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Abstract. 4 Querying the Web of Data is highly motivated by the use of
federation approaches mainly SPARQL query federation when the data is
available through endpoints. Different benchmarks have been proposed to
exploit the full potential of SPARQL query federation approaches in real
world scenarios with their limitations in size and complexity. Previously,
we introduced LargeRDFBench - a billion-triple benchmark for SPARQL
query federation. In this work, we pinpoint some of of the limitation of
LargeRDFBench and propose an extension with 8 additional queries.
Our evaluation results of the state-of-the-art federation engines revealed
interesting insights, when tested on these additional queries.

1 Introduction

Due to linked, autonomous, and decentralised architecture of Linked Open Data
(LOD), several queries require collecting information from more than one dataset
also called data sources [8]. Processing such queries called federated queries are of
central importance for the scale-able deployment of Semantic Web technologies.
The importance of federated SPARQL queries for Linked Data management has
led to the development of several federated SPARQL querying federation engines
[12,1,14,5,7,10] etc. Consequently, this has motivated the design of several fed-
erated SPARQL querying benchmarks [9,13,6]. LargeRDFBench [9] addressed
several limitation of FedBench [13] and Splodge [6].

In this work, we highlight some of the limitations of LargeRDFBench. In
particular, the number of distinct datasets (sources for short) required to get
the complete result set of the query is smaller in number (range between 1-4).
As such, federation engines (e.g., [15]) which optimise the ordering of the re-
quired distinct sources explicitly mentioned as SPARQL SERVICES cannot be
fully tested with existing LargeRDFBench queries. To fill this gap, we extended

4 This work will be published as part of the book “Emerging Topics in Semantic
Technologies. ISWC 2018 Satellite Events. E. Demidova, A.J. Zaveri, E. Simperl
(Eds.), ISBN: 978-3-89838-736-1, 2018, AKA Verlag Berlin
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the LargeRDFBench with 8 additional queries of varying complexities and num-
ber of distinct sources required. We discussed the key characteristics of each of
these additional queries and evaluated state-of-the-art engines on these queries.
The evaluation results revealed interesting insights about the performance and
stability of these engines. The LargeRDFBench along with the proposed exten-
sion is available at: https://github.com/AKSW/largerdfbench.

2 Related Work

Over the last decade, various benchmarks have been proposed for comparing
triple stores and SPARQL query processing systems. In this work, we only fo-
cus on federated SPARQL queries benchmarks. SPLODGE [6] benchmark uses
heuristic for automatic generation of federated queries with conjunctive BGPs.
Non-conjunctive queries that make use of the SPARQL UNION, OPTIONAL clauses
are not considered. FedBench [13] comprise of 9 real-world datasets and a total of
25 queries from different domains. Some of the limitations of FedBench was ad-
dressed in LargeRDFBench [9] with more real-world datasets and more complex
and large data queries. In this work, we addressed some of the key limitations
of LargeRDFBench and proposed an extension to this benchmark.

3 Design Features

In this section, we present the key SPARQL query features that should be con-
sidered while designing a federated SPARQL benchmark. Note that all of these
key SPARQL features are formally presented in LargeRDFBench [9]. Here, we
are re-introducing all of them for the sake of self containment of this paper and
understanding the subsequent analysis.

The previous research contributions [6,9] on SPARQL querying benchmark-
ing pointed out that SPARQL queries used in the benchmark should vary with
respect to the the following key query characteristics: total number of triple
patterns, number of join vertices, mean join vertex degree, number of sources
span, query result set sizes, mean triple pattern selectivities, BGP-restricted
triple pattern selectivity, join-restricted triple pattern selectivity, join vertex
types (‘star’, ‘path’, ‘hybrid’, ‘sink’), and important SPARQL clauses used (e.g.,
LIMIT, OPTIONAL, UNION, FILTER etc.).

We represent any basic graph pattern (BGP) of a given SPARQL query as
a directed hypergraph (DH) [11], a generalisation of a directed graph in which a
hyperedge can join any number of vertices. In our specific case, every hyperedge
captures a triple pattern. The subject of the triple becomes the source vertex of
a hyperedge and the predicate and object of the triple pattern become the target
vertices. For instance, the query (Figure 1) shows the hypergraph representation
of a SPARQL query. Unlike a common SPARQL representation where the subject
and object of the triple pattern are connected by an edge, our hypergraph-based
representation contains nodes for all three components of the triple patterns. As
a result, we can capture joins that involve predicates of triple patterns. Formally,
our hypergraph representation is defined as follows:
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SELECT DISTINCT *
WHERE
{
?drug :description ?drugDesc.
?drug :drugType :smallMolecule.
?drug :keggCompoundId ?compound.
?enzyme :xSubstrate ?compound.
?chemReaction :xEnzyme ?enzyme.
?chemReaction :equation ?chemEquation.
?chemReaction :title ?reactionTitle

}

Fig. 1: DH representation of the SPARQL query

Definition 1 (Directed hypergraph of a BGP). The hypergraph represen-
tation of a BGP B is a directed hypergraph HG = (V,E) whose vertices are all
the components of all triple patterns in B, i.e., V =

⋃
(s,p,o)∈B{s, p, o}, and that

contains a hyperedge (S, T ) ∈ E for every triple pattern (s, p, o) ∈ B such that
S = {s} and T = (p, o).

