
22 Rodrigues at. al. / On Structural Properties of Argumentation Frameworks: Lessons from ICCMA

On Structural Properties of
Argumentation Frameworks:

Lessons from ICCMA

O. Rodrigues a,1, E. Black a, M. Luck a, J. Murphy a

a Department of Informatics, King’s College London, London, UK

Abstract. It is well known that the computation of solutions to decision and enu-
meration problems in argumentation can be very hard. In this work, we analyse
some of the results of the 2017 International Competition on Computational Mod-
els of Argumentation. Our analysis shifts the focus from the performance of indi-
vidual solvers to how well/badly they can collectively tackle different classes of
abstract argumentation frameworks. In so doing, we were able to identify the in-
stances that were particularly difficult for all/most solvers and look into their par-
ticular structural properties.

Keywords. argumentation semantics, argumentation competition, data analysis

1. Introduction

It is well known that the computation of argument acceptability and the enumeration
of extensions of abstract argumentation frameworks (AAFs) can be very hard [9,11].
Nevertheless, advances in techniques for the computation of argumentation semantics
[2,8,7,14,16] have been matched by the development of software systems (solvers).
The International Competition on Computational Models of Argumentation (ICCMA,
http://argumentationcompetition.org) provides a platform for the evaluation of
the performance of the solvers against a collection of benchmark problems [18]. These
problems consist of: the enumeration of either one or all of the extensions of an AAF;
and the decision of whether a given argument is a member of one (resp. all) extensions
of the AAF under a particular semantics (a track in the competition’s terminology).

In order to evaluate the solvers against a range of problems, ICCMA uses AAFs
taken from a number of domains with particular structural properties. The results of
the 2nd ICCMA were announced late in 2017 and ranked the solvers in the different
tracks of the competition with an overall winner. It is clear from the results that different
problems present different levels of challenges for the solvers: for example, the AAF
massachusetts_vineyardfastferry_2015-11-13.gml.50 had all of its complete
extensions enumerated by 14 solvers in an average time of 0.004s while the extensions of
the AAF WS_300_32_50_70 could only be enumerated by 2 solvers in an average time
of 514.91s. In this paper, we shift the focus of the analysis of the results from the solvers
themselves to the domains and the AAFs within them. In particular, we investigate struc-
tural properties of the AAFs and discuss the results of the complete enumeration track of

1Corresponding Author. E-mail: odinaldo.rodrigues@kcl.ac.uk

Rodrigues at. al. / On Structural Properties of Argumentation Frameworks: Lessons from ICCMA 23

the 2nd ICCMA, taking each individual domain into account. Using this information, we
aim to provide answers to the following questions: 1) In which domains are the AAFs
easier or more difficult to solve? 2) Are there any domains that are beyond the current
capabilities of all solvers? 3) Is there any correlation between some structural properties
of an AAF and the ability and speed of the solvers to solve it?

Although our analysis is restricted to the complete enumeration track, it reveals some
very interesting patterns in the results. Nearly 23% of all AAFs could not be enumerated
by any solver. In the domain SemBuster, 15 out of the 16 AAFs (93.75%) could not be
enumerated at all. The next most challenging domains were Planning2AF, Traffic and
Barabasi-Albert, in this order. At the other end of the spectrum, the domains SccGenera-
tor and GroundedGenerator were the easiest to tackle, having only a small proportion of
AAFs whose extensions could not be enumerated by all solvers. These results not only
confirm the initial findings in [3] about the sensitivity of argumentation tools to particular
graph models, but also provide a proxy for the complexity of the models in general. In
addition, our analysis seeks characteristics in the structure of the AAFs likely to make
them more challenging.

The rest of the paper is organised as follows. In Section 2, we describe the method-
ology we used in the evaluation of the results. This is followed in Section 3 by an anal-
ysis of the results by domain. In Section 4, we discuss the domains whose extensions
were particularly hard to enumerate, and analyse their structural properties. In Section 5,
we suggest an indicator that attempts to predict the enumeration complexity of an AAF
based on its structural properties. In Section 6, we conclude pointing out some directions
for future work.

2. Methodology

It is worth beginning by summarising how the competition was organised, the results of
the benchmarking available, and how we used it in the analysis. The competition was
divided into eight main tracks, one for each of the grounded, complete, preferred, stable,
semi-stable, stage and ideal semantics, plus a special track called “Dung’s Triathlon”
requiring solvers to enumerate all extensions of all standard Dung-semantics (the first
four aforementioned) [1,10]. A public call was made for submission of benchmark
problems (i.e., AAFs) and 11 different domains were selected. For space limitations,
we cannot describe each individual domain, but they are listed in Table 3. For more
details please check http://argumentationcompetition.org/2017/benchmark_

selection_iccma2017.pdf.
In total 350 AAFs were used in the complete enumeration track. Table 3 lists the

domains, the number of AAFs taken from each domain, and an “identifier” that can be
used to identify the domain of an AAF in this track. For example, the string “BA” can
be used to identify that the AAF BA_80_80_2 belongs to the Barabasi-Albert domain;
the string “gml” can be used to infer that the AAF arlington_va_2016-01.gml.20

belongs to the Traffic domain; and so forth.
Although the competition also included the partial enumeration of extensions as well

as skeptical and credulous decision problems in the seven semantics mentioned above, in
order to keep our analysis focussed and succinct, we have restricted it to the enumeration
of all extensions of the complete semantics (i.e., the EE-CO track, in ICCMA’s terminol-
ogy). Each solver was awarded a score for the enumeration of all complete extensions of

