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ABSTRACT

Spatial health surveillance systems typically identify high
risk regions based only on the residence address of diseased
individuals. Geo-located social media data offers a unique
opportunity to obtain information on the spatial movements
of individuals as well as their disease status. This can be
a rich source of information to identify high risk places
even in regions where no one lives such as parks and en-
tertainment zones. We develop two models and their re-
spective algorithms to deal with this challenging problem.
We demonstrate the applicability and effectiveness of our
proposed methods by applying them to a collection of geo-
tagged Twitter messages coming from Brazil. In particu-
lar, we target the identification of spatial clusters associated
with Dengue, a vector-borne disease that affects millions of
people in Brazil annually, and billions worldwide, to show
the usefulness of our methods for disease surveillance.

1. INTRODUCTION

The current fast increasing popularity of devices equipped
with location sensors offers unprecedented possibilities for
data mining research. The deluge of geo-located data daily
generated across several sources (e.g. mobile phones, con-
nected vehicles) allows us to answer many questions regard-
ing the behavior of targeted populations with a timing and
precision not possible in the last decade.

For instance, health surveillance systems usually identify
high risk places based only on the residence address or the
working place of diseased individuals. This approach ignores
a multitude of exposures the individuals are daily subject to
and therefore provides little information about the actual
places where people are infected, the truly important infor-
mation for disease control. The increasing availability of
geo-located data in online platforms offers a unique oppor-
tunity: in addition to identifying diseased individuals, we
can also follow them in time and space as they move on the
map. Incorporating the mobility of individuals into spatial
analysis requires the development of new models that can
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cope with this type of data in a principled way and efficient
algorithms to deal with the ever growing amount of data.

In this research, we give a contribution in such direction.
We exploit geo-located social media data to detect spatial
clusters of disease infection. Our main goal is to contrast ob-
served mobility patterns for diseased and non-diseased indi-
viduals in order to detect localized regions where likelihood
of being infected by a given disease is higher than in the rest
of the map. Identifying places where people have higher risk
of being infected may be key to surveillance actions. In sum-
mary, our contributions are as follows: (i) We introduce the
problem of detecting spatial clusters of infection risk from
mobility data; (ii) We propose two novel models, and their
respective algorithms, for the discovery of spatial clusters of
infection risk; (iii) We propose an extraction and modeling
strategy of geo-located social media data to the proposed
problem; (iv) We present experimental results to illustrate
our approach in action by applying our algorithms to a col-
lection of geo-located Twitter data from Brazil.

2. PROBLEM DESCRIPTION

We use Figure 1 to explain our problem. Each individual
is indexed by a number ¢ and has a set of n; spatial positions.
The spatial points are given by each lat-long coordinate pair
embedded in a geo-located social media post. The positions
from a single person are connected by line segments in Fig-
ure 1, representing her movements. The individuals are ad-
ditionally labeled by two colors according to their status:
disease cases (in red) or controls (in blue). The cases are
those individuals who mentioned a personal experience with
the disease in at least one message (further details in Section
4). The messages which have mentioned personal experience
with the disease are marked with a hatched shadow in Fig-
ure 1. The figure also shows a spatial region Z where the
risk of becoming a case might be higher than in the rest of
the region.

Our main goal is then to scan the map varying the po-
sition, shape, and size of the candidate regions, looking for
the region Z that most likely is a higher risk area. After
finding this most likely hot spot Z, we want to calculate
its probability of occurrence to evaluate whether there is
enough evidence to call it a real cluster.

Several challenges emerge in this problem: (i) Each i-th
individual is not associated with a single location, as in the
usual spatial cluster detection task [2, 5, 4], but rather with a
series of n; successive positions on the map; (ii) The number
n; of positions of each individual is quite variable, depend-
ing on her social media usage. Clearly, the locations can



Figure 1: Schematic drawing of a potential infec-
tion risk region (shaded area) and the individuals
movements of cases (red) and controls (blue).

not be put on the map ignoring the different contribution
of each individual, otherwise, an extreme individual would
dominate the analysis; (iii) The positions of the disease-
labeled messages (indicating personal experience) are not
necessarily those where the infection risk is higher. Indeed,
our assumption is that the individual entire mobility pattern
(and not a single position) will be informative of the high
risk areas.