The representation of a complete SPARQL query as a DH is the union of
the representations of the query’s BGPs. Based on the DH representation of
SPARQL queries, we can define the following features of SPARQL queries:

Definition 2 (Join Vertex). For every vertex v ∈ V in such a hypergraph
we write Ein(v) and Eout(v) to denote the set of incoming and outgoing edges,
respectively; i.e., Ein(v) = {(S, T )∈E | v∈T} and Eout(v) = {(S, T )∈E | v∈S}.
If |Ein(v)|+ |Eout(v)| > 1, we call v a join vertex.

Definition 3 (Join Vertex Types). A vertex v ∈ V can be of type “star”,
“path”, “hybrid”, or “sink” if this vertex participates in at least one join. A
“star” vertex has more than one outgoing edge and no incoming edges. A “path”
vertex has exactly one incoming and outgoing edge. A “hybrid” vertex has ei-
ther more than one incoming and at least one outgoing edge or more than one
outgoing and at least one incoming edge. A “sink” vertex has more than one
incoming edge and no outgoing edge. A vertex that does not participate in joins
is “simple”.

Definition 4 (Number of Join Vertices). Let ST ={st1,. . . , stj} be the set
of vertices of type ‘star’, PT ={pt1,. . . , ptk} be the set of vertices of type ‘path’,
HB ={hb1,. . . , hbl} be the set of vertices of type ‘hybrid’, and SN ={sn1,. . . ,
snm} be the set of vertices of type ‘sink’ in a DH representation of a query, then
the number of join vertices in the query #JV = |ST |+ |PT |+ |HB|+ |SN |.
The total number of join vertices in a query is the sum of the total number of
join vertices across all of the BGPs contained in this query.

Definition 5 (Join Vertex Degree). The DH representation of SPARQL
queries makes use of the notion of Ein(v) ⊆ E and Eout(v) ⊆ E to denote
the set of incoming and outgoing hyperedges of a vertex v. The join vertex degree
of a vertex v is denoted JV Dv = |Ein(v)|+ |Eout(v)|.
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The join vertex degree of the complete query is the average of all join vertex
degrees of all the joins contained in this query. In our example (see Figure 1),
the number of triple patterns is seven and the number of join vertices is four
(two star, one sink and path each). The join vertex degree of each of the ‘star’
join vertex (shown in green colour) given in Figure 1 is three (i.e., three outgoing
hyperedges from both vertices).

Definition 6 (Relevant Source Set). Let D be the set of all data sources
(e.g., SPARQL endpoints), TP be the set of all triple patterns in query Q. Then,
a source d ∈ D, is relevant (also called capable) for a triple pattern tpi ∈ TP if
at least one triple contained in d matches tpi.

5 The relevant source set Ri ⊆ D
for tpi is the set that contains all sources that are relevant for that particular
triple pattern.

Definition 7 (Total Triple Pattern-wise Sources). By using Definition 6,
we can define the total number of triple pattern-wise sources selected for query Q
as the sum of the magnitudes of relevant source sets Ri over all individual triple
patterns tpi ∈ Q.

Definition 8 (BGP-Restricted Triple Pattern Selectivity). Consider a
Basic Graph Pattern BGP and a triple pattern tpi belonging to BGP, let R(tpi, D)
be the set of distinct solution mappings (i.e., resultset) of executing tpi over
dataset D and R(BGP , D) be the set of distinct solution mappings of execut-
ing BGP over dataset D. Then the BGP-restricted triple pattern selectivity de-
noted by SelBGP−Restricted(tpi, D) is the fraction of distinct solution mappings
in R(tpi, D) that are compatible (as per standard SPARQL semantics [3]) with
a solution mapping in R(BGP , D) [2]. Formally, if Ω and Ω′ denote the sets
underlying the (bag) query results R(tpi, D) and R(BGP , D), respectively, then

SelBGP−Restricted(tpi, D) =
|{µ ∈ Ω |∃µ′ ∈ Ω′ : µ and µ′ are compatible}|

|Ω|

Definition 9 (Join-Restricted Triple Pattern Selectivity). Consider a
join vertex x in the DH representation of a BGP. Let BGP ′ belonging to BGP
be the set of triple patterns that are incidents to x. Furthermore, let tpi belong-
ing to BGP ′ be a triple pattern and R(tpi, D) be the set of distinct solution
mappings of executing tpi over dataset D and R(BGP ′, D) be the set of distinct
solution mappings of executing BGP ′ over dataset D. Then the x− restricted
triple pattern selectivity denoted by SelJVx−Restricted(tpi, D), is the fraction of
distinct solution mappings in R(tpi, D) that are compatible with a solution map-
ping in R(BGP ′, D) [2]. Formally, if Ω and Ω′ denote the sets underlying the
(bag) query results R(tpi, D) and R(BGP ′, D), respectively, then

SelJVx−Restricted(tpi, D) =
|{µ ∈ Ω |∃µ′ ∈ Ω′ : µ and µ′ are compatible}|

|Ω|
5 The concept of matching a triple pattern is defined formally in the SPARQL speci-

fication found at http://www.w3.org/TR/rdf-sparql-query/
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4 Analysis

We now present analysis of the queries included in the original and the extended
LargeRDFBench, based on the important query features introduced in the pre-
vious section.

4.1 LargeRDBench

The original LargeRDFBench comprises a total of 32 queries which are divided
into three different types namely Simple, Complex, and Large Data queries. The
Simple queries category includes a total of 14 queries (namely S1-S14). The
Complex queries category includes a total of 10 queries (namely C1-C10). The
Large Data queries category includes a total of 8 queries (namely L1-L8). Table
1 shows the characteristics of each query across the important query features
discussed in the previous section. These queries were defined by considering
increasing number of source selected per query. A brief summary of each queries
category is given below.

