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Abstract

Today algorithmic decision-making (ADM) is prevalent in
several fields including medicine, the criminal justice system,
financial markets etc. On the one hand, this is testament to
the ever improving performance and capabilities of complex
machine learning models. On the other hand, the increased
complexity has resulted in a lack of transparency and inter-
pretability which has led to critical decision-making models
being deployed as functional black boxes. There is a general
consensus that being able to explain the actions of such sys-
tems will help to address legal issues like transparency (ex
ante) and compliance requirements (interim) as well as liabil-
ity (ex post). Moreover it may build trust, expose biases and
in turn lead to improved models. This has most recently led to
research on extracting post-hoc explanations from black box
classifiers and sequence generators in tasks like image cap-
tioning, text classification and machine translation.
However, there is no work yet that has investigated and re-
vealed the impact of model explanations on the nature of hu-
man decision-making. We undertake a large scale study using
crowd-sourcing as a means to measure how interpretability
affects human-decision making using well understood prin-
ciples of behavioral economics. To our knowledge this is the
first of its kind of an inter-disciplinary study involving inter-
pretability in ADM models.

Introduction
In the context of machine learning and more generally in
algorithmic decision-making systems (ADMs) interpretabil-
ity can be defined as “the ability to explain or to present in
understandable terms to a human” (Doshi-Velez and Kim
2017). Inspite of the application of ADMs in a breadth of
domains, for the most part, they are still used as black boxes
which output a prediction, score or rankings without un-
derstanding partially or even completely how different fea-
tures influence the model prediction. In such cases when
an algorithm prioritizes information to predict, classify or
rank, algorithmic transparency becomes an important fea-
ture to keep tabs on restricting discrimination and enhancing
explainability-based trust in the system.
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Why Interpretability?
Interpretability is often deemed critical to enable effective
real-world deployment of intelligent systems, albeit highly
context dependent (Weller 2017). For a researcher or devel-
oper, high interpretability is crucial to understand how their
system/model is working, aiming to debug or improve it. For
an end user, it provides a sense of what the system is doing
and why, to enable prediction of what it might do in unfore-
seen circumstances and build trust in the technology. Ad-
ditionally, adequate interpretability provides an expert (per-
haps a regulator) the ability to audit a prediction or decision
trail in detail and verify whether legal regulatory standards
have been complied with. For example, explicit content for
innocuous queries (for children) or to expose biases that may
be hard to spot with quantitative measures.

Recent work has highlighted the opportunities for com-
puter scientists to take the lead in designing algorithms and
evaluation frameworks which avoid discrimination and en-
able explanation (Goodman and Flaxman 2016). Also, many
regulatory policies now require or will require algorithmic
transparency. Take for example the European Union’s new
General Data Protection Regulation (GDPR) which will
take effect from 25 May 2018 onwards, that restricts au-
tomated individual decision-making which significantly af-
fects users (Art. 22 GDPR). The law intends to create a right
to explanation, whereby a user can ask for an explanation of
an algorithmic decision that was made about them (Art. 12,
13(2) lit. f, 14(2) lit. g GDPR).

But how is human decision-making affected when ADMs
are accompanied with explanations? How does it affect ac-
ceptability of ADMs ? Does it increase trust in the ADMs ?
We intend to initiate large scale studies using crowdsourcing
based on behavioral economics in order to understand how
and if human decision-making is impacted when ADMs are
accompanied with explanations.

Why Behavioral Economics?
Various external factors shape the design and effects of al-
gorithmic decision-making systems and ultimately define
the adequate implementation of interpretability measures.
Besides being constrained by the institutional and regula-
tory framework, an optimal design further anticipates be-



havioral aspects of human-agent interaction (Mosier and
Skitka 2018). We argue that only an interdisciplinary ap-
proach allows to analyze these factors comprehensively. In-
troducing behavioral economics offers such an integrative
approach, that could substantially advance prevailing discus-
sions in manifold dimensions. Over the last decades, behav-
ioral economists have developed progressively detailed and
sophisticated models of human behavior. This process has
yielded a rich set of meticulous experimental methods and
inherently diverse theoretical models (Kagel and Roth 2016;
Camerer, Loewenstein, and Rabin 2011). While these mod-
els of human behavior need to account for the progress in
artificial intelligence (Camerer 2017; Marwala and Hurwitz
2017), they enable a sound analysis of ADM systems in-
creasingly penetrating into society. Specifically, we aim to
examine how human behavior changes in human-agent en-
vironments and whether these changes have repercussions
for economic outcomes. For instance, we are interested in
total productive activity, the frequency of economically rel-
evant interactions, cooperation and coordination activity or
changes in overall as well as individual welfare. The use of
pertinent economic models enables to generalize empirical
findings and subsequently derive inferences about effects in
our outcomes of interest. Consequently, certain ADM de-
sign and regulatory choices can be evaluated on relevant
societal dimensions using straightforward counterfactuals
(Kleinberg et al. 2017). Our approach therefore promises
evidence that supports the design of economic policy mea-
sures with consequences for constructing machine-learning
systems (Athey 2017; 2018).

