
Auditing DBMSes through Forensic Analysis

James Wagner
Supervised by Dr. Alexander Rasin

School of Computing, DePaul University
Chicago, IL USA

jwagne32@depaul.edu

ABSTRACT
The pervasive use of databases for the storage of critical and
sensitive information in many organizations has led to an in-
crease in the rate at which databases are exploited in com-
puter crimes. While there are several techniques and tools
available for database forensics, they usually assume apriori
database preparation, such as relying on tamper-detection
software to already be in place or use of detailed logging.
However, investigators need forensic tools and techniques
that work on poorly-configured databases and make no as-
sumptions about the extent of damage in a database.

In this paper, we present our database forensics meth-
ods, which are capable of examining database content from
a storage image (disk or RAM) without using logs or any
system metadata. We describe how these methods can be
used to detect security breaches in a compromised environ-
ment where the security threat arose from a privileged user
(or someone who has obtained such privileges).

1. INTRODUCTION
Cyber-crime (e.g., data exfiltration or computer fraud) is

a significant concern in today’s society. A well-known fact
from security research and practice is that unbreakable secu-
rity measures are virtually impossible to create. For exam-
ple, 1) incomplete access control restrictions allows users to
execute commands beyond their intended roles, and 2) users
may illegally obtain privileges by exploiting security holes
in a Database Management System (DBMS) or OS code
or through other means (e.g., social engineering). Thus,
in addition to deploying preventive measures (e.g., access
control), it is necessary to 1) detect security breaches in a
timely fashion, and 2) collect evidence about attacks to de-
vise counter-measures and assess the extent of the damage
(e.g., what data was leaked or perturbed). This evidence can
provide preparation for legal action or valuable information
to prevent future attacks.

DBMSes are targeted by criminals because they serve as
repositories of data. Therefore, investigators must have the
capacity to examine and forensically interpret contents of a
DBMS. Currently, an audit log with SQL query history is
a critical (and perhaps only) source of evidence for investi-
gators [5] when a malicious operation is suspected. In field
conditions, a DBMS may not provide the necessary logging

Proceedings of the VLDB 2018 Ph.D. Workshop, August 27, 2018. Rio de
Janeiro, Brazil.
Copyright (C) 2018 for this paper by its authors. Copying permitted for
private and academic purposes..

granularity (unavailable or disabled). Moreover, the storage
itself might be corrupt or contain multiple DBMSes.

Digital forensics provides tools for independent analysis
with minimal assumptions about the environment. A partic-
ularly important and well-recognized technique is file carv-
ing [9], which extracts files (but not DBMS files) from a disk
image, including deleted or corrupted files. Traditional file
carving techniques interpret files (e.g., JPEG, PDF) indi-
vidually and rely on file headers. DBMS files, on the other
hand, do not maintain a file header and are never indepen-
dent (e.g., table contents are stored separately from table
name and logical structure information). Even if DBMS
files could be carved, they cannot be meaningfully imported
into a different DBMS and must be parsed to retrieve their
content. To accomplish that task, DBMSes need their own
set of digital forensics rules and tools.

Even in an environment with ideal log settings, a DBMS
cannot necessarily guarantee log accuracy or immunity from
tampering. For example, log tampering is a concern when a
breach originated from a privileged user such as an adminis-
trator (DBA or an attacker who obtained DBA privileges).
Tamper-proof logging mechanisms were proposed in related
work [7, 10], but these only prevent logs from modifications
and do not account for attacks that skirt logging (e.g., log-
ging was disabled). Knowing that even privileged users have
almost no control of how lowest level storage behaves, an
analysis of forensic artifacts provides a unique approach to
identify tampering in an untrusted environment.

The goal of this work is to 1) develop DBMS forensic
methods, and 2) use these methods to detect and describe se-
curity breaches in compromised environments. Table 1 sum-
marizes the remainder of this paper; future work is bolded.

§ Summary

2

We describe our page-level DB forensics methods:
• Page carving is our DB forensic method. [12, 13].
• DBCarver [15] is our page carving implementation.
• A framework to generalize DBCarver output that

supports application development.

• DB anti-forensics protects against data theft.

3

Forensic-based attack detection:
• DBDetective [14] detects activity that occurred
when logging was disabled by a DBA.
• DBStorageAuditor [16] detects DBMS direct file
tampering (without SQL) by a SysAdmin.
• We will address DBMS log backdating.