24 Rodrigues at. al. / On Structural Properties of Argumentation Frameworks: Lessons from ICCMA

Solver Total ABA Adm BA ER GG PL Sem SCC ST Tra WS
pyglaf 238 32 13 26 30 24 18 1 29 21 20 24
argmat-dvisat 221 32 7 21 27 24 18 0 29 21 15 27
argmat-mpg 198 32 7 27 30 24 18 1 27 5 21 6
cegartix 189 31 10 11 25 24 7 0 29 20 6 26
argmat-sat 187 32 7 8 27 24 7 0 29 21 6 26
ArgSemSAT 182 32 12 7 25 24 6 0 29 19 5 23
conarg 182 21 13 18 35 21 15 1 12 -8 18 36
heureka 178 32 12 22 30 24 18 1 12 3 20 4
CoQuiAAS 174 32 12 2 25 24 4 0 29 18 5 23
goDIAMOND 171 32 -5 3 33 18 5 0 29 21 5 30
ArgTools 157 32 9 10 32 23 6 1 19 8 5 12
EqArgSolver 124 32 7 8 8 24 5 0 28 2 6 4
argmat-clpb 20 7 0 5 0 1 0 1 0 0 5 1
gg-sts -304∗ -160 65 8 16 -102 -9 0∗ 15 21 -23 27

Table 1. Total scores of all solvers in each domain for the EE-CO track.

an AAF within the time limit of 600s. The score 1 was awarded for delivering the cor-
rect and complete set of extensions of the AAF within 600s; the score -5 was given for
delivering an incorrect extension of the AAF within 600s; and the score 0 was given oth-
erwise (this included results delivered after 600s; the abnormal termination of a solver;
and the delivery of an incomplete set of extensions). The total scores by domain for the
EE-CO track are shown in Table 1. The results of all problem instances for all solvers are
available at http://argumentationcompetition.org/2017/results.html.

Using the above available data, we undertook a number of calculations to obtain the
average enumeration time per AAF, the number of solvers successfully enumerating all
extensions within 600s, and several other statistics grouping AAFs by domain. We also
investigated several structural properties of the AAFs, such as their number of arguments
and attacks, how many strongly connected components (SCCs) they had, the density of
attacks of the AAF, etc., by analysing all AAFs ourselves.

Since all enumerations completed after 600s were awarded the score 0 regardless of
whether they were correct or not, in the analysis of the average execution time and the
number of solvers successfully completing an enumeration, we only considered those
results whose scores were 1. We also examined instances that were not successfully
completed by any solver in the time allowed, since they may point to structural properties
of interest.

In Section 3, we consider the results from the perspective of each individual domain,
but first describe some adjustments we made to the results to make our analysis clear.

Anomalies in the Results

Domain SemBuster. The AAFs in the SemBuster domain were proposed by Caminada
and Verheij [6,5]. Their set of arguments is divided into three partitions A, B and C, each
with a given cardinality k, arranged as in the picture below on the left.

Rodrigues at. al. / On Structural Properties of Argumentation Frameworks: Lessons from ICCMA 25

a1 b1 c1

a2 b2 c2
...

...
...

ak bk ck

For a given value of k, the AAF in this domain is
unique and has exactly n= 3k arguments. Using the SCC-
recursive schema [2], these arguments can be arranged in
k+1 layers: the top layer with bk and ck; followed by ak,
bk−1 and ck−1; and so forth until the last layer with a1
alone. The pattern of attacks is also very regular, so we
can easily count them as follows.

Proposition 1. An AAF in the SemBuster domain with 3k arguments has k2+3k attacks.

Proof. It is easy to see that for every i > 1 and every j < i, every bi argument attacks
every a j and b j argument. Therefore, for each row 1 < i ≤ k, we have 2× (i− 1) at-
tacks. Summing them all up gives us double the sum of the numbers in the sequence
1,2, . . . ,k− 1. Furthermore, within each row ai, bi, ci there are exactly 4 attacks. This
gives us # attacks = 2× (∑k−1

i=1 i)+4k = 2× (k−1)×k
2 +4k = k2 +3k.

Thus, for k = 20, we have an AAF with 60 arguments and 202 + 60 = 460 attacks
arranged in 21 layers. Some properties of the AAFs in this domain are given in Table 2.

It was claimed in [6] that these AAFs would have k+1 complete extensions, but in
fact, they have a much larger number t of complete extensions: t = 2k + k.

Proposition 2. A SemBuster AAF with 3k arguments has 2k + k complete extensions.

Proof. Note that no extension can contain an argument from the A partition, so all com-
plete labellings label all ai arguments either out or und. The number 2k + k comes from
the following observations: i) There are exactly k complete labellings with exactly one
B argument labelled in: for each bi that is labelled in, all arguments b j such that j 6= i
must be labelled out, and, consequently all corresponding arguments c j must be labelled
in. In addition, for all j ≤ i, a j is labelled out, and for all j > i, a j is labelled und; and
ii) The remaining 2k labellings give all complete extensions that are subsets EC of the C
partition (obviously, without a B element). They can be constructed as follows:

λ (ai)=und, for i≤ k λ (bi)=

{
out, if ci ∈ EC
und, otherwise λ (ci)=

{
in, if ci ∈ EC
und, otherwise

Note that case ii) in the proof above includes the empty extension (when EC =∅ and
all arguments are labelled und). Incidentally, this means that not every complete labelling
is also a preferred labelling in this domain (cf. [6]). In particular, all non-maximal subsets
of C in case ii) above are not preferred.

