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Abstract. We briefly outline the need to incorporate uncertainty and flexibility 
into the semantic web knowledge representation, and argue that support logic 
programming - a combination of soft computing and logic programming – is 
one way to address this problem. To retain consistency with emerging 
frameworks, we show how a support logic program modelling uncertainty in 
relations and rules can be compiled into crisp Horn clauses suitable for 
reasoning within a system which does not explicitly model uncertainty. In cases 
where there is uncertainty in attribute values, an extension to the inference 
mechanism is required. 
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1 Introduction 

Recent development of the semantic web has included the adoption of logic 
programming (in various guises) as a key element in processing semantic web rules. 
In turn, this has led to a re-emergence of the question of whether it is necessary to 
include an explicit mechanism for handling uncertainty in the representation, and how 
best to process the uncertainty. During the “boom” years of logic programming, much 
research effort (see e.g. [1-4]) went into combining logic programming with various 
uncertainty calculi, both from the theoretical and implementation viewpoints. Fril is a 
practical implementation of logic programming with uncertainty, which has been used 
in a number of applications (see for example chapter 8 of [5]). 

In this paper, we outline some of the design features of Fril in the belief that they 
contain relevant lessons for the semantic web. We focus on implementation aspects, 
not on properties such as expressibility or model-theoretic semantics which are 
covered elsewhere [4, 6-8]. Perhaps the key issue in the implementation of an 
uncertain logic programming language is whether to incorporate the processing of 
uncertainty as a core part of the system or to build a meta-level on top of an existing 
(crisp) implementation. The latter approach tends to be slower (as one is effectively 
building an interpreter) but has the advantage of compatibility with existing systems; 



the former approach gives the implementer more control and flexibility. Fril was 
implemented as an extended Warren Abstract Machine, and took the first route above. 
In section 3 we outline the use of transformations to run uncertain logic programs 
within a standard system (without uncertainty in attribute values). This may be a more 
productive route, given the increasing commercial interest in implementing semantic-
web related systems (e.g. Oracle 10 includes RDF management). 

1.1 The Need for Uncertainty 

The semantic web aims to bridge the human-machine communication gap “… the 
theme is human beings doing the thinking and machines helping it work on a larger 
scale …”  [9], p 187-8). In order to achieve this, the semantic web provides 
definitions for terms used in natural language, and a logic-style framework for 
reasoning. Representations based on first order logic have many advantages - logic is 
easily understood and provides a powerful computing formalism through logic 
programming. However, human language is far more subtle and expressive than a 
formal model, and deals with many concepts that are defined by common usage rather 
than by necessary and sufficient conditions. Such vague concepts are widespread in 
attribute values (Mary’s age is young), relations (80mph is a safe speed on an open 
highway, Star Wars Episode II is a romantic movie) and rules (person X is likely to 
have high blood pressure IF  person X is overweight ) where the italicised terms are 
vague. The inherent vagueness used in many natural language terms means there is 
often a mis-match between natural language and crisp logic-based representations.  

In common with many  knowledge representational formalisms, it is clear that the 
semantic web requires a mechanism that is able to cope with this type of knowledge.  

1.2 How should we deal with uncertainty ? 

From a mathematical perspective, it is difficult to argue against the use of probability 
as a tool for handling uncertainty. Indeed, it is relatively easy to show that if one is 
prepared to bet as an indication of one’s level of certainty about an event then it is not 
rational to base one’s behaviour  on anything other than the laws of probability. 
However, it is worth remembering the words of Einstein: 

As far as the laws of mathematics refer to reality, they are not certain; 
and as far as they are certain, they do not refer to reality 
 ("Geometry and Experience" 1921) 

The assumptions underlying probability include  
• the availability of precise definitions for events and  
• procedures to determine whether or not a given event has occurred.  

Much human knowledge and communication is based on natural language, and one 
of the strengths of natural language is its capacity to efficiently convey a large amount 
of information relatively compactly. This relies on a shared understanding of terms, 
without necessarily sharing precisely the same definition of terms. For instance, an 
Englishman announcing that he is “travelling to Europe” would be understood to 
mean somewhere on the opposite side of the channel to England; an American saying 



the same thing would probably include the UK as a possible destination. The word 
“Europe” denotes a collection of countries, but its precise definition is elusive - is it a 
set of countries marked as Europe on a particular map, members of the European 
union (now? in 1970? in 1975? in 2010?), countries eligible to enter European 
Championship football, countries eligible to enter the Eurovision song contest .... ? 