• We will quantify the accuracy of our systems. A

reproducible analysis will support our evidence.

Table 1: Summary of the remaining paper.

1

2. DATABASE FORENSICS
Unlike traditional files (e.g., PDF), DBMS files do not

contain headers that allow for file identification. At the
same time, all row-store DBMSes use fixed-size pages to
store user data, auxiliary data (e.g., indexes and material-
ized views), and the system catalog. DBMS data is accessed
and cached in page units. Pages maintain a consistent struc-
ture, whereas individual record structure varies throughout
DBMS storage, which is why we approach database forensics
at the page level. In this section, we describe page carving
including our implementation (DBCarver), future work sup-
port application development from DBCarver output, and
anti-forensics techniques that can sanitize and hide data in
DBMS storage.

2.1 Page Carving
Database page carving is a method we previously intro-

duced for the reconstruction of relational DBMSes without
relying on file system or the DBMS. Page carving is similar
to traditional file carving [9] in that data, including deleted
data, can be reconstructed from images or RAM snapshots
without the use of a live system. Forensic tools, such as
Sleuth Kit [1] and EnCASE Forensic [2], are commonly used
by investigators to reconstruct file system data but are inca-
pable of parsing DBMS files. None of the third party recov-
ery tools (e.g., [6, 8]) are helpful for independent audit pur-
poses because (at best) they only recover “active” data from
current tables. A database forensic tool (just like a forensic
file system tool) should also reconstruct unallocated pieces
of data including deleted rows, auxiliary structures (indexes,
MVs), or buffer cache space.

While each DBMS uses its own page layout, a great deal of
overlap between page layouts allowed us to generalize stor-
age for most row-store DBMSes. In [12] we presented a
comparative page structure study for IBM DB2, Oracle, MS
SQL Server, PostgreSQL, MySQL, SQLite, Firebird, and
Apache Derby. In this work, we also described a parameter
set to define page layout for the purpose of reconstruction.

Deleted Data. When data is deleted, the DBMS initially
marks it as deleted, rather than explicitly overwriting it.
This data becomes unallocated (free listed) storage – in [13]
we described the expected lifetime of forensic evidence within
database storage following deletion and defragmentation.
We described three categories of deleted data: records, pages,
and values. A record is the minimum deletion unit and can
be attributed to a DELETE, an old version of an UPDATE, or
an aborted transaction. A deleted record is identified by
its delete marking during page reconstruction. Dropped or
rebuilt objects create deleted pages, which are identified by
carving system catalog tables. Values from deleted records
are found in auxiliary objects – e.g., indexes; they are iden-
tified by mapping pointers back to records (only records
but not index values are deleted). We presented generalized
pointer deconstruction and pointer-record mapping in [16].

Figure 1 visualizes an example of deleted records for sev-
eral DBMSes. In all three pages, Row2-(Customer2, Jane) is
deleted while Row1-(Customer1, Joe) and Row2-(Customer3,
Jim) are active. Page#1 shows a case when the row de-
limiter is marked, such as in MySQL or Oracle. Page#2
shows when the raw data delimiter is marked in PostgreSQL.
Page#3 shows when the row identifier is marked in SQLite.
Figure 1 omits DB2 and SQL Server example because they
only alter the row directory on deletion.

44

Customer1
Joe
60

Customer2
Jane

1

44

Customer3
Jim

Customer1
Joe

Customer2
Jane

2, 9, 24
Customer3

Jim

2, 9, 24

2, 14, 24

2

0, 0, 0, 1
Customer1

Joe

Customer2
Jane

Customer3
Jim

0, 226, 0, 57

0, 0, 0, 3

3

Row Meta
Data

Row
Delimiter

Raw Data
Delimiter

Row
Identifier

Delete Delete

R
o

w
1

R
o

w
2

R
o

w
3

Figure 1: Deleted row examples: 1-MySQL/Oracle,
2-PostgreSQL and 3-SQLite

Column-Store and NoSQL DBMSes. Currently, our page
carving only supports row-store DBMSes. Column-store
and NoSQL DBMSes do not use the same pages structure as
row-store DBMSes. Future work will expand our database
forensic methods to column-store and NoSQL DBMSes.