3. DETECTING SPATIAL CLUSTERS

We adopted a case-control framework, where the data con-
sist of locations, within a specified geographical region, of all
known cases of a particular disease, and of a random sample
of controls drawn from the population at risk. We labeled
the individuals such that the first N of them are the cases
and the last M are the controls.

In our analysis, the key innovation is that the input is
a series of locations rather than a single location for each
individual. Let x; = (zi,1,...,%in;) be the point events
associated with the n; messages issued by the ¢-th individual,
i =1,...,N + M. Each z; ) represents the geographical
message location such as a lat-long coordinate pair. For
the cases i = 1,...,N, at least one message in x; refers
to a personal experience with the disease and it is denoted
disease-labeled message. Typically, there will be a small
percentage of disease-labeled messages for each individual.
None of the control individual messages are disease-labeled.

Let Z be a (large) set of geographical regions that are
candidates to be spatial clusters. There are potentially in-
finite regions in Z and they cover the entire region under
analysis. By varying Z € Z we scan the map looking for the
zone Z that most likely is a higher risk area. After finding
this most likely hot spot Z, we calculate its likelihood to
evaluate whether there is enough evidence to identify it as
a real cluster.

The multiple number of locations associated with each
individual, rather than the usual single location (such as
their place of residence), leads us to consider two different
models, which we call Visit Model and Infection Model [6].

3.1 Visit Model

Let V; . be the random number of messages in Z among
the n; total number of messages issued by the i-th individ-
ual. Use 1[A] to represent the indicator random variable
that the event A occurs. Hence 1[V; . > 1] is the binary
random variable indicating whether the i-th individual ever
issued a message inside the candidate zone Z. These ran-
dom variables can be assumed independent, but they are not
identically distributed as the success probability depends on
the number n; of messages issued by each individual. Denote
by p = p(Z) the probability that, giving that a case indi-
vidual is tweeting, she does it from within Z. Let p = p(Z)
be the similar probability for a control individual. We are
interested in zones where p(Z) > p(Z).

For a user who is a case, we have P (V; . > 1) equals to
1—(1—p)™ and, for a control user, it is equal to 1—(1—p)"™*.
Considering a fixed zone Z, the visit model likelihood is
given by

. = N+M - R
Lo(Z,p.p) = (1 = p) =m0l (1 p) Ty mailt =0
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where we simplified the expression by dropping the zone Z
from p(Z) and p(Z) writing simply p and p.

3.2 Infection Model

We will estimate the probability that someone issues a
disease-labeled message (becomes a case) given that she vis-
ited k times the region Z. Let r = r(Z) be the infection
risk inside the candidate cluster and 7 = r(Z) the infection
risk in Z, the region outside Z. We are interested in zones
Z where r(Z) > r(Z).

Let I; be the binary indicator that the individual i is a
case. We assume that these binary random variables are
independent. They are not identically distributed since their
probability of I; = 1 depends on the number of visits V; . by
the i-th individual to the zone Z. We have P(I; = 1|V, =
k)=1-P(Li=0Vi.=k)=1—(1-n)fQ-m)" " =
w (ki,r, 7). Therefore, the likelihood of the pattern of cases
and controls is given by

N+M
La(Zr,m) = ] G (hir )" (1= (ki )"
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3.3 Evaluating the Data Evidence

Recall that Z is the set of candidate zones to be scanned.
The test statistic we adopt for the Visit Model is

Ty = Li(Z,p,p) = sup

ZE2

P(Z)>p(Z)

and an analogous formula defines T» for the Infection Model.

In order to verify its statistical significance, we must use

Monte Carlo simulation to obtain the null hypothesis dis-

tribution of 77 and 7> as the exact or asymptotic analytic

calculation is not feasible. The null hypothesis is given by

either Hyp : p=p or Ho : r = 7 for all Z € Z for the Visit
Model and the Infection Model, respectively.