AAFs of this type pose a challenge beyond the actual computation of the complete
labellings since the number of complete extensions grows exponentially to the number of
arguments. For example, the smallest SemBuster AAF in this domain, sembuster_60,
has only 60 arguments but 1,048,596 extensions. Thus, the amount of data generated
in the solutions becomes problematic and, for a sufficiently large value of n, it cannot
be enumerated in any reasonable time. In fact, this is not the only domain where a rela-
tively low number of arguments generates a very large number of extensions. The num-
ber of complete extensions of the so-called bi-directed cycle graphs is even larger [16].
Whereas a SemBuster framework with 36 arguments only has 4,108 complete exten-
sions, a bi-directed cycle graph with 36 arguments has 7,095,675.

The results of the competition for the SemBuster domain include the ones listed
in Table 2 (recall, all results presented here are for the EE-CO track). The solver

26 Rodrigues at. al. / On Structural Properties of Argumentation Frameworks: Lessons from ICCMA

AAF Args Attacks NT
SCCs

Max
SCC
size

Layers
Solvers

Awarded
Score 1

Avg
Time
(secs)

sembuster_60 60 460 40 2 21
argmat-clpb/mpg

ArgTools, conarg
heureka, pyglaf

13.08

sembuster_150 150 2650 100 2 51 - -
sembuster_300 300 10300 200 2 101 - -
sembuster_600 600 40600 400 2 201 - -
sembuster_900 900 90900 600 2 301 - -
sembuster_1200 1200 161200 800 2 401 - -
sembuster_1500 1500 251500 1000 2 501 gg-sts 32.47
sembuster_1800 1800 361800 1200 2 601 gg-sts 30.29
sembuster_2400 2400 642400 1600 2 801 gg-sts 32.51
sembuster_3000 3000 1003000 2000 2 1001 gg-sts 33.58
sembuster_3600 3600 1443600 2400 2 1201 gg-sts 33.12
sembuster_4200 4200 1964200 2800 2 1401 gg-sts 33.52
sembuster_4800 4800 2564800 3200 2 1601 gg-sts 27.91
sembuster_5400 5400 3245400 3600 2 1801 gg-sts 29.77
sembuster_6000 6000 4006000 4000 2 2001 gg-sts 32.29
sembuster_7500 7500 6257500 5000 2 2501 - -

Table 2. Details of the AAFs in the SemBuster domain.

gg-sts was awarded scored 1 for the instances 1500–6000, the smallest of which was
sembuster_1500, with 1500 arguments and therefore 2500 + 500 complete extensions.
Clearly, these cannot have been computed and enumerated, so these results cannot be
correct. We have contacted the organisers of the competition who, at the time of writing,
are investigating. For the purposes of our analysis, we disregarded the results provided
by gg-sts in the above instances.

Other results not fully verified. A number of other instances outside the SemBuster
domain were also enumerated by only one solver. At the time of writing, our understand-
ing is that although there was some scrutiny of the results provided by a single solver,
they were not fully verified. Thus, there may well be other instances where a score 1
was incorrectly awarded. In our analysis, we only modified the results above since they
are mathematically impossible in the time given. This means that the analysis presented
in Section 4.2 may need to be adjusted should the results change. However, the overall
methodology we have employed is justified with the data given. For a discussion on the
difficulties of verifying the competition results, please see Section 6.

3. Challenging Domains

The EE-CO track evaluated the overall performance of the solvers over the whole set of
350 AAFs. It is interesting to look at how these results fare within each individual do-
main. Table 1 shows how each solver performed in each domain, with the best results
highlighted in bold. The overall results are displayed in the column “Total”. The results
with a ∗ have been adjusted as described in Section 2. In the table, the term ABA is used
for the domain ABA2AF, Adm for the domain AdmBuster, BA for the domain Barabasi-
Albert, ER for the domain Erdös-Rényi, GG for the domain GroundedGenerator, PL for
the domain Planning2AF, Sem for the domain SemBuster, SCC for the domain SccGen-

Rodrigues at. al. / On Structural Properties of Argumentation Frameworks: Lessons from ICCMA 27

erator, ST for the domain StableGenerator, Tra for the domain Traffic, and WS for the
domain Watts-Strogatz.

Table 1 shows that every solver obtained the highest score in at least one domain,
confirming a similar finding in [4], which analysed a subset of the 1st ICCMA’s solvers
on a smaller number of domains.2 If we shift focus from solver to domain, we can define
a proxy for complexity by examining how the solvers performed overall in each domain.
In particular, we consider how many of the domain instances could not be solved by any
solver. Table 3 contains the average execution time of the successful enumerations as
well as the percentage of instances in each domain left unsolved by all solvers (within
600s). Four domains had a particularly high proportion of unsolved instances. As ex-
pected from our analysis in Section 2, the domain SemBuster had nearly all instances left
unsolved (93.75%). This was followed by the domain Planning2AF, which had 58.13%
of its instances left unsolved; followed by the domain Traffic with 43.90% of instances;
and then the domain Barabasi-Albert with 34.14% of instances left unsolved. Table 3 also
shows the number of instances solved by at most one solver. In general, the proportion
of problems that could be solved by only a few solvers was also very high.