Simple Queries Simple queries were taken directly from the FedBench queries
[13]. These queries are relatively fast to execute (around 2 seconds [9]) and in-
clude the smallest (in comparison to other categories) number of triple patterns.
The number of triple patterns in this category range from 2 to 7. The number of
join vertices and the mean join vertex degree for these queries are lower (average
#JV = 2.6, MJVD = 2.1, ref. Table 1). Moreover, they only use a subset of the
SPARQL clauses as shown in Table 1. Amongst others, they do not use LIMIT,
REGEX, DISTINCT and ORDER BY clauses.

Complex Queries The complex queries were particularly designed to address
the aforementioned limitations of the simple queries. In particular, this queries
category tackles the limitations with respect to the number of triple patterns,
the number of join vertices, the mean join vertices degree, the SPARQL clauses,
and the small query execution times of simple queries. Consequently, queries in
this category rely on at least 8 triple patterns, i.e., one more than the maximum
number (i.e. 7) of triple patterns in a simple query. The number of join vertices
ranges from 3 to 6 (average #JV = 4.3, ref. Table 1). The mean join vertices
degree ranges from 2 to 6 (average MJVD = 2.93, ref. Table 1). In addition, they
were designed to use more SPARQL clauses, especially, DISTINCT, LIMIT, FILTER
and ORDER BY. The evaluation results presented in LargeRDFBench show that
the query execution time for complex queries exceeds 10 minutes.

Large Data Queries The goal of the queries included in this category was to
test the federation engines for real large data use cases. These queries span over
large datasets and involve processing large intermediate result sets (usually in
hundreds of thousands, see mean triple pattern selectivities in Table 1) or lead to
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large result sets (minimum 80459, see Table 1). The evaluation results presented
in LargeRDFBench show that the query processing time for large data queries
exceeds one hour.

4.2 Extended LargeRDFBench

One of the important question is to know the main motivation behind the need
of an extension of LargeRDFBench with additional queries. The values inside the
brackets of #RS column of Table 1 reveal one of the key problems with original
LargeRDFBench queries. Note that these values show the minimum number
of distinct sources required to get the complete result set. Furthermore, these
values also show the total number of distinct SERVICES used in the SPARQL
1.1 version of each of the benchmark queries. By looking at Table 1, majority
of the simple queries (except S6, S12) require only 2 distinct sources to get the
complete result set of the queries. Even in the complex queries category (i.e.,
C1-C10), the maximum number of distinct sources to get the complete result of
the query is only 3. Finally, in the large data queries category (i.e. L1-L8), there
is only one query which requires 3 distinct sources. All others in this category
require only two data sources.

As an overall result, there are 24 out of total 32 queries which only require 2
data sources to get the complete result set of the queries. This clearly shows that
the federation engines (e.g., [15]) which optimise the ordering of the execution of
SPARQL SERVICES in federated SPARQL 1.1 queries cannot be fully tested with
existing LargeRDFBench queries. This is because if there are only two SERVICES

used in the query, there are only two possible orderings of the execution of these
SERVICES. As such, even the probability of random SERVICE ordering is 0.5
without the need of any heuristics or cost model. The goal of this extension was
to fill this gap by adding more federated queries which require more data sources
to get the complete result set of the query. We now describe the queries which
are added into the LargeRDFBench.

Complex and High Data Sources Queries In this work, we added 8 ad-
ditional Complex and High data sources (namely CH1-CH8) queries into Larg-
eRDFBench, making the total number of queries in the benchmark equal to 40.
These queries have increasing numbers (from 4-10) of the distinct data sources
required to get the complete result set. In addition, the number of join vertices
and the number triple patterns in these queries are much higher than existing
LargeRDFBench queries (see Table 1). Consequently, we will see in our evalua-
tion that the query runtimes of these queries ranges from less than one second
to more than 1 hour. All the extended queries are given at the end of the paper
as in Appendix and their key characteristics are discussed below.

CH1: This query requires 4 LargeRDFBench data sources 6, i.e., DBpedia, New
York Times, Geonames, and Semantic Web Dog Food to get the complete result

6 Please look at LargRDFBench home page for the datasets included in the benchmark
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Table 1: LargeRDFBench query characteristics. (#TP = total number of triple
patterns, #RS = distinct number of relevant source. The values inside brackets
show the minimum number of distinct sources required to get the complete result
set, #JV = total number join vertices, MJVD = mean join vertices degree,
MTPS = mean triple pattern selectivity, MBRTPS = Mean BGP-restricted
triple pattern selectivity, MJRTPS = mean join-restricted triple pattern selec-
tivity, UN = UNION, OP = OPTIONAL, DI = DISTINCT, FILTER, LIMIT,
OB = ORDER BY, REGEX, NA = not applicable since there is no join node
in the query, - = no SPARQL clause used. STar, SInk, Path, HYbrid
Query Join Vertices #TP #RS #Results #JV MJVD MTPS MBRTPS MJRTPS Clauses