The Monte Carlo distribution is determined by randomly
permuting the labels of cases and controls among all individ-
uals. Using this pseudo dataset, we proceed the entire scan
over all Z € Z to obtain a pseudo value for T3 and T». As
this will be replicated several times, we call these values Tl(l)



and T2(1>. We then select another random permutation of the

labels, scan the zones and find Tf2> and TQ(Q). Independently,
we repeat this procedure a large number B — 1 of times gen-
erating a set of pseudo values plus the values calculated with
the actually observed dataset: 11, Tl(l), T1(2)7 .. ,TI(B_I) and
TQ,T2(1>,T2(2>, ... ,TQ(Bfl). Under the null hypothesis, these
values are independent and identically distributed. There-
fore, the rank of the real observed statistics 71 and T5 are
uniformly distributed on the integers 1,..., B. This implies
that an exact p-value for the null hypothesis of visit model
is given by

1
p1= §(1+#{Tf’“) >T,k=1,...,B—1})

and an analogous formula defines ps for the Infection Model.
The test is significant at the level « € (0,1) if p,, < . When
either test is significant, the most likely zone is given by the
corresponding maximizing argument Z in (1).

We also identify secondary clusters, zones with highly sig-
nificant p-values, which do not intersect with the most likely
zone Z. The non-intersecting restriction is necessary be-
cause, if one zone Z is the most anomalous in Z, many other
sets in Z that are only slightly different from Z will pro-
duce very similar likelihood numbers. These zones should
be ignored since the most anomalous among them has al-
ready been pinpointed. Among the non-intersection zones,
we look for those whose p-value p,, is smaller than a where
the p-values are calculated as described above.

4. EXPERIMENTAL ANALYSIS

In this section, we apply both models to search for spatial
clusters of Dengue infection using Twitter data.

Dengue Overview: Dengue is an emerging mosquito-borne
viral disease with estimated 100 million global infections per
year [1]. Brazil reports more cases than any other country L
In 2015 the Brazilian Ministry of Health reported approxi-
mately 1.6 million cases of dengue infection. This number
represents a rate of 788 cases per 100 thousand inhabitants,
well above the red line indicated by the World Health Orga-
nization (300 cases). Dengue has a huge amount of uncertain
and hard to obtain (if feasible) parameters driving the dis-
ease. Human mobility is one of the key factors, especially
due to the mosquito day-biting habit [8]. Thus, attaching
each individual to a single location, their home address, may
be a poor indicator of the regions with higher level of inter-
action between humans and infected vectors.

Dataset: Our geo-located data were collected through the
Twitter Streaming API?. The collection period goes from
January 1st, 2015 to December 31th, 2015 during which we
were able to crawl a total of 106,784,441 Twitter messages.
We set a geographic boundary box covering the Brazilian
territory and consequently all collected tweets are geo-tagged
with lat/long GPS coordinates. Based on the geographic co-
ordinates, we assigned each tweet to a valid municipality to
perform a city-level analysis.

Content Filtering and Analysis: Individuals are labeled
as cases or controls based on the content of their tweets.
In order to find individuals presenting a dengue infection
episode, we follow [7] and search for all the tweets presenting

"http://www.paho.org/data/index.php
Zhttps:/ /dev.twitter.com/streaming/overview

the keywords dengue and Aedes. These messages are then
classified into one of five categories: personal experience,
information, campaign, opinion and irony/sarcasm. After
classifying the messages, the group of case individuals are
defined as those users who issued at least one tweet assigned
to the personal experience category. The control individuals
group is composed by the remaining users. Notice that, the
individuals’ mobility patterns are composed by the locations
of all messages they issued in the period.

In order to run the algorithms, the zones Z are defined
by overlaying different grids on the map and each grid cell
corresponds to a zone to be scanned. The size of the grid
cells vary in order to accommodate risk zones that present
different characteristics. We set the number of Monte Carlo
replicas to B — 1 = 999 and define the significance level
as a = 0.05. We present the results for 4 Brazilian cities
in Table 1, Goiénia (GOI), Limeira (LIM), S&o José dos
Campos (SJC) e Sorocaba (SOR).

Table 1: Results for Visit and Infection models. LL
is the log-likelihood; r | p and 7 | p) are probabilities
considered by the models; p-v is the value; N and
M are the number of case/control individuals in the
zone; N_k; and M_k; are the number of messages
issued inside the zone by case/control individuals.