To arrive at a suitable research design integrating behav-
ioral economic science, our work in progress focuses on the
effects of interpretability in human-agent interaction. For in-
stance, explicitly quantifying the economic value of inter-
pretability and identifying beneficiaries has implications for
both the design of ADM systems and regulatory choices. We
rely on ultimatum bargaining - a prominent working-horse
in experimental economics - to derive novel insights with
respect to the influence of ADM systems and interpretabil-
ity on human behavior. Overall, we ask: Does the introduc-
tion of ADM systems influence human decision-making in
a straightforward bargaining context? How do ADM sys-
tems adapt to these presumably new behavioral patterns?
Beyond those rather general considerations, we specifically
focus on interpretability to examine, e.g.: Does increased in-
terpretability influence established behavioral concepts such
as acceptance, reciprocity or fairness concerns? Does it
increase the quantity of economically relevant interactions
and subsequently affect overall welfare?

Interpretability of ML Models
Interpretability in Machine Learning has been studied for
a long time in classical machine learning as a desirable
property to have while chosing a certain model family un-
der interpretability by design like decision trees, falling rule
lists etc. However, the success of Neural networks (NN) and
other expressive yet complex ML models have only intensi-
fied the discussion on post-hoc interpretability or interpret-
ing already built models.

Consequently, interpretability of these complex models
has been studied in various other domains to better under-

stand decisions made by the network – image classification
and captioning (Xu et al. 2015; Dabkowski and Gal 2017;
Simonyan, Vedaldi, and Zisserman 2013), sequence to se-
quence modeling (Alvarez-Melis and Jaakkola 2017; Li et
al. 2015), recommender systems (Chang, Harper, and Ter-
veen 2016) etc. Interpretable models can be categorized into
two broad classes: model introspective and model agnos-
tic. Model introspection refers to interpretable models, such
as decision trees, rules (Letham et al. 2015), additive mod-
els (Caruana et al. 2015) and attention-based networks (Xu
et al. 2015). Instead of supporting models that are function-
ally black-boxes, such as an arbitrary neural network or ran-
dom forests with thousands of trees, these approaches use
models in which there is the possibility of meaningfully in-
specting model components directly e.g. a path in a decision
tree, a single rule, or the weight of a specific feature in a lin-
ear model.

Model agnostic approaches on the other hand extract post-
hoc explanations by treating the original model as a black
box either by learning from the output of the black box
model, or perturbing the inputs, or both (Ribeiro, Singh, and
Guestrin 2016; Koh and Liang 2017). Model agnostic in-
terpretability is of two types: local and global. Local inter-
pretability refers to the explanations used to describe a single
decision of the model. There are also other notions of inter-
pretability, and for a more comprehensive description of the
approaches we point the readers to (Lipton 2016).

Interpretability and Human Decision-Making
Interpretability is no end in itself. The effects of inter-
pretability remain ambiguous even if one learns about the ef-
fectiveness of interpretability measures as obtained by stud-
ies like (Garcia et al. 2009; Gacto, Alcala, and Herrera
2011). Rather, to resolve this ambiguity, one needs to ask in
how far variation in interpretability transfers into variation
in behavior.

For instance, additional explanations could foster a more
trustful environment that motivates fruitful human-agent in-
teractions. However, providing additional information might
conversely result in an erosion of trust due to a more thor-
ough scrutiny with respect to agent recommendations. Con-
sider an agent supporting a physician (expert) in diagnosing
a patient’s (consumer) MRI scan. The physician might gen-
erally trust the agent based on positive experience and com-
mon knowledge about its superiority; thus reaching higher
accuracy in his diagnosis. In contrast, learning about unfa-
miliar features used by the agent might cause distrust and
has the physician stick to her own assessment. This hypoth-
esis stems from evidence gathered by observing human in-
teraction (Keller and Staelin 1987; Grimmelikhuijsen et al.
2013; Cramer et al. 2008; Ditto et al. 1998). Hence, in-
creased interpretability might diminish the efficiency of such
economically vital consumer-expert interactions.

The consideration above illustrates only one distinct case
with inherent ambiguity regarding the effects of introduc-
ing increased interpretability. Besides trust, one might think
of concepts established in behavioral economics like ac-
ceptance, accountability or social-preferences. Further, to
obtain a more thorough understanding of increased inter-
pretability, one needs to not only evaluate its effects on the
end-user, but rather also consider regulators, developers or



consumers. Such a comprehensive approach poses several
challenges to the design of experiments and respective mod-
eling of human behavior. Our work in progress relies on ulti-
matum bargaining to derive novel insight with respect to our
considerations outlined above.

Crowdsourcing Methodology
Over the last decade, microtask crowdsourcing platforms
such as Amazon’s Mechanical Turk1 and CrowdFlower2

have been used to support or replicate findings from psy-
chology and behavioral research, and also to run human-
centered experiments on a large scale (Mason and Suri 2012;
Crump, McDonnell, and Gureckis 2013; Chandler, Mueller,
and Paolacci 2014; Gadiraju et al. 2017). Previous works
have established that crowdsourcing platforms can be reli-
ably leveraged to conduct large scale behavioral experiments
that can be ecologically valid.