S1 1 ST 3 2(2) 90 1 2 0.333 0.66667 0.33333 UN
S2 1 ST,1 P 3 2(2) 1 2 2 0.007 0.66671 0.33338 -
S3 1 ST,1 HY 5 8(2) 2 2 3 0.008 0.00031 0.00015 -
S4 2 ST,2 SI,1 P 5 8(2) 1 5 2 0.019 0.20003 0.20003 -
S5 1 ST,2 P 4 8(2) 2 3 2 0.006 0.00067 0.00064 -
S6 1 ST,2 P 4 6(4) 11 3 2 0.019 0.25013 0.25001 -
S7 1 ST,2 P 4 8(2) 1 3 2 0.020 0.00227 0.00227 -
S8 No Join 2 1(1) 1159 0 NA 0.001 1.00000 0.00000 UN
S9 1 P 3 13(2) 333 1 2 0.333 0.37037 0.03704 UN
S10 1 ST,2 P 5 8(2) 9054 3 2.33 0.016 0.55678 0.00011 -
S11 2 ST,1 SIk,1 HY 7 2(2) 3 4 2.5 0.006 0.04800 0.04788 -
S12 2 ST,1 P,1 SI 6 5(3) 393 4 2.25 0.012 0.07633 0.00020 -
S13 3 ST 5 5(2) 28 3 2.33 0.014 0.11996 0.00428 -
S14 2 ST,1 SI 5 3(2) 1620 3 2 0.012 0.48156 0.00026 OP
Avg. 4.3 5.7(2.1) 907 2.6 2.1 0.057 0.31713 0.08640
C1 2 ST,1 P,1 SI 8 5(2) 1000 4 2.5 0.010 0.25162 0.00023 DI, FI, OP, LI
C2 2 ST,1 P,1 SI 8 5(3) 4 4 2.25 0.009 0.25065 0.00016 OP, FI
C3 2 ST,1 P,1 HY 8 8(3) 9 4 2.25 0.020 0.12542 0.00006 DI, OP
C4 2 ST 12 8(3) 50 2 6 0.0124 0.05407 0.00061 DI, OP, LI
C5 2 ST,2 P,1 SI 8 13(2) 500 5 2.4 0.0186 0.44883 0.00002 FI, LI
C6 2 ST,1 P,2 SI 9 8(2) 148 5 2.8 0.022 0.00103 0.00007 OB
C7 3 ST,1 P,1 SI,1 HY 9 5(2) 112 6 2.33 0.014 0.22688 0.11615 DI, OP
C8 2 ST,1 P,1 HY 11 13(2) 3067 4 3.25 0.012 0.23173 0.00106 DI, OP
C9 2 ST,2 P 9 8(2) 100 4 2.75 0.011 0.58352 0.00028 OP, OB, LI
C10 2 ST,2 P,1 HY 10 5(3) 102 5 2.8 0.002 0.03891 0.00082 DI
Avg. 9.2 7.8(2.4) 509.2 4.3 2.93 0.013 0.22127 0.01195
L1 4 P 6 3(2) 227192 4 2 0.192 0.48437 0.00001 UN
L2 1 P,1 HY 6 3(2) 152899 2 3.5 0.286 0.15652 0.00098 DI, FI
L3 2 P,1 HY 7 3(2) 257158 3 3 0.245 0.07255 0.07205 FI, OB
L4 2 P,2 HY 8 4(2) 397204 4 2.5 0.305 0.38605 0.00008 UN, FI, RE
L5 1 ST,1 P,1 SI,2 HY 11 4(3) 190575 5 3 0.485 0.39364 0.00367 FI
L6 1 ST,1 P,1 SI,2 HY 10 4(2) 282154 5 2.8 0.349 0.23553 0.00298 FI, DI
L7 2 P,1 HY 5 13(2) 80460 3 2.33 0.200 0.26498 0.00007 DI, FI
L8 2 P,2 HY 8 3(2) 306705 4 2.5 0.278 0.33376 0.00001 UN, FI
Avg. 7.62 4.6(2.1) 236793 3.75 2.70 0.293 0.29092 0.00998
CH1 2 ST, 1 P, 1 SI, 1 HY 16 8 (4) 384 5 4.2 0.00200 0.0009 0.1256 DI, OB
CH2 4 ST, 1 P, 1 SI, 0 HY 10 9 (4) 840 6 2.17 0.00005 0.2595 0.58115 DI, FI
CH3 2 ST, 1 P, 3 SI, 1 HY 11 13 (5) 48 7 2.71 0.00101 0.0196 0.3284 OB
CH4 4 ST, 3 P, 2 SI, 1 HY 12 8 (6) 1248 10 2.3 0.00074 0.1184 0.2586 DI, FI
CH5 4 ST, 2 P, 2 SI, 2 HY 18 13 (7) 5 10 2.6 0.05561 0.2946 0.3945 DI, LI
CH6 5 ST, 3 P, 2 SI, 2 HY 24 10 (8) 16 12 2.83 0.00004 0.2522 0.3186 -
CH7 5 ST, 3 P, 4 SI, 2 HY 21 12 (9) 775 14 2.42 0.00007 0.2135 0.2754 DI, LI
CH8 7 ST, 4 P, 6 SI, 2 HY 33 13 (10) 1 19 2.63 0.00007 0.2354 0.2546 OP, FI, LI

Avg. 18.12 10.7(6.6) 274.6 10.37 2.73 0.0074 0.17426 0.31665
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set. The total triple patterns in this query is 16 with result size of 384. The key
characteristic of query is the high mean join vertex degree (i.e., 4.2, ref. Table
1). This means that the number of incoming and outgoing edges of a join node
is high compared to other queries in the benchmark. In other words, the number
of triple patterns in a single SERVICE would be relatively high. A smart query
planner can combine a set of triple patterns and send them all in to the relevant
source as single group. Federation engine needs not to perform the join between
triple patterns. Rather, the join can be migrated to the relevant source (i.e., the
SPARQL endpoint) and hence can greatly improve the runtime performance by
dividing the load between endpoints and federation engine. On the other hand,
a good estimation of the cardinality of multi-triple patterns join can be partic-
ularly challenging. A wrong estimation, can leads to a wrong query execution
plan. We will see in our evaluation results, the runtime for this query ranges
from 1 second to over 1 hour for the different federation engines.