2.2 DBCarver
We previously presented our implementation of page carv-

ing called DBCarver [15]. Figure 2 provides an overview of
DBCarver architecture, which consists of two main compo-
nents: the parameter collector (A) and the carver (F).

Parameter
Detector

DBCarver

Iteratively load synthetic data

Capture DB storage

Generate DB
config. file RAM ImagesDisk Images

DBMS

DB config.
files

Reconstructed Storage
● Data pages (e.g.,

table, index)
● Deleted data
● Catalogs, logs

A B

C

D

E

F

G

H

Figure 2: DBCarver architecture.

The parameter detector loads synthetic data into a DBMS
(B), captures storage (C), finds pages in storage, and cap-
tures page layout parameters in a configuration file (E) –
a text file describing page-level layout for that particular
DBMS. Parameters include those described in [12], and have
since been expanded to support other metadata. DBCarver

automatically generates parameters values for new DBM-
Ses, or new DBMS versions. While most DBMSes retain
the same page layout across versions, we observed different
parameter values between PostgreSQL versions 7.3 and 8.4.

The carver (F) uses the configuration files to reconstruct
any database content from disk images, RAM snapshots, or
any other input file (G). The carver returns storage artifacts
(H), such as user records, metadata describing user data,
deleted data, and system catalogs.

2.3 Database Forensic Querying
Even though DBCarver provides a transparent view of

DBMS storage, the output lacks composability needed for
application development. Applications that use DBCarver

output include the work in [16, 17, 15]. Currently, special-
ized output is generated for applications that use DBCarver

2

output. Furthermore, analyzing DBCarver output often re-
quires an in-depth understanding of DBMS storage inter-
nals, which is unreasonable to expect from most users.

To introduce composability for application development
with database forensic output, we propose a framework that
has two goals: 1) defines a standard set of fields that describe
forensically extracted user data, system catalogs, auxiliary
objects, and other metadata, and 2) an user-friendly Python
library that interprets this set of fields. This module will re-
move the need for specialized knowledge of database storage
in development of applications based on DBCarver output.

We propose building a unified and standard output that
automates the initial forensic analysis. To do this, we will
store metadata from the DBCarver output in a series of
JSON objects that maintain a consistent structure for all
row-store relational DBMSes, while the original DBMS snap-
shot returned by DBCarver will be loaded back into our inter-
nal DBMS. The JSON objects will contain categories based
on the work of Garfinkel et al. [4], and designed to include
all available information from DBCarver output.

Working with the forensic output may require users to
have an in-depth understanding of DBMS storage, which is
unreasonable because each DBMS uses a highly customized
storage engine. Such a requirement may prevent users in
other domains from developing applications. We propose
building a Python module to ease the interaction with the
JSON objects and the reconstructed data stored in a DBMS.
This module will contain methods to access individual prop-
erties from the JSON files. Furthermore, this module will al-
low for connections to be made between the metadata stored
in the JSON files and the database snapshot stored in a re-
lational DBMS.

2.4 Anti-Forensics
Anti-forensics (AF) is the field of interfering with forensic

techniques [3]. We note that digital forensic tools can be
used by either investigators or criminals, to both protect
data and to interfere with a criminal investigation. In this
section, we discuss future work that uses AF to protect data.

Two of the most representative AF techniques we consider
are data wiping and steganography. A corporation can use
data wiping to erase the already-deleted customer informa-
tion to prevent data theft. Steganography is a data hiding
technique – e.g., a means to discretely blow a whistle on com-
pany’s wrongdoing. Most prior work in database AF has
been highly DBMS-specific; e.g., Stahlberg erased deleted
MySQL data by modifying the purge thread in source code [11].
We propose a more generalized sanitization method for all
(including closed-source) DBMSes. We distinguish four cat-
egories of deleted DBMS data to wipe in order to prevent
unintended data exposure: records, auxiliary data (e.g., in-
dexes), system catalog, and unallocated pages. To effec-
tively erase this data, the data itself must be overwritten
and page metadata (e.g., checksums and pointers) must be
updated accordingly. We further propose a steganography
strategy that additively alters the database state through
database file modification. This approach bypasses all con-
straints and logging mechanisms since the operation is per-
formed without the DBMS. For example, domain constraints
can be violated, NULL can be added to a primary key column,
and foreign key constraints can be violated – making it un-
likely that the hidden row is found through regular queries.