Domain Identifier AAFs Unsolved (%) ≤ 1 solver Avg time
ABA2AF afinput 32 0 (0%) 0 12.71s
AdmBuster admbuster 13 0 (0%) 0 22.10s
Barabasi-Albert BA 41 14 (34.15%) 15 59.40s
Erdös-Rényi ER 40 0 (0%) 8 93.28s
GroundedGenerator grd 24 0 (0%) 0 18.91s
Planning2AF .cnf 43 25 (58.14%) 25 41.98s
SemBuster sembuster 16 15 (93.75%) 15 13.09s
SccGenerator scc 30 0 (0%) 1 35.54s
StableGenerator stb 30 5 (16.67%) 9 93.86s
Traffic .gml. 41 18 (43.90%) 21 41.29s
Watts-Strogatz WS 40 1 (2.50%) 10 146.73s

Total 350 78 104 57.50s

Table 3. Distribution of “hard” problems by domain.

Figure 1 generalises this further. It provides an overview of the percentage of the
AAFs left unsolved by a given number of solvers by domain. The x-axis in the plot
represents the number of solvers that were unable to solve problems in a domain and
the y-axis represents the percentage of problems left unsolved by those solvers. So for
example, for x = 16, y gives the percentage of problems left unsolved by 16 solvers (i.e.,
all) in each domain (compare this with Table 3).

At the other end of the spectrum, the domains GroundedGenerator, SccGenerator
and ABA2AF were the easiest to tackle, with only a small proportion of AAFs left un-
solved by a few solvers.

4. Challenging AAFs

The extensions of 78 out of the 350 AAFs (22.28%) in the EE-CO track could not be
fully enumerated within 600s. In addition, the full enumeration of the extensions of 26
other AAFs could only be completed by a single solver. For the purposes of this analysis,

2The domains considered in [4] were Barabasi-Albert, Erdös-Rényi, Kleinberg [13], and plain tree-graphs.

28 Rodrigues at. al. / On Structural Properties of Argumentation Frameworks: Lessons from ICCMA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
rc

en
ta

ge
 n

ot
 s

ol
ve

d

By number of solvers

% of graphs by domain not solved by x solvers

ABA2AF
ErdosRenyi

Traffic
SemBuster

SccGenerator
BarabasiAlbert

Planning2AF
WattsStrogatz

StableGenerator
AdmBuster

GroundedGenerator

Figure 1. Percentage of instances left unsolved by number of solvers and domain

we refer to these particularly challenging 104 AAFs as the “hard” AAFs. Together they
represent 29.71% of the total number of AAFs in the EE-CO track.

Our objective in the identification of the hard AAFs is to shed some light into spe-
cific structural properties that may make them difficult to solve. In addition, in future
work this may help to draw some correlation between the techniques that were used by
the solvers managing to solve them and the AAFs’ structural properties. The tables in
Appendix A give further structural details about the challenging AAFs in some of the
hardest domains.

4.1. AAFs Not Solvable By Any Solver

We have already concluded from the anomalies of the SemBuster domain presented in
Section 2, that the difficulty in the enumeration of the complete extensions of an AAF can
arise not only because of the complexity of the attack configuration of the framework, but
also from the number of extensions itself. Besides SemBuster, the domain Planning2AF
was clearly the hardest to tackle, containing 32.05% of all unsolvable AAFs (58.14% of
the AAFs in the domain); followed by the Traffic domain with 23.07% of all unsolvable
AAFs (43.90% of the domain), and then by the Barabasi-Albert domain with 17.94% of
all unsolvable AAFs (34.15% of the domain). We discuss some structural properties of
the AAFs in these domains in Section 4.3. Details of some of the individual AAFs can
be found in Appendix A.

Looking at the structure of the AAFs in the SemBuster domain, we can see that even
a configuration with a small number of small non-trivial SCCs arranged in a particular
way can hinder the ability of the solvers to tackle them. In the case of the SemBuster
AAFs, the k binary non-trivial SCCs (containing the loop bi–ci) accept at least two possi-
ble solutions one labelling ci in and the other labelling it out or und. These possibilities
need to be propagated down to the other layers and this is essentially what increases the
number of solutions exponentially to the number of layers in the AAF, giving the O(2k)
number of complete extensions. In consequence, we should expect that AAFs with many
non-trivial SCCs arranged in many layers are also likely to be hard to enumerate, but this

Rodrigues at. al. / On Structural Properties of Argumentation Frameworks: Lessons from ICCMA 29

is not obviously the only indicator of complexity. A single large non-trivial SCC or a rel-
atively small non-trivial SCC with a sparse distribution of attacks (such as the bi-directed
acyclic AAFs described in Section 2) are also problematic. In Section 5, we attempt to
combine these factors into a single metric to obtain a proxy for complexity.

4.2. AAFs solvable by at most one solver

The extensions of 26 AAFs could only be enumerated by one solver. This represents
7.42% of the total number of AAFs in the EE-CO track.

The solver conarg was able to solve 76.92% (20 out of 26) of the prob-
lems solved by only one solver, spending around 597s in each enumeration. Here,
conarg’s strategy in the competition was to provide whatever extensions it man-
aged to compute within the time limit.3 This explains why, in each of these 20 in-
stances, it completed just before 600s. There were also 3 instances solved only by
the solver gg-sts, all in under 41s; one instance solved only by goDIAMOND (in
468.6s); and 2 instances solved only by argmat-mpg – one of which, namely the AAF
massachusetts_srta_2014-11-13.gml.50, we will come back to in the discussion
in Section 6.