CH2: This query requires 4 LargeRDFBench data sources, i.e., DBpedia, Drug-
Bank, KEGG, and ChEBI to get the complete result set. The total triple patterns
in this query is 10 with result size of 840. The key characteristic of this query is
the low mean triple patterns selectivity (i.e., 0.00005) and high BGP-restricted
(i.e., 0.2595) and Join-restricted (i.e., 0.58115) triple pattern selectivities. This
means that the triple patterns of this query are selective, i.e., they can have
smaller result sizes. However, they are less selective when involved in joins with
other triple patterns. Since the triple patterns are selective, choosing the right
join order which quickly converges to smaller result size is particularly crucial.
The FILTER combined with REGEX made this query particularly very selective.

CH3: This query involves 5 data sources, i.e., DBpedia, DrugBank, KEGG,
ChEBI, Linked TCGA-A to get the complete result set. The triple patterns in-
volved in this query is 11 with result size of 48. Query has relatively high number
of join vertices (i.e., 7 from 11 triple patterns), moderate join vertex degree (i.e.,
2.71), and low mean BGP-restricted triple pattern selectivity (i.e., 0.0196). This
query is a candidate example of using a mix values for the important query fea-
tures and can challenge the federation engines for a mix of these values.

CH4: This query requires 6 LargeRDFBench data sources, i.e., DBpedia, Se-
mantic Web Dog Food, GeoNames, New York Times, Jamendo, and Linked MDB
to get the complete result set. The total number of triple patterns in this query
is 12 with result size of 1248. This query has relatively very high number of
join vertices (i.e., 10 join vertices from 12 triple patterns). This means that the
join order optimisation of this query can be particularly challenging due to more
joins with less number of triple patterns involved in the joins.

CH5: This query requires 7 data sources, i.e., DBpedia, Linked TCGA-A, Drug-
Bank, GeoNames, New York Times, Jamendo, and Linked MDB to recieve the
complete result set. The triple patterns involved in this query is 18 with result
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size of 5 using LIMIT clause. The triple patterns in aforementioned queries where
mostly unbound subjects and objects with bound predicate. Unlike the previous
queries, the key characteristic of this query is number of bounds subjects and
objects in the triple patterns. There are 4 triple patterns for which the subject
is bound and 2 triple patterns for which object is bound. Also there is one triple
pattern that contains unbound predicate. Thus, this query can be challenging
to accurately estimate the triple patterns as well as the joins cardinalities due
to bound subjects and objects as well as unbound predicate in triple patterns.

CH6: This query requires 8 LargeRDFBench data sources, i.e., Linked TCGA-
A, DBpedia, DrugBank, KEGG, GeoNames, New York Times, Jamendo, and
Linked MDB to get the complete result set. The triple patterns of this query is
24 with result size of 16. Similar to CH2, The key characteristic of this query is
the low mean triple patterns selectivity (i.e., 0.00002) and high BGP-restricted
(i.e., 0.2522) and Join-restricted (i.e., 0.3186) triple pattern selectivities. This
query also contains triple patterns with bound subjects and objects.

CH7: This query requires 9 LargeRDFBench data sources, i.e., Linked TCGA-A,
DBpedia, DrugBank, KEGG, GeoNames, Semantic Web Dog Food, New York
Times, Jamendo, and Linked MDB to get the complete result set. The total
number of triple patterns in this query is 21 with result size of 775 using LIMIT

clause. There are a total of 14 join nodes in this query with 5 Star, 3 Path, 4
Sink, and 2 Hybrid join nodes. This query be particularly challenging due to
more join nodes and hence join ordering could not be a trivial task.

CH8: This query requires 10 data sources, i.e., Linked TCGA-A, DBpedia,
DrugBank, KEGG, GeoNames, Semantic Web Dog Food, New York Times, Ja-
mendo, ChEBI, and Linked MDB to get the complete result set. This query
contains the highest number of triple patterns among the benchmark queries
(i.e., 33). The result size of this query is only 1. There are a total of 19 join
nodes in this query with 7 Star, 4 Path, 6 Sink, and 2 Hybrid join nodes. This
query also contains OPTIONAL, FILTER, and LIMIT. As one of the most complex
query of the benchmark our evaluation (section 5) shows that non of the feder-
ation engines is able to execute this query within the timeout limit of 1 hour.

5 Evaluation

In this section, we evaluate state-of-the-art SPARQL query federation systems
by using the extended queries added into the LargeRDFBench. We first describe
our experimental setup in detail. Then, we present our evaluation results. All
data used in this evaluation can be found on the benchmark homepage.

5.1 Experimental Setup

The experimental setup was used as of the original LargeRDFBench evaluation.
In summary, LargeRDFBench contains a total of 13 real-world datasets. Each of
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the datasets were loaded in to a Virtuoso 7.1. Each of the 13 Virtuoso SPARQL
endpoints used in our experiments was installed on a separate machine. The
specification of each of the machines are exactly the same used in the original
LargeRDFBench. we ran the extended queries experiments on a clustered server
with 32 physical CPU cores of 2.10GHz each and a total RAM of 512GB. Each
of the 13 Virtuoso SPARQL endpoints used in our experiments was started as a
separate instance on the clustered server. The federation engines were also run on
the same machine. We set the maximal amount of memory for each of the federa-
tion engines to 128GB. Experiments were conducted on local copies of Virtuoso
SPARQL endpoints with number of buffers 1360000, maximum dirty buffers
1000000, number of server threads 20, result set maximum rows 100,000,000,000
and maximum SPARQL endpoint query execution time of 6000,000,000 seconds.
The query timeout was set 1 hour. Seven SPARQL endpoint federation engines
(versions available as of May 2018) were compared – FedX [14], SPLENDID [5],
ANAPSID [5], FedX+HiBISCuS [11], SPLENDID+HiBISCuS [11], SemaGrow
[4], CostFed [12] – on all of the 8 extended benchmark queries. We used all of
the performance metrics used in the original LargeRDFBench except for the
number of endpoints requests which is proven to not necessarily correlate with
the overall query runtimes [9]. We used: (1) the total number of triple pattern-
wise (TPW) sources selected during the source selection, (2) the total number
of SPARQL ASK requests submitted to perform (1), (3) the completeness (re-
call) and correctness (precision) of the query result set retrieved, (4) the average
source selection time, (5) the average query execution time.