Each “source” has its own definition of the term, but we are able to understand and 
use the concept in communication without the inconsistency causing a problem. Thus 
when considering the integration of different sources, we may need to consider 
uncertainty in class memberships, in relations and in rules. To illustrate, let us 
consider two ontologies which define the class youngPerson. Since young is not a 
precisely defined concept, it is likely that the two will adopt different standards – let 
us say ontology o1 defines all people aged 20 and under as belonging to the class 
o1:youngPerson and ontology o2 defines all people aged 25 and under as belonging 
to the class o2:youngPerson. How should we combine these definitions? Two 
extremes would be to use the union or intersection of the extensions 

c: youngPerson =  o1:youngPerson∩  o2:youngPerson  
or 

c: youngPerson =  o1:youngPerson ∪  o2:youngPerson  
where c denotes the combined ontology. A more natural choice would be to 

acknowledge that the source of the problem is vagueness in the (combined) class 
definition and say that cases where the separate ontologies disagree should be 
modelled by an intermediate class membership or probability, related to the 
proportion of ontologies that would classify a particular instance as included or 
excluded from the class. In the case above, there is no disagreement in the case of 
instances with age 20 or less (i.e. o1’s definition), or in ages above 25. However for 
instances with age in the interval (20, 25] there is intermediate support for their 
membership in the combined class. 

This combination is not based on similarities between the labels, but on the fact 
that the ontologies may classify the same underlying instances into different classes. 
In the same way, one movie database might class a particular movie as “horror” 
whilst another labels it as “suspense”. The degree of overlap in the categories can give 
support for rules integrating both sources [10].  

2 Fril and Support Logic Programming 

Fril [5] is a logic programming language incorporating uncertainty at a fundamental 
level. Whilst not (yet) available as a web tool, the framework and implementation are 
relevant to the handling of uncertainty within the semantic web. The calculus for 
handling uncertainty is based on mass assignment theory [5, 11, 12], which gives a 
coherent framework for dealing with both fuzzy and probabilistic uncertainty. Both 
the language and underlying theory are dealt with in detail elsewhere  [5, 13, 14] ; the 
essential extension compared to a logic program is that clauses may be quantified by 
support pairs. These are interpreted as intervals containing conditional probabilities, 
so for the simple rule “p if q” we could write 



p IF q : ([u1 v1] [u2 v2]) 
which is interpreted as stating that the conditional probabilities obey 

u1 ≤ Pr (p|q)  ≤  v1  
u2 ≤ Pr (p|¬q)  ≤  v2  

The symbols p and q represent predicates with arguments, not simple propositions. 
A more general form of rule is also allowed, in which more complex interactions in 
the body of the rule can be taken into account. For example, given a rule  
 p IF q AND r 
the general rule takes account of different probability intervals for p|qr, p|q¬r, p|¬qr, 
p|¬q¬r. This can be used to model Bayesian nets, although the inference is limited to 
the direction imposed by the rule structure, i.e. conclude rule head from rule body. 
For simplicity we only consider the basic Fril rule here, which in the above case 
would only consider intervals for  p|qr and  p|¬(qr). Clearly this leads to considerable 
efficiency savings as the number of goals in the rule body increases, and has been 
found adequate in most practical problems. By convention  [u2 v2] defaults to [0, 1] 
in which case it may be omitted, and  [u1 v1] defaults to [1, 1] 

Unit clauses (facts) may also be quantified by support pairs, in the case that tuples 
do not completely satisfy a predicate - for example, take the relation  

Fluent-Speaker ⊆ Person × Language 
and consider whether tuples (John, English), (John, French), (John, Spanish) satisfy 
this relation. If John is a native English speaker, and knows no French, then the first 
two tuples respectively belong and do not belong to the relation. However, if John 
knows a little Spanish then the final tuple lies between these two extremes. In the 
voting model [12], each voter must decide whether or not a tuple belongs to the 
relation and the (point valued) support pair is then the proportion of voters who vote 
yes. This can be extended to give general support pairs [u v] where u is the proportion 
voting in favour, 1-v is the proportion voting against and v-u is the proportion of 
abstentions. Clearly it is meaningless to include a second support pair for unit clauses. 

Inference in Fril proceeds by constructing a proof tree, in the same depth-first 
manner as Prolog. The supports of the clauses used in the proof tree are then 
combined to give a support for the solution. 

By default, the support for a conjunction of goals is the product of the individual 
supports, i.e. given two facts  

q1 : [x1 y1] 
q2 : [x2 y2] 

the support for the conjunction q1 AND q2 is [x1*x2  y1*y2]. In general, one can only 
say that the support lies in the interval  

[MAX(0, x1+x2-1), MIN(y1, y2) ] 
but by assuming maximum entropy we can use the product to calculate the support for 
the conjunction (see [5] for discussion of this point). 