Since the answers provided by a single solver may not have been fully verified (es-
pecially for completeness), it is possible that these results need to be adjusted further.
However, if it turns out that all of these instances are indeed correct and complete, it
would be interesting to investigate further the superior effectiveness of these solvers in
these demanding AAFs.

4.3. Structural Properties of the Hard Domains

We already discussed the domain SemBuster in Section 2. In this section, we look at
the next three hardest domains in more detail. For brevity, we only summarise the most
important characteristics of their AAFs. Further details can be found in Appendix A.

Domain Planning2AF The domain Planning2AF was the second hardest domain to
tackle. One of the most distinguishing characteristics of the AAFs here is that their non-
trivial SCCs are arranged in a relatively high number of layers (35 layers per AAF on
average). In the cases containing the three lowest number of layers (3, 7 and 11, resp.),
the AAFs had non-trivial SCCs with the largest sizes (421, 219 and 245, resp.). So there
is a pattern of large SCCs or smaller SCCs arranged in a large number of layers.

Domain Traffic The Traffic domain was composed of 41 AAFs created from mass transit
data, and the configuration of SCCs here was very variable. Some of the unsolvable AAFs
had very large SCCs or a very large number of smaller non-trivial SCCs.4 On average,
the AAFs had 100 non-trivial SCCs, with an average size of 8 arguments, arranged over
8 layers on average. Three AAFs were solved by at most one solver: massachusett
s srta 2014-11-13.gml.50 (by argmat-mpg); longueuil qc 2016-01.gml.20

(by gg-sts); and orange-county-transportation-authority 20151202 1534

.gml.20 (by gg-sts). The AAF massachusetts srta 2014-11-13.gml.50 has

3Personal communication with S. Bistarelli, 8/6/18.
4For instance, the largest SCC in the AAF ruter.no 20151217 2005.gml.80 had 11,459 nodes, and the

AAF ecobici.stats 20141007 2248.gml.50 had 680 non-trivial SCCs.

30 Rodrigues at. al. / On Structural Properties of Argumentation Frameworks: Lessons from ICCMA

34,307,712 complete extensions (generating roughly 4.3Gb of data), so representing and
verifying sets of this cardinality can be challenging (see discussion in Section 6).

Domain Barabasi-Albert Finally, the AAFs in the Barabasi-Albert domain were rela-
tively smaller than the ones in the two previous domains. They had on average 13 non-
trivial SCCs with an average of 8 nodes arranged over 5 layers (on average).

Other Noteworthy Results The solver conarg did very well in the domains Watts-
Strogatz and StableGenerator. It was the only solver capable of solving 13 instances in
these domains with a typical execution time of roughly 597s. Assuming these results are
correct, this points to conarg’s special ability of dealing with large SCCs. The domain
Watts-Strogatz is composed of AAFs with a single non-trivial SCC with between 300
and 500 nodes. The AAFs in the StableGenerator domain contained up to 2 non-trivial
SCCs of sizes of up to 723 nodes and a few trivial SCCs, all arranged in up to 5 layers.

5. Challenging Structural Properties

Here, we attempt to devise a measure based on structural properties of the AAFs that
gives a good indication of the likely complexity of the enumeration of their extensions.

Solvers that compute extensions by decomposing the original argumentation frame-
work into SCCs [2,12] work on each SCC individually and then combine the solutions
appropriately (see http://argumentationcompetition.org/2017/submissions.
html), e.g., EqArgSolver, argmat-dvisat. Simply put, a trivial SCC is a single argu-
ment that is not involved in any loops and a non-trivial SCC is a maximal set of argu-
ments in which every argument in the set is reachable from every argument in the set via
the attack relation.

A complete extension can be seen as the colouring of a direct graph satisfying some
constraints: i) A node can be coloured in if and only if all of its attackers are coloured
out;5; ii) If any of the attackers of a node is coloured in, then the node must be coloured
out; and iii) a node is coloured und if and only if one of its attackers is coloured und
and no attacker is coloured in. A solution is then any colouring of all nodes satisfying
these constraints. The solution of a trivial SCC is uniquely determined by the colours
given to its attackers, and once these are known this can be easily computed. However,
in a non-trivial SCC there may be many configurations that satisfy the constraints i)–iii).
Each solution to a non-trivial SCC needs to be propagated to the nodes they attack, so
the number of configurations to check can grow very quickly.

In any evaluation of complexity, we must differentiate the trivial components of the
AAF from its non-trivial components. Each trivial SCC T only adds a very small amount
to the complexity of the AAF, except in cases where the trivial SCCs form a very long
chain. For this we can take the length of the chain up to T into account.6 So we can define
the individual complexity of solving a trivial SCC T , tc(T), as tc(T) = depth(T) ∗ ε ,
where depth(T) is the length of the longest chain of attacks leading to T in its layer and
ε is a small constant. In our calculations, we used ε = 5×10−10.

For a non-trivial SCC N, we must consider a number of factors. Experiments un-
dertaken in [17] suggest that the complexity of the solution of an AAF G = 〈Args,Atts〉

5Note that this includes the non-attacked nodes, vacuously.
6For example, the longest chain in the problem admbuster_2000000 is 1,000,000 nodes deep.