5.2 Experimental Results

Efficiency of Source Selection Similar to LargeRDFBench, we define efficient
source selection in terms of: (1) the total number of triple pattern-wise sources
selected (#T), (2) the total number of SPARQL ASK requests (#AR) used to
obtain (1), and (3) the source selection time (SST). Table 2, 3 show the results
of these three metrics for the selected approaches.

Overall, CostFed (total 151 #TP, ref. Table 2) is the most efficient approach
in terms of smaller number of total TPW sources selected, followed by HiBISCuS
(total 153 #TP) and ANAPSID (total 161 #TP). Which is equally followed by
FedX, SPLENDID, and SemaGrow with 356 # TP each. Interestingly, ANAP-
SID which was the best approach in terms of #TP for original LargeRDFBench
ranked third in our proposed extension. The reason behind this is as the number
of triple patterns increases in the queries, the efficient source selection becomes
more difficult. The SSGM heuristics [1] used in the ANAPSID may not work
that efficient with increasing number of triple patterns. CostFed, HiBISCuS,
and ANAPSID are equally best approaches in terms of smaller number of ASK
requests used (i.e., 0 for all queries). Noteworthy, FedX (cold) (without cache)
used a total of 1872 ASK requests. This is because FedX(cold) needs to sent a
request for each triple pattern to each of the 13 SPARQL endpoints (hosted on
separate machines). In terms of the source selection time, FedX (warm) (with
cache) is the fastest approach (avg. 6 msec, ref, Table 3) followed by CostFed
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Table 2: Comparison of the different SPARQL federation engines in terms of
: (1) Total number of triple pattern-wise sources selected #TP and (2) To-
tal SPARQL ASK request #AR., where H-FedX = HiBISCuS+FedX, H-
SPLENDID = HiBISCuS+SPLENDID, ZR = Zero Results, RE = Runtime
Error, PE = Parse Error

FedX(cold) H-FedX SPLENDID H-SPLENDID ANAPSID SemaGro CostFed

Query #TP #AR #TP #AR #TP #AR #TP #AR #TP #AR #TP #AR #TP #AR

CH1 41 208 22 0 41 0 22 0 32 0 41 0 22 0
CH2 20 130 11 0 20 0 11 0 10 0 20 0 10 0
CH3 37 143 19 0 37 0 19 0 21 0 37 0 13 0
CH4 41 169 13 0 41 26 13 0 16 0 41 26 12 0
CH5 57 234 22 0 57 78 22 0 PE 0 57 78 21 0
CH6 40 312 RE RE 40 104 RE RE 25 0 40 104 14 0
CH7 52 273 28 0 52 0 28 0 25 0 52 0 25 0
CH8 68 403 38 0 68 13 38 0 32 0 68 0 34 0

(avg. 39 msec), SemaGrow (avg. 54 msec), HiBISCuS (avg. 195 msec), FedX
(cold) (avg. 239 msec), and ANAPSID (avg. 322 msec). The results clearly sug-
gest that the FedX source selection is grealy improved by using caching.

Query Runtime Table 3 (column RT) shows the query runtime performances
of the selected federation engines. As an overall performance evaluation, it is
rather hard to rank the selected engines as there are many timeouts, runtime or
parse errors, suggesting the selected federation engines are not that stable when
tested with queries containing more triple patterns and require collecting results
from more sources (i.e., greater than 3). CostFed has the smallest query runtime
for CH1 (i.e., 800 msec) while the same query time out for ANAPSID. For CH2,
ANAPSID has the smallest query runtime (i.e., 101 min) while the same query
almost timeout for FedX (i.e., 55 min). for CH3, SemaGrow is the fastest while
both CostFed and ANAPSID gives zero results. Only ANAPSID and SemaGrow
is able to get complete results for CH4. For CH5, HiBiCuS+SPLENDID is the
fastest (i.e, 15 sec) while SemaGrow and FedX timout. For CH6, CostFed is the
fastest (i.e, only 173 msec) while SemaGrow timeout. Note that for this query
FedX gives 1 result and CostFed gives 4 results while actual result size is 16. For
CH7, ANAPSID is the fastest (i.e., 2.4 sec) while FedX, SemaGrow time out.
All of the selected engines timeout of 1 hour for CH8.

