Write operations. The amounts of Write operations in Flink and
Storm are almost close. Flink, Samza and Storm frequently access the disk and are faster
than Spark in terms of the number of processed messages. As discussed in the above
sections, Spark is an in-memory framework which explains its lower disk usage.
Bandwidth resource usage
As shown in Figure 6, the amount of data exchanged per second varies between 375 KB/s
and 385 KB/s in the case of Flink, and varies between 387 KB/s and 390 KB/s in the
case of Storm. It is about 400 Mb/s in the case of Samza. This amount is high compared
to Spark as its bandwidth usage did not exceed 220 KB/s. This is due to the reduced
frequency of serialization and migration operations between the cluster nodes, as Spark
processes a group of messages at each operation. Consequently, the amount of exchanged
data is reduced, while Storm, Samza and Flink are designed for the stream processing.

5. Conclusion
With the increasing amount of data generated by billions of devices over the world, stream
processing becomes a key requirement of big data frameworks. The main goal of the
present work is to study and experimentally evaluate the most popular frameworks for
large-scale stream data processing. Spark, Storm, Flink and Samza were presented and
categorized according to their main features. We also evaluated the performance of the
presented frameworks in terms of resource consumption. We mention that this work is
a part of our previously published paper [8]. In this work, we focus on the evaluation
of streaming frameworks for Big Data. We mainly added a categorization of the studied
frameworks based on specific features of stream processing systems. In the future, we will
address the velocity of data processing by conducting more experiments on the frequency

LADaS 2018 - Latin America Data Science Workshop

23



and the size of incoming events data.

Acknowledgements
This research was partially supported by the General Direction of Scientific Research in
Tunisia (DGRST).

References
[1] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag,

Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl,
et al. The stratosphere platform for big data analytics. The VLDB Journal,
23(6):939–964, 2014.

[2] Fuad Bajaber, Radwa Elshawi, Omar Batarfi, Abdulrahman Altalhi, Ahmed Barnawi,
and Sherif Sakr. Big data 2.0 processing systems: Taxonomy and open challenges.
Journal of Grid Computing, 14(3):379–405, 2016.

[3] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R Henry,
Robert Bradshaw, and Nathan Weizenbaum. Flumejava: easy, efficient data-parallel
pipelines. In ACM Sigplan Notices, volume 45, pages 363–375. ACM, 2010.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[5] Apache Flink. Scalable batch and stream data processing, 2016.

[6] Amir Gandomi and Murtaza Haider. Beyond the hype: Big data concepts, methods, and
analytics. International Journal of Information Management, 35(2):137–144, 2015.

[7] Nishant Garg. Apache Kafka. Packt Publishing Ltd, 2013.

[8] Wissem Inoubli, Sabeur Aridhi, Haithem Mezni, Mondher Maddouri, and Engelbert Me-
phu Nguifo. An experimental survey on big data frameworks. Future Generation
Computer Systems, 86:546 – 564, 2018.

[9] Apache Samza. Linkedin’s real-time stream processing framework, by riccomini, c, 2014.

[10] Kamran Soomro, Zaheer Khan, and Khawar Hasham. Towards provisioning of real-time
smart city services using clouds. In Proceedings of the 9th International Conference
on Utility and Cloud Computing, pages 191–195. ACM, 2016.

[11] Apache Spark. Apache spark: Lightning-fast cluster computing, 2015.

[12] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M Patel,
Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, et al.
Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data, pages 147–156. ACM, 2014.

[13] Christos Vlassopoulos, Ioannis Kontopoulos, Michail Apostolou, Alexander Artikis, and
Dimitrios Vogiatzis. Dynamic graph management for streaming social media ana-
lytics. In Proceedings of the 10th ACM International Conference on Distributed and
Event-based Systems, pages 382–385. ACM, 2016.

[14] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

LADaS 2018 - Latin America Data Science Workshop

24