3. DATABASE SECURITY
Privileged users (e.g., DBA), by definition, have the abil-

ity to control and modify access permissions. Therefore,
audit logs alone are fundamentally unsuitable for the detec-
tion of malicious, privileged users. DBMSes do not provide
many tools to defend against insider threats. Interestingly,
DBAs have little to no control over how data is stored at
the lowest level. Thus, malicious activity will still create
inconsistencies within storage artifacts. In this section, we
consider attack vectors that are detectable using database
forensics methods from Section 2. All of these solutions as-
sume that some level of logging was enabled and is available.

3.1 DBDetective
Audit logs are a critical piece of evidence for investiga-

tors – and existing research has explored tamper-proof logs.
However, DBAs can disable logging for legitimate operations
(e.g., bulk loads). Therefore, we consider an attack where
logging was disabled, malicious activity was performed, and
logging was re-enabled. We proposed DBDetective in our
previous work [14] to detect activity missing from the logs.

To detect unlogged activity, DBDetective compares the
disk images and/or RAM snapshots output from DBCarver

against the audit logs. We classify two categories of hidden
activity: record modifications and read-only queries (i.e.,
SQL SELECT). When a record is inserted or modified the
record itself changes, page metadata may be updated (e.g.,
a delete mark is set) and index page(s) are likely to change.
We flag any artifacts that cannot be explained by a log entry
as suspicious, as shown in Figure 3.

1, Christine, Chicago

3, Christopher, Seattle

4, Thomas, Austin

2, George, New York

5, Mary, Boston

T1, DELETE FROM Customer
WHERE City = ‘Chicago’;

T2, DELETE FROM Customer
WHERE Name LIKE ‘Chris%’;

 Page Type: Table
 Structure: Customer

Log File

UNATTRIBUTED
DELETE

DICE Output

Del.
Flag

Figure 3: Detecting unattributed deleted records.

Figure 3 is an example of unaccounted, deleted row de-
tection. DBCarver reconstructed 3 deleted rows from Cus-
tomer : (1,Christine,Chicago), (3,Christopher,Seattle), and
(4,Thomas,Austin). The log file contains two operations:
DELETE FROM Customer WHERE City = ‘Chicago’ (T1) and
DELETE FROM Customer WHERE Name LIKE ‘Chris%’ (T2). Af-
ter comparing the deleted records to the log file operations,
DBDetective returned (4,Thomas,Austin), indicating a
deleted record that could not be attributed to any of the
logged deletes. Here, we cannot conclude whether T1 or T2
caused the deletion of (1,Christine,Chicago), but that is not
necessary to identify record #4 as an unattributed delete.

When a SELECT query reads a table or a materialized view
from disk, it ultimately uses one of two access patterns: a
full table scan or an index access. Both of these query access
types produce a consistent, repeatable caching pattern. Us-
ing metadata from the pages in the buffer cache, we identify
caching patterns and match them to the logged commands.

3

3.2 DBStorageAuditor
Privileged OS users commonly have access to database

files. Consider a SysAdmin who, acting as the root, mali-
ciously edits a DBMS file in a Hex editor or through Python.
The DBMS is unaware of external file write activity taking
place outside its own programmatic access and thus cannot
log it. Such an attack is a ‘black-hat’ application of anti-
forensics discussed in Section 2.4. In our previous work [16],
we proposed DBStorageAuditor to detect database file tam-
pering.

To detect database file tampering, DBStorageAuditor [16]
uses indexes to verify the integrity of table data. We first
verify the integrity of the indexes by checking for tampering-
based inconsistencies within the B-Tree structure. Once the
index integrity is verified, we deconstruct the index point-
ers and match them to table records using the table page
metadata; we generalized the deconstruction of index point-
ers for all major DBMSes. We organize the index pointers
based on physical location to keep our matching approach
scalable. Finally, any extraneous data or erased data found
through index and table comparison is flagged as suspicious.

3.3 Event Timeline Analysis
Privileged users with access to the DBMS server have

the capability to change server information, specifically the
global clock. This quietly affects the veracity of DBMS au-
dit logs. Consider a system administrator who changes the
server global clock to an earlier date, performs malicious
activity, and resets the global clock. Such an attack back-
dates activity without altering the log files, and disguises
when the actual execution time of the malicious activity.
As future work, we will detect such attempts to backdate
log entries.