Ultimatum Bargaining Experiment
Ultimatum bargaining represents one of the most promi-
nent games researched in experimental economics (Gueth,
Schmittberger, and Schwarze 1982). Although it seems quite
simple, understanding behavior in this framework remains
complex even after decades of research (Gueth and Kocher
2014; van Damme et al. 2014). However, there is a rich liter-
ature allowing to integrate and evaluate the relevance of our
findings. Literature on automated, though not artificial intel-
ligent, agents from computer science and economics, makes
the ultimatum game an optimal working horse to test our hy-
pothesis. Our basic framework replicates the simplest design
of the ultimatum game. A proposer X decides on the distri-
bution of a pie with size p. X receives x and the responder
Y receives y, where x, y ≥ 0 and x + y = p. In a sequen-
tial process, the responder Y learns about the proposal (x, y)
and either accepts δ(x, y) = 1 or rejects δ(x, y) = 0. Pay-
offs are given by δ(x, y)x and δ(x, y)y, i.e. if the responder
Y rejects both earn nothing.

A straightforward solution of the game - merely based on
monetary outcomes - implies that responder Y should ac-
cept all positive offers, which gives δ(x, y) = 1 for y > 0.3
This is anticipated by the proposer X , which has him offer
the minimal positive amount. In consequence, X receives
almost the whole pie p and Y receives little more than noth-
ing. However, actual behavior observed in prior experiments
shows that the optimal offer by the proposer amounts to
40 to 50% of the pie. This might for example reflect fair-
ness concerns or merely strategic thinking avoiding punish-
ment by the responder who rejects offers perceived as unfair
(Camerer 2003).

Experimental Setup
We will carry out a large scale ultimatum bargaining experi-
ment by recruiting workers from a crowdsourcing platform.

1https://www.mturk.com/
2https://www.crowdflower.com
3While this represents the weakly dominant strategy for Y , all

distributions (x, y) can be established as equilibrium outcomes.
For multiple equilibria consider a certain threshold ȳ for accep-
tance by the responder Y , such that [(x, y), δ(x̃, ỹ) = 1] if ỹ ≥ y
and δ(x̃, ỹ) = 0 otherwise.

Workers will play the roles of proposers and responders un-
der the following different between-subjects treatment con-
ditions, to understand the effects of automated decision-
making and interpretability on human behavior. We will fol-
low guidelines from previous works to ensure reliable par-
ticipation of crowd workers (Gadiraju et al. 2015).

I: Human-Human Interactions. This condition follows the
simplest design of the ultimatum game as described earlier,
consisting of a proposer and responder (roles that will be ful-
filled by randomly paired workers recruited from the crowd-
sourcing platform). We will record the interactions between
N unique (proposer, responder) pairs, i.e., the offers made
by the proposer and whether they are accepted or rejected
by the responder. Following this, the proposer and respon-
der will independently complete certain personality related
questionnaires.

II: Human-Machine Interactions. Using the N human-
human interactions and features engineered from condition
I, we will train a machine learning model that can classify
whether a bid from a proposer is likely to be accepted. In this
condition, proposers will be given the opportunity to use the
machine learning model as an algorithmic decision-making
system that can aid them in making a proposal. The pro-
posers will be allowed to probe the ADM system with pro-
posals and the system would report the likelihood of the pro-
posal being accepted. The proposers will be allowed to probe
the ADM system any number of times, but can only make
a proposal to the responders once. The responders will be
made aware of the fact that the proposer have a ADM system
at their disposal to help them in making a proposal. Once
again we will record the interactions between N unique and
distinct (proposer, responder) pairs. These interactions be-
tween the proposers with the ADM system, as well as with
the responders will provide us valuable insights on the ef-
fects of ADM on human behavior and how trust manifests
and fluctuates via such interactions.

III: Human-Machine Interactions with Proposers as Ob-
servers. This condition is similar to II, except that the pro-
posers will not be allowed to probe the ADM system but
will only observe the proposals made by the system on her
behalf. The responders will be conveyed that the offer being
made is from an ADM acting on behalf of the proposer.

IV: Human-Machine Interactions with Explanations. This
condition is virtually identical to II, except that proposers in
this case will be aided with explanations alongside likeli-
hood estimates to enhance interpretability when they probe
the ADM system. Note that we consider model-introspective
variants of interpretability where access to an already built
model is provided. This will allow us to understand the role
of interpretability in shaping human behavior while interact-
ing with ADM systems.

V, VI, VII: ADM Learned from Human-Machine Inter-
actions. To analyze the impact of the type of interactions
that the ADM is learned from, we will train a similar ma-
chine learning model by using the interactions in condition
II, that can aid a proposer in making an offer to the respon-
der. This will allow us to investigate the impact of the type
of interaction data (human-human versus human-machine)
that the ADM is learned from, on the entailing observations
of human behavior. Thus, the conditions V, VI and VII are
repetitions of II, III and IV except for the interactions that
the ADM is learned from.
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