City LL r|p 7|p pv N Nk M Mk
Visit Model
GOI -135.32 0.04 0.01 0.01 48 6352 115 14600
LIM -89.52  0.04 0.01 0.019 43 5655 80 7940
Infection Model
-198.51 048 0.01 0.014 5 11 1 1
LIM -200.16 0.07 0.01 0.02 4 8 3 10
-200.35 0.07 0.01 0.02 3 97 7 9
SJC  -427.44 0.14 0.01 0.055 5 28 2 4
SOR -446.95 0.04 0.01 0.002 3 150 8 16

Notice that our models were able to find spatial clusters
in 3 cities that faced strong surges of Dengue during the
year of 2015. This is a good indication of the usefulness
of the algorithms for disease surveillance. Figure 2 depicts
the zones found by each model in the corresponding cities.
Notice that in the city of Limeira the models identified dif-
ferent regions within the same city. These results also point
out the complementarity of the models, so that they may
be used together towards establishing two different levels of
surveillance.

5. RELATED WORK

The spatial cluster detection task aims at detecting local-
ized spatial regions or zones, called spatial clusters, where
the probability of some event occurrence is higher than in the
rest of the map. Spatial cluster detection methods, such as
the spatial and subset scan statistics [2, 3, 4], search the data
to uncover the location and boundaries of any possible clus-
ters. These methods usually work in a unsupervised manner,
without prior knowledge of the relevant spatial patterns of
anomalies such as their center, shape, or size. They also



Figure 2: Maps of the cities with the hot spots found
by both models. The cities are Goiania, Limeira,
Sao José dos Campos and Sorocaba. The green and
black squares depict the zones found by the Visit
and Infection models respectively. We also display
the case and control individuals spatial points as red
and blue points, respectively.

provide meaningful statistical measures to evaluate the sig-
nificance of detected clusters. A major application of spatial
cluster detection methods is the detection of disease clusters
to suggest risk factors, to focus preventive efforts, and for
outbreak monitoring [3, 4]. However, they have also been
applied to other tasks, such as the identification of hot spots
zones based on the locations of traffic accidents [5].

In all this large body of work there has been one invariant
aspect of the spatial characterization of the individual input
data: there is only one spatial position associated with each
one of them. Let it be a pixel (as in a medical image) or
a random spatial event (such as an accident location), they
have one single spatial location associated, either it be a case
or a control individual. In spatial epidemiology, searching
for environmental putative sources of infection or disease, in
a few cases there have been two positions associated with
each individual, his residential and working place addresses.
The recent availability of spatial data offers a unique oppor-
tunity and the existing data mining techniques for spatial
cluster detection fail to address this new setting as they
require a single location to each individual under analysis.
Our proposal generalizes this approach by considering the
individuals’ mobility patterns instead of a single point.

6. CONCLUSIONS

Geo-located social media data offers a unique opportunity
to obtain information on the spatial movements of people.
These data are easily available, in large amount and with al-
most no delay. Furthermore, we can extract the disease sta-
tus as cases and controls of the individuals from the textual

content. The stochasticity of location data is not appropri-
ate for the usual spatial cluster detection tools such as the

traditional spatial scan statistic approach [2, 4]. Each user
is represented by a different number of geographic points

and the variability of these numbers is large.

One limitation of our approach is the self-selected sample
nature of our data. A random sample of social network users
is not a random sample of the risk population. There are
several biases involved in such a sample. However, we feel
that there is merit in developing and using these methods
for two reasons. First, in poor regions with lack of infor-
mation and resources, the suggestion of potential regions of
high risk may target a higher proportion of the available re-
sources toward regions with larger probability of being true
risk clusters. Second, the population coverage of social net-
works is expected to continue to expand, resulting in a larger
and less biased sample of the population. Additionally, we
could imagine using these methods not just on geo-tagged
social media data but on user location data more frequently
collected from devices such as cell phones. For example, new
initiatives have sampled individuals and, upon their consent,
tracked their movement 24/7 as well as measured their dis-
ease status (case or control) after some time.
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