In conclusion, above results clearly suggest that the extended LargeRDF-
Bench can be extremely costly or can be executed extremely fast when proper
optimised query plan is selected. However, the number of timeout and runtime
errors suggesting that choosing the optimised query plans for these queries is not
a trivial task. The results revealed FedX, CostFed, and ANAPSID can result in
incomplete or zero results.
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Table 3: SPARQL federation engines comparison in terms of : (1) Total num-
ber of endpoints requests #EPR, (2) Source selection time (cold) SSTC, (3)
Source selection time (warm) SSTW, (4) RTC = Runtime (msec) cold cache,
(5) RTW =Runtime (msec) warm cache, (6) RT = Runtime (msec)., where H-
FedX = HiBISCuS+FedX, H-SPLENDID = HiBISCuS+SPLENDID, ZR =
Zero Results, RE = Runtime Error, PE = Parse Error, TO = TimeOut 1 hour

FedX(cold) H-FedX SPLENDID H-SPLENDID ANAPSID SemaGro CostFed

Query SSTC SSTW RTC RTW SST RT SST RT SST RT SST RT SST RT SST RT

CH1 144 6 6344 6321 124 4109 15 RE 121 RE 435 TO 9 277435 21 800
CH2 240 5 3282625 3282233 135 778563 10 RE 137 RE 851 101517 12 144326 24 RE
CH3 178 7 332573 275412 92 329223 8 RE 88 RE 322 ZR 6 4660 21 ZR
CH4 107 4 ZR ZR 247 ZR 66 RE 240 RE 155 27544 67 10606 40 RE
CH5 295 5 TO TO 474 RE 134 24719 434 15122 PE PE 123 TO 116 52875
CH6 445 7 715 274 RE RE 154 15922 RE RE 360 7737 169 TO 28 173
CH7 264 5 TO TO 96 RE 8 RE 96 RE 142 2480 6 TO 20 5647
CH8 236 6 TO TO 247 RE 37 RE 231 RE 250 TO 41 TO 38 TO
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Appendix A: Queries

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX tcga: <http://tcga.deri. ie/schema/>
PREFIX kegg: <http://bio2rdf.org/ns/kegg#>
PREFIX dbpedia: <http://dbpedia.org/ontology/>
PREFIX dbr:<http://dbpedia.org/resource/>
PREFIX foaf : <http://xmlns.com/foaf/0.1/>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84 pos#>
PREFIX geonames: <http://www.geonames.org/ontology#>
PREFIX nytimes: <http://data.nytimes.com/elements/>
PREFIX linkedmdb: <http://data.linkedmdb.org/resource/movie/>
PREFIX linkedmdbr: <http://data.linkedmdb.org/resource/>
PREFIX purl: <http://purl.org/dc/elements/1.1/>
PREFIX bio2rdf : <http://bio2rdf.org/ns/bio2rdf#>
PREFIX chebi: <http://bio2rdf.org/ns/chebi#>
PREFIX swc: <http://data.semanticweb.org/ns/swc/ontology#>
PREFIX eswc: <http://data.semanticweb.org/conference/eswc/>
PREFIX swcp: <http://data.semanticweb.org/person/>
PREFIX rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX rdfs : <http://www.w3.org/2000/01/rdf−schema#>
PREFIX drugbank: <http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugbank

/>
PREFIX drug:<http://www4.wiwiss.fu−berlin.de/drugbank/resource/drugs/>

################ − CH1 − ################

SELECT DISTINCT ∗
WHERE

{
?place geonames:name ?countryName;
geonames:countryCode ?countryCode;
geonames:population ?population;
geo:long ?longitude;
geo: lat ?latitude ;
owl:sameAs ?geonameplace.
?geonameplace dbpedia:capital ?capital;
dbpedia:anthem ?nationalAnthem;
dbpedia:foundingDate ?foundingDate;
dbpedia:largestCity ?largestCity ;
dbpedia:ethnicGroup ?ethnicGroup;
dbpedia:motto ?motto.
?role swc:heldBy ?writer.
?writer foaf :based near ?geonameplace.
?dbpediaCountry owl:sameAs ?geonameplace ;
nytimes: latest use ?dateused }
ORDER BY DESC (?population)

LargeRDFBench (new) queries.
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################ − CH2 − ################

SELECT DISTINCT ?drug ?drugBankName ?keggmass ?chebiIupacName
WHERE

{
?dbPediaDrug rdf:type dbpedia:Drug .
?dbPediaDrug dbpedia:casNumber ?casNumber .
?drugbankDrug owl:sameAs ?dbPediadrug .
?drugbankDrug drugbank:keggCompoundId ?keggDrug .
?keggDrug bio2RDF:mass ?keggmass .
?drug drugbank:genericName ?drugBankName .
?chebiDrug purl: title ?drugBankName .
?chebiDrug chebi:iupacName ?chebiIupacName .
?drug drugbank: inchiIdentifier ?drugbankInchi .
?chebiDrug bio2RDF:inchi ?chebiInchi.
FILTER REGEX (?chebiIupacName, ”adenosine”)
}

################ − CH3 − ################

SELECT ∗
WHERE

{
?drugbcr tcga:drug name ?drug.
?drgBnkDrg drugbank:genericName ?drug.
?drgBnkDrg owl:sameAs ?dbpediaDrug .
?dbpediaDrug rdfs:label ?label .
?drgBnkDrg drugbank:keggCompoundId ?keggDrug .
?keggDrug bio2RDF:mass ?keggmass .
?keggDrug purl:title ? title .
?chebiDrug purl: title ?drug ;
bio2RDF:mass ?mass;
bio2RDF:formula ?formula;
bio2RDF:urlImage ?image
}
Order by (?mass)
################ − CH4 − ################

SELECT DISTINCT ∗
WHERE

{
?role swc:isRoleAt eswc:2010.
?role swc:heldBy ?author.
?author foaf :based near ?geoname.
?geoname geo:long ?longitude.
?dbpediaCountry owl:sameAs ?geoname ;
nytimes: latest use ?dateused;
owl:sameAs ?geoname.
? artist foaf :based near ?geoname;

foaf :homepage <http://people.csail.mit.edu/lkagal/>.
?director dbpedia:nationality ?geoname.
?film dbpedia:director ?director .
?mdbFilm owl:sameAs ?film .
?mdbFilm linkedmdb:genre ?genre.
FILTER REGEX (?geoname, ”United”)
}