Rodrigues at. al. / On Structural Properties of Argumentation Frameworks: Lessons from ICCMA 31

is inversely proportional to its density of attacks. The density of G is defined as
density(G) = |Atts|

|Args|2 , and so its sparsity is sparsity(G) = 1− density(G). However, as
we intend to use this measure on a non-trivial SCC N with nodes nodes(N) ⊆ Args, we
must only consider the number of internal attacks starting and terminating in N, i.e.,
atts(N) = nodes(N)2∩Atts. Furthermore, given that the labels of the nodes in N with an
external attacker may be at least partially determined by the label of the attacker, we are
more interested in N’s “loose” nodes, i.e., those without an external attacker: loose(N).
So for a non-trivial SCC N, the measure that interests us is sparsity(N) = 1− |loose(N)|

|atts(N)|2 .
Taking these factors into account, by trial and error, we defined the following mea-

sure for the complexity of a non-trivial SCC N, nt c(N) = (
√

2)(sparsity(N)∗
√

loose(N)).
Our aim with the above measure is to give the chosen structural aspects of a non-

trivial SCC the correct weight in the approximation of the overall complexity of the AAF.
Now let t sccs(G) be the set of all trivial SCCs of G and nt sccs(G) its set of non-

trivial SCCs. We define mx(G) as

mx(G) = ΣT∈t sccs(G)t c(T)+ΣN∈nt sccs(G)nt c(N)

Note that mx has two distinct components for the complexities of the trivial and non-
trivial SCCs of an AAF G, with the non-trivial part weighing much more heavily. In
addition,

(M1) If t sccs(G) = ∅, then mx(G) = ΣN∈nt sccs(G)nt c(N) and if nt sccs(G) = ∅, then
mx(G) = ΣT∈t sccs(G)t c(T).
This means that a higher number of arguments in an AAF G itself is not sufficient
to dramatically increase the value of mx(G). This is important in AAFs in domains
such as AdmBuster, which have a very high number of nodes (up to 2,000,000),
but do not have any non-trivial SCCs, and are therefore relatively simple to solve.

(M2) The higher the incidence of non-trivial SCCs in an AAF G, the higher the value of
mx(G).

(M3) The less sparse a non-trivial SCC is, the lower its contribution to the value of
mx(G).

Table 4 shows the Pearson product-moment correlation coefficients between mx or
the density or the sparsity of the AAFs and the number of solvers to return a correct
solution. A value of∼−0.5 or more indicates a negative correlation between the aspects
and ∼−0.75 or more indicates a strong negative correlation [15].

We observe that for five domains (Erdös-Rényi, SccGenerator, StableGenerator,
AdmBuster and Barabasi-Albert) there is a fair correlation between mx and the number of
solvers returning a correct solution. This suggests that mx is a good indicator of the diffi-
culty of a particular framework in these domains. On the other hand, the density/sparsity
of the AAFs was a good indicator for their complexity in the ABA2AF, SemBuster, Traf-
fic and Planning2AF domains. There was no strong positive or negative correlation in
the domains GroundedGenerator and Watts-Strogatz. This needs further investigation.

Currently, mx is just an initial attempt at capturing the complexity of an AAF based
on a few of its graph theoretical properties. By incorporating more properties into the
measurement, and fine-tuning how each individual component is weighted, it may be
possible to obtain stronger correlations over a larger number of domains. Ideally, we

32 Rodrigues at. al. / On Structural Properties of Argumentation Frameworks: Lessons from ICCMA

would have a measurement that strongly indicates the difficulty of the framework across
most domains. However, even if it is possible to theoretically derive such a measurement,
it may be unfeasible to compute it in a satisfactory time. Moreover, the configuration of
attacks in certain domains may be designed to have a particular effect on its number of
extensions and/or the complexity of the enumeration, so no measure can be expected to
work well in all domains.

Domain Measure Correlation
Erdös-Rényi mx −0.63
SccGenerator mx −0.79
StableGenerator mx −0.66
AdmBuster mx −0.74
Barabasi-Albert mx −0.50
ABA2AF density −0.61
SemBuster sparsity −0.78
Traffic sparsity −0.82
Planning2AF sparsity −0.50

Table 4. Correlation between measures and the number of solvers that returned a correct solution per domain.

6. Conclusions and Discussion

It is quite clear from our analysis that the performance of the solvers in ICCMA varied
quite dramatically according to the domain of the AAFs. In Section 3, we saw that some
domains have instances whose extensions are particularly hard to enumerate, confirming
and extending similar findings for a smaller number of domains initially reported in
[3,4]. In addition, our analysis revealed several results, particularly in the cases that were
solvable by only one solver, that deserve further investigation.

We saw that besides the intrinsic computational complexity associated with check-
ing the constraints of a complete labelling, some domains can generate a very large
number of extensions and this can also be problematic. Take, for example, the prob-
lem massachusetts_srta_2014-11-13.gml.50 from the Traffic domain, which has
34,307,712 complete extensions. The solution set for this instance alone comprises over
4.3Gb of data. This can become a problem not only for individual solvers, but also for
the benchmarking both in terms of storage as well as verification. In terms of verifica-
tion, only problem instances whose complete set of solutions have been generated and
verified should be employed in future competitions. This will eliminate any problems
arising from the inability to verify results provided by a single solver. In the cases where
the solutions cannot be generated automatically from the theoretical properties of the do-
main,7 the solutions can be obtained by running specific solvers for a generous amount
of time and then checking the solutions against each other and/or by running some sanity
checks, such as counting the number of extensions, checking for admissibility properties,
and so on. Those instances where the size of the solutions may become untractable or
impractical should be discarded or dealt with separately.

A new competition track could be introduced whereby solvers are awarded points
according to the number of extensions they correctly enumerate within the timeout pe-
riod. The solvers in turn can adapt to display a solution as soon as it is becomes available.