Consider a single basic Fril rule of the form 
p IF q1 AND q2 AND … AND qn : ([u1 v1] [u2 v2]) 

when the following facts are given or derivable 
 qi : [ui vi]   1 ≤ i ≤ n 
More generally the facts may not completely match the terms in the rule and the 

support pairs [ai bi] will be determined using semantic unification. Let the combined 



support for the body of the rule be [x y]. A generalised Jeffrey's rule for support pairs 
is the basic inference rule of support logic, so that the inference is 

 p : [z1 z2] 
where 
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For example, the case discussed above can be modelled by the probabilistic rules 

c:youngPerson(X) IF o1:youngPerson(X)   : [1, 1] 

c:youngPerson(X) IF o2:youngPerson(X) : [0.5, 1] 
where [0.5, 1] is the support or interval probability that the rule head 
c:youngPerson(X) is true, given that the rule body o2:youngPerson(X) is true. The 
first rule has a support of [1,1] which is the default value for a rule and is normally 
omitted for clarity. This approach can be extended to multiple rules, (although we 
note that it is unable to deal with the case where two ontologies have no overlap in 
classification since we are then effectively dealing with two different concepts.). If all 
information is taken into account and negation can be properly handled within the 
rules, then it is possible to work without intervals e.g. we could have a rule that x is in 
c:youngPerson with a probability of 0.5 if x is in  o2:youngPerson and not in 
o1:youngPerson. The interval in the second rule arises because we ignore the 
information given by o1, and only consider o2. This projection onto one ontology 
simplifies computation considerably at the expense of working with intervals rather 
than point values. Ding [15] takes a slightly different approach, allowing limited 
interaction between rules and compiling the uncertainty into Bayes nets. 

We note in passing that if we consider that each ontology corresponds to an 
(equally likely) possible world, our approach has several links to probabilistic logic 
programming described by [16]. We also note that this treatment assumes both 
ontologies are concerned with the same set of instances.  

To answer a query, a standard logic programming proof tree is created with 
extended unification to deal with uncertain attribute values; a probabilistic calculation 
is then carried out over the proof tree to determine the support for the conclusion. All 
proof paths are examined to determine the overall support.  

If multiple proof paths are available for a conclusion, the overall support is the 
intersection of supports from the individual proof paths. This approach differs from 
other fuzzifications of Prolog. Uncertainty is expressed as a conditional probability of 
the rule head given the body. In contrast, most theoretical and practical treatments of 
uncertainty in logic programming associate uncertainty with the implication. As is 
well known from fuzzy control and multi-valued logics, there are very many plausible 
implication operators and much time and effort has been devoted to arguing their 
relative merits. The support logic programming approach avoids this controversy. 



3 Implementing the Support Logic Calculus 

Inference in a support logic program proceeds by constructing a proof tree. The 
supports of the clauses used in the proof tree are combined to give a support for the 
solution. Three different cases need to be considered: 
 combination of multiple proof paths for an atom 
 conjunction of different atoms in a rule body 
 conditional support for the rule head from the rule support and support for the body 

3.1 The comb operator 

In normal logic programming, a single solution to a query is sufficient - it proves that 
a solution exists, and finds instantiations of the query variables corresponding to this 
solution. In support logic programming, the situation is different. Consider the rules 
 p IF q  
 p IF  r 
and let us suppose that q and r are true (with different supports). We have two proof 
paths for the conclusion p, with supports :  
 p : [x1  y1] 
from the first proof path, and 
 p : [x2  y2] 
from the second. By default, Fril assumes that the overall support must be consistent 
with both proof paths, and deduces 
 p : [max (x1, x2), min(y1, y2) ] 
subject to the support being a non-empty interval.  

If there is more than one proof path for an atom, we look for a support pair which 
is compatible with all of them, i.e. the intersection of the intervals. Thus if atom b has 
support [li ui] from proof tree i, the overall support for b is  
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If this interval is empty, there is an inconsistency in the program. We define the 
(binary) support combination operator, comb, as 

! 

comb l
1
,u
1[ ], l2,u2[ ]( ) = max l

1
,l
2( ),min u1,u2( )[ ]  

This is monotonic, commutative and associative.  
 comb(S1, S2)  ⊆  comb(S3, S2)  if S1 ⊆ S3 
 comb(S1, S2) = comb(S2, S1) 
 comb(S1,comb(S2,S3))=comb(comb(S1,S2),S3) 
for arbitrary support pairs S1, S2, S3 where S=[l,u].  



3.2 The conj operator 

By default, the support for a conjunction of goals is the product of the individual 
supports, i.e. given two facts  

b1 : [lb1, ub1] 
b2 : [lb2 , ub2] 

the support for the conjunction b1 AND b2 is given by the conjunction operator 
    conj([lb1, ub1], [lb2, ub2]) = [lb1× lb2  ub1× ub2] 

which again is monotonic, commutative and associative. In addition, we note that 
comb distributes over conj  i.e.  