LargeRDFBench (new) queries.
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################ − CH5 − ################
SELECT DISTINCT ∗
WHERE

{
?uri tcga:bcr patient barcode ?patient .
?patient ?p ?country.
?country dbpedia:populationDensity 32 .
?nytimesCountry owl:sameAs ?country ;
nytimes: latest use ?dateused;
owl:sameAs ?geonames.
? artist foaf :based near ?geoname;

foaf :homepage ?homepage.
?director dbpedia:nationality ?dbpediaCountry.
?film dbpedia:director <dbr:Michael Haussman> .
?x owl:sameAs ?film .
?x linkedmdb:genre ?genre.

?patient tcga:bcr drug barcode ?drugbcr.
?drugbcr tcga:drug name ?drugName.
drug:DB00441 drug:genericName ?drugName.
drug:DB00441 drugbank:indication ?indication.
drug:DB00441 drugbank:chemicalFormula ?formula.
drug:DB00441 drugbank:keggCompoundId ?compound .
}
LIMIT 5

################ − CH6 − ################

SELECT ?patient ?country ?articleCount ?chemicalStructure ?id
WHERE

{
<http://tcga.deri. ie/TCGA−43−2576> tcga:bcr patient barcode ?patient .
?patient tcga:gender ”FEMALE”.
?patient dbpedia:country ?country.
?country dbpedia:populationDensity ?popDen .
?nytimesCountry owl:sameAs ?country ;
nytimes: latest use ?latestused ;
nytimes:number of variants ?totalVariants;
nytimes: associated article count ?articleCount;
owl:sameAs ?geonames.
swcp:christian−bizer foaf :based near ?geoname;

foaf :homepage ?homepage.
?director dbpedia:nationality ?dbpediaCountry.
dbr:The Last Valley dbpedia:director ?director .
?x owl:sameAs dbr:The Last Valley .
?x linkedmdb:genre linkedmdbr:film genre/4 .

?patient tcga:bcr drug barcode ?drugbcr.
?drugbcr tcga:drug name ”Cisplatin”.
?drgBnkDrg drugbank:inchiKey ?inchiKey.
?drgBnkDrg drugbank:meltingPoint ?meltingPoint.
?drgBnkDrg drugbank:chemicalStructure ?chemicalStructure.
?drgBnkDrg drugbank:casRegistryNumber ?id .
?keggDrug rdf:type kegg:Drug .
?keggDrug bio2rdf:xRef ?id .
?keggDrug purl:title ” Follitropin alfa/beta” .
}

LargeRDFBench (new) queries.
43



################ − CH7 − ################

SELECT DISTINCT ∗ WHERE {
?uri tcga:bcr patient barcode ?patient .
?patient tcga:consent or death status ?deathStatus .
?patient dbpedia:country ?country.
?country dbpedia:areaMetro ?areaMetro.
?nytimesCountry owl:sameAs ?country ;
nytimes:search api query ?apiQuery; owl:sameAs ?location .
? artist foaf :based near ?location; foaf :firstName ?firstName .
?director dbpedia:spouse ?spouse.
?film dbpedia:director ?director .
?x owl:sameAs ?film .
?x linkedmdb:runtime ?runTime.
?patient tcga:bcr drug barcode ?drugbcr.
?drugbcr tcga:drug name ?drugName.
?drgBnkDrg drugbank:casRegistryNumber ?id .
?drgBnkDrg drugbank:brandName ?brandName.
?keggDrug bio2rdf:xRef ?id ; bio2rdf :mass ?mass .
?keggDrug bio2rdf:synonym ?synonym .

?chebiDrug purl: title ?drugName . } LIMIT 775

################ − CH8 − ################

SELECT ∗ WHERE {
?uri tcga:bcr patient barcode ?patient .
?patient tcga:gender ?gender.
?patient dbpedia:country ?country.
?country dbpedia:populationDensity ?popDensity.
?nytimesCountry owl:sameAs ?country ; nytimes:latest use ?latestused;
nytimes:number of variants ?totalVariants;
nytimes: associated article count ?articleCount;
owl:sameAs ?geonames.
?role swc:isRoleAt eswc:2010.
?role swc:heldBy ?author.
?author foaf :based near ?geoname.
? artist foaf :based near ?geoname; foaf:homepage ?homepage.
?director dbpedia:nationality ?dbpediaCountry.
?film dbpedia:director ?director .
?x owl:sameAs ?film .
?x linkedmdb:genre ?genre.
?patient tcga:bcr drug barcode ?drugbcr.
?drugbcr tcga:drug name ?drugName.
?drgBnkDrg drugbank:inchiKey ?inchiKey.
?drgBnkDrg drugbank:meltingPoint ?meltingPoint.
?drgBnkDrg drugbank:chemicalStructure ?chemicalStructure.
?drgBnkDrg drugbank:casRegistryNumber ?id .
?keggDrug rdf:type kegg:Drug ; bio2rdf:xRef ?id .
?keggDrug purl:title ? title .

?chebiDrug purl: title ?drugName .
?chebiDrug chebi:iupacName ?chebiIupacName .
OPTIONAL {
?drgBnkDrg drugbank:inchiIdentifier ?drugbankInchi .
?chebiDrug bio2rdf:inchi ?chebiInchi .
FILTER (?drugbankInchi = ?chebiInchi) } } LIMIT 1

LargeRDFBench (new) queries.
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