In such an environment, any global or logical clock can not
be assumed to be reliable. Therefore, to create a timeline of
events, we believe it is necessary to use storage metadata,
which even a privileged user cannot modify. The internal
RowID pseudo-column is of particular interest to construct a
timeline. RowID is used by indexes and reflects the physical
location of a record including its PageID. Whenever a page
is modified, we can store the PageID to know when data was
modified. Thus, the order of the PageIDs must be consistent
with the order of the log events. We will propose tamper-
proof techniques to store the PageID.

3.4 Quantitative Analysis and Reproducibility
As future work, we will determine the detection accuracy

for each attack described in this section. For each detection
type, we will compute a confidence rating based on a variety
of environment variables (e.g., buffer cache size, volume of
operations, and DBMS storage engine). For example, given
a low volume of DELETE operations in Oracle, DBDetective
would detect attacks with higher accuracy because Oracle
controls storage with a percent page utilization. This engine
setting prevents deleted records from being overwritten until
a page contains a significant quantity of deleted data.

To verify the presence of malicious operations, a repeat-
able analysis analysis must be guaranteed. We will develop
algorithms to collect the minimal subset of storage artifacts
needed to reproduce our results. These collected storage
artifacts must be sufficient to verify the security breach in-
dependent of our analysis. For example, such functionality
is needed to present evidence in court.

4. CONCLUSION
In this work, we presented page carving and our page

carving implementation, DBCarver. Future work will expand
this method to include support for column-store and NoSQL
DBMSes, offer meta-querying functionality, and incorporate
anti-forensic methods to further protect data. We also pre-
sented methods that use page carving to detect security
breaches in untrusted environments. DBDetective consid-
ered an attack where logging was disabled, DBStorageAuditor
addressed DBMS file tampering, and future work will ad-
dress tampering of the system global clock to backdate logs.

5. ACKNOWLEDGMENTS
This work was partially funded by the US National Sci-

ence Foundation Grant CNF-1656268.

6. REFERENCES
[1] B. Carrier. The sleuth kit. TSK.

http://www.sleuthkit.org/sleuthkit, 2011.

[2] L. Garber. Encase: A case study in computer-forensic
technology. IEEE Computer Magazine January, 2001.

[3] S. Garfinkel. Anti-forensics: Techniques, detection and
countermeasures. In 2nd International Conference on
i-Warfare and Security, volume 20087, pages 77–84.
Citeseer, 2007.

[4] S. L. Garfinkel. Automating disk forensic processing
with sleuthkit, xml, and python. SADFE, 2009.

[5] R. T. Mercuri. On auditing audit trails.
Communications of the ACM, 46(1):17–20, 2003.

[6] OfficeRecovery. Recovery for mysql.
http://www.officerecovery.com/.

[7] J. M. Peha. Electronic commerce with verifiable audit
trails. In Proceedings of ISOC. Citeseer, 1999.

[8] Percona. Percona data recovery tool for innodb.
https://launchpad.net/percona-data-recovery-tool-for-
innodb.

[9] G. G. Richard III and V. Roussev. Scalpel: A frugal,
high performance file carver. In DFRWS, 2005.

[10] R. T. Snodgrass et al. Tamper detection in audit logs.
In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, pages
504–515. VLDB Endowment, 2004.

[11] P. Stahlberg, G. Miklau, and B. N. Levine. Threats to
privacy in the forensic analysis of database systems. In
Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 91–102.
ACM, Citeseer, 2007.

[12] J. Wagner et al. Database forensic analysis through
internal structure carving. In DFRWS, 2015.

[13] J. Wagner et al. Database image content explorer:
Carving data that does not officially exist. In DFRWS,
2016.

[14] J. Wagner et al. Carving database storage to detect
and trace security breaches. In DFRWS, 2017.

[15] J. Wagner et al. Database forensic analysis with
dbcarver. In CIDR, 2017.

[16] J. Wagner et al. Detecting database file tampering
through page carving. In EDBT, 2018.

[17] J. Wagner, A. Rasin, D. H. T. That, and T. Malik.
Pli: Augmenting live databases with custom clustered
indexes. In SSDBM, page 36. ACM, 2017.

4