Clearly, there is much more work to do. An important question is how realistic the
domains used in the competition are in practical argumentative scenarios. It may well be

7See Section 2 for an explanation on how to do this in the SemBuster domain.

Rodrigues at. al. / On Structural Properties of Argumentation Frameworks: Lessons from ICCMA 33

the case that certain configurations are not likely from the purely argumentative point of
view, so developing argumentation solvers for all possible configurations of direct graphs
may be unwise. Indeed, there are also other possible interesting decision problems to
consider besides credulous and skeptical acceptance.

Finally, for space limitations, we only analysed the complete semantics. Given all
complete extensions, it is possible to provide an answer for both skeptical and credulous
decision problems under several different semantics, by analysing the elements in these
extensions. However, the full enumeration of these extensions is not always required and
the direct analysis of the results of the other competition tracks would also be useful.

Acknowledgements We would like to thank the organisers of the 2nd ICCMA for clar-
ifications on the calculation of the competition results; Stefano Bistarelli for discussions
about conarg; and the anonymous reviewers for their suggestions to improve this paper.

References

[1] P. Baroni, M. Caminada, and M. Giacomin. An introduction to argumentation semantics. The Knowledge
Engineering Review, 26:365–410, 12 2011.

[2] P. Baroni, M. Giacomin, and G. Guida. SCC-recursiveness: a general schema for argumentation seman-
tics. Artificial Intelligence, 168(1):162 – 210, 2005.

[3] S. Bistarelli, F. Rossi, and F. Santini. A comparative test on the enumeration of extensions in abstract
argumentation. Fundamenta Informaticae, 140(3-4):263–278, 2015.

[4] S. Bistarelli, F. Rossi, and F. Santini. Not only size, but also shape counts: abstract argumentation solvers
are benchmark-sensitive. Journal of Logic and Computation, 28(1):85–117, 2018.

[5] M. Caminada and B. Verheij. On the existence of semi-stable extensions. In Proceedings of the 22nd
Benelux Conference on Artificial Intelligence, 2010.

[6] M. Caminada and B. Verheij. Sembuster: a benchmark example for semi-stable semantics. http:

//argumentationcompetition.org/2017/SemBuster.pdf, 2017.
[7] F. Cerutti, M. Vallati, and M. Giacomin. Where are we now? State of the art and future trends of solvers

for hard argumentation problems. In P. Baroni, T.F. Gordon, and T. Scheffler, editors, Proceedings of
COMMA, volume 287 of Frontiers in Artificial Intelligence and Applications, pages 207–218. IOS Press,
2016.

[8] F. Cerutti, M. Vallati, and M. Giacomin. On the impact of configuration on abstract argumentation
automated reasoning. International Journal of Approximate Reasoning, 92:120 – 138, 2018.

[9] G. Charwat, W. Dvořák, S. A. Gaggl, J. P. Wallner, and S. Woltran. Methods for solving reasoning
problems in abstract argumentation – a survey. Artificial Intelligence, 220:28 – 63, 2015.

[10] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

[11] W. Dvořák, R. Pichler, and S. Woltran. Towards fixed-parameter tractable algorithms for abstract argu-
mentation. Artificial Intelligence, 186:1 – 37, 2012.

[12] B. Liao. Efficient Computation of Argumentation Semantics. Elsevier, 2014.
[13] C. Martel and V. Nguyen. Analyzing Kleinberg’s (and other) small-world models. In Proceedings of

the Twenty-third Annual ACM Symposium on Principles of Distributed Computing, PODC ’04, pages
179–188, New York, NY, USA, 2004. ACM.

[14] S. Nofal, K. Atkinson, and P. E. Dunne. Looking-ahead in backtracking algorithms for abstract argu-
mentation. International Journal of Approximate Reasoning, 78:265 – 282, 2016.

[15] K. Pearson. Note on regression and inheritance in the case of two parents. Proceedings of the Royal
Society of London, 58:240–242, 1895.

[16] O. Rodrigues. A forward propagation algorithm for the computation of the semantics of argumentation
frameworks. In Theory and Applications of Formal Argumentation, TAFA’17, pages 120–136. Springer
International Publishing, 2018.

[17] O. Rodrigues. An investigation into reduction and direct approaches to the computation of argumentation
semantics. In Festschrift in Honour of Tarcisio Pequeno, Tributes. College Publications, To appear.

[18] M. Thimm, S. Villata, F. Cerutti, N. Oren, H. Strass, and M. Vallati. Summary report of the first inter-
national competition on computational models of argumentation. AI Magazine, 37(1):102–104, 2016.

34 Rodrigues at. al. / On Structural Properties of Argumentation Frameworks: Lessons from ICCMA

Appendix A. Some Structural Properties of the Hard Domains

Domain Planning2AF (all unsolved)