! 

conj comb S1,S2( ),S3( ) = comb conj S1,S3( ),conj S2,S3( )( )  

for arbitrary support pairs S1, S2, S3. Thus if we have two atoms b1 and b2 with k1 
proof paths for b1 (with supports 

! 

S
1

i , i=1…k1) and k2 proof paths for b2 with supports 

! 

S
2

j , j=1…k2, we can calculate the overall body support from the supports for the 
k1*k2 proof paths for the conjunction (b1 AND b2). Because of the associativity of 
comb and conj, this can be extended to any finite number of proof paths for a finite 
number of atoms in a rule body. 

In general, one can only say that the support for a conjunction lies in the interval  
[MAX(0, lb1,+lb2-1), MIN( ub1 ,  ub2) ] 

but by assuming maximum entropy we can use the product to calculate the support for 
the conjunction (see [5] for discussion of this point).  

3.3 The cond operator 

Consider a single basic Fril rule of the form 
h IF b1 AND b2 AND … AND bn : Sr 

where h, bi (i=1…n) are atoms forming the head and body of the rule respectively. 
Support logic allows a rule support to be  of the form [Shb, Shnb] where Shb is the 
support for the head given that the body is true and Shnb is the support for the head 
given that the body is not true. If 

Sr = (Shb, Shnb) = ([lhb, uhb], [lhnb, uhnb]) 
when the following facts are given or derivable by single proof trees 

! 

bi
j
: Si

j     1 ≤ i ≤ n,  1 ≤ j ≤ ki 
(where the body atom bi has ki proof paths). Let the combined support for the body 

of the rule be Sb, calculated by repeated application of the conj and comb operators 
defined above. If Sr is the rule support, the support for h is calculated using a 
generalised Jeffrey's rule for support pairs 

cond(Sr, Sb) =  [lh, uh] 
where 
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lh =
lhb " ub + lhnb " (1# ub ) if lhb $ lhnb
lhb " lb + lhnb " (1# lb ) if lhb > lhnb
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(see [5] for discussion of the use of Jeffrey’s rule as a special case of  updating 
mass assignments). By case analysis of this expression, it is easy to see that the cond 
operator is monotonic in the body support, i.e.  



Sb1 ⊆ Sb2  iff  cond(Sr, Sb1) ⊆ cond(Sr, Sb2) 
for a fixed rule support Sr and body supports Sb1, Sb2.  Additionally,  

cond(Sr, comb(Sb1, Sb2) )  =  comb( cond(Sr, Sb1), cond(Sr, Sb2) ) 
hence we can calculate the support for a solution by finding a proof path, computing 
its support, then looking for another proof path and intersecting its support with that 
already found. This is equivalent to a depth-search of the SLD tree [17], recording 
each solution and its support. In contrast, a straightforward formulation of support 
logic requires a breadth-search of the tree, where the support at an or-node can only 
be calculated when all sub-trees rooted at that node have been evaluated. 
Instead of calculating 
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we find 
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where the n-ary operators are obvious extensions from the binary case. 
In Prolog terms, this corresponds to an “all-solutions” query at the root node only, as 
compared to all-solutions queries for each goal appearing in the search tree. The 
efficiency gain is significant. We can transform a support logic program to a crisp 
logic program by adding a single argument to the head and to each body goal, to 
represent the support computation. Thus a rule 
h(X,Y)  IF b1(X,Z) AND b2(Z,Y) : Sr 

becomes 
h(cond(Sr, conj(S1,S2)), X, Y) 
          IF  b1(S1, X,Z) AND b2(S2, Z,Y)  

and a fact 
b1(a, b) : Sf 

becomes 
b1(Sf, a, b) 

Placing the support as the first argument is an arbitrary but useful convention. A 
query then changes from  

? h (X, Y) 
to 

? h(S, X, Y) 
followed by evaluation of the support expression S for all proof paths. 

The compilation of supported clauses to crisp clauses with embedded support 
arguments is straightforward, as is the mechanism to find all solutions. Compilation 
(or run-time translation) of uncertain logic programs into standard logic programs has 
been implemented before (e.g. [13, 18] by adding extra goals to the rule body. The 
disadvantage of this approach is that it creates an execution overhead and may disrupt 
compiler optimisations. In contrast, the method outlined above uses an extra argument 
and only marginally affects execution speed by adding a single unification step. It fits 
into the crisp logic programming approach proposed for the semantic web. Hence we 



can write (or learn) support logic rules and facts, and evaluate uncertain conclusions 
without having to extend the whole framework. 

3.4 Uncertainty in Attribute