AAF Args Atts NT
SCCs

Avg
nt SCC

size

Max
SCC
size

Layers

ferry2.pfile-L3-C2-02.pddl.2.cnf 528 1012 51 3.29 26 43
bw2.pfile-3-04.pddl.2.cnf 958 1960 74 3.88 24 49
bw2.pfile-3-06.pddl.2.cnf 825 1680 58 2.86 39 53
bw3.pfile-3-01.pddl.2.cnf 1224 2479 60 4.55 93 51
ferry2.pfile-L3-C4-01.pddl.3.cnf 1180 2156 100 3.64 88 62
bw2.pfile-3-06.pddl.6.cnf 970 1768 73 4.3 6 43
bw2.pfile-4-03.pddl.1.cnf 908 1899 87 2.0 2 61
bw3.pfile-3-01.pddl.1.cnf 1644 3778 110 2.0 2 79
bw3.pfile-3-02.pddl.5.cnf 515 931 14 26.5 245 11
bw3.pfile-3-08.pddl.6.cnf 652 1159 52 4.54 10 39
bw3.pfile-4-03.pddl.4.cnf 2943 5610 212 2.0 2 117
bw3.pfile-4-08.pddl.3.cnf 2290 4343 125 4.11 136 85
bw3.pfile-4-08.pddl.6.cnf 1882 3521 107 4.02 10 85
ferry2.pfile-L2-C4-07.pddl.1.cnf 471 916 69 2.0 2 31
ferry2.pfile-L3-C1-010.pddl.6.cnf 348 594 39 4.05 6 21
bw2.pfile-3-02.pddl.3.cnf 282 461 53 2.45 10 19
bw2.pfile-3-02.pddl.4.cnf 247 391 59 2.0 2 25
bw2.pfile-3-07.pddl.1.cnf 265 493 42 2.0 2 31
bw2.pfile-3-08.pddl.1.cnf 266 495 42 2.0 2 31
bw2.pfile-3-08.pddl.4.cnf 247 391 59 2.0 2 25
bw2.pfile-3-08.pddl.5.cnf 305 523 8 34.38 219 7
ferry2.pfile-L2-C2-04.pddl.1.cnf 221 402 41 2.0 2 23
ferry2.pfile-L2-C3-02.pddl.5.cnf 453 793 4 106.75 421 3
ferry2.pfile-L3-C3-010.pddl.1.cnf 302 541 51 2.0 2 31
ferry2.pfile-L3-C3-07.pddl.1.cnf 302 541 51 2.0 2 29

Domain Traffic (solved by at most 1 solver)

Graph Args Atts NT
SCCs Avg

nt SCC
size

Max
SCC
size

Layers Solver Time

empresa-publica-de-transport

es-e-circulao 20141104 0243.g

ml.20

930 2577 181 4.31 535 9 - -

arlington va 2016-01.gml.20 624 847 106 2.55 20 14 - -
cascades-east-transit 2015121

7 0811.gml.80
207 457 10 20.2 151 4 - -

ecobici.stats 20141007 2248.g

ml.50
4730 8936 680 5.75 541 16 - -

metro-st-louis 20130916 1522.

gml.80
5363 12027 237 22.29 2882 11 - -

rtc-ride 20141220 0137.gml.80 827 1807 51 15.82 365 17 - -
spacecoast fl 2015-12-02.gml.

50
875 1468 167 3.99 40 15 - -

villavesas 20150331 1146.gml.

50
505 1011 60 7.25 231 10 - -

commuteorg-shuttle 20150308 1

938.gml.20
118 206 14 5.5 27 5 - -

Rodrigues at. al. / On Structural Properties of Argumentation Frameworks: Lessons from ICCMA 35

Graph Args Atts NT
SCCs Avg

nt SCC
size

Max
SCC
size

Layers Solver Time

confederated-tribes-of-the-u

matilla-indian-reservation 20

130129 1036.gml.80

66 268 3 22.0 51 3 - -

huston merge 2015-12.gml.80 6477 16118 258 24.67 4508 13 - -
los angeles 2016-01.gml.80 8294 19644 333 24.4 5955 10 - -
lowell-regional-transit-auth

ority 20121214 0433.gml.80
128 296 11 11.09 87 4 - -

ruter.no 20151217 2005.gml.80 12455 33767 223 54.81 11459 10 - -

transit-services-of-frederic

k-county 20130128 2046.gml.20
302 447 40 3.48 12 8 - -

translink-archiver 20151219 0

124.gml.80
8746 18471 556 15.3 5726 16 - -

tursib 20110626 1306.gml.20 212 352 36 3.33 18 17 - -
view2gt 20150927 1744.gml.50 312 584 49 5.16 99 7 - -
massachusetts srta 2014-11-13

.gml.50
96 193 9 8.44 38 6 argmat

-mpg
428.62

longueuil qc 2016-01.gml.20 2241 3537 313 3.47 101 15 gg-sts 40.56
orange-county-transportation

-authority 20151202 1534.gml.

20

4065 6543 549 4.09 289 24 gg-sts 30.90

Continuation of the previous table

Domain Barabasi-Albert (solved by at most 1 solver)

AAF Args Atts NT
SCCs

Avg
nt scc
size

Max
scc
size

Layers Solver Time

BA_80_80_2 81 145 6 11.83 59 3 - -
BA_100_80_4 101 181 7 12.57 66 3 - -
BA_100_90_2 101 191 5 19.20 74 4 - -
BA_120_40_4 121 169 13 4.77 19 6 - -
BA_120_80_3 121 217 7 14.86 81 4 - -
BA_140_70_4 141 238 10 10.80 65 4 - -
BA_160_90_1 161 305 8 19.13 112 5 - -
BA_160_70_2 161 272 15 8.47 41 4 - -
BA_160_80_2 161 289 11 12.73 97 6 - -
BA_180_80_2 181 325 17 9.53 48 5 - -
BA_180_80_3 181 325 10 15.50 119 4 - -
BA_180_90_5 181 343 4 41.75 155 3 - -
BA_200_50_3 201 301 29 4.48 24 8 - -
BA_200_80_1 201 361 12 14.42 126 5 - -
BA_100_70_1 101 170 9 8.78 46 4 argmat-mpg 298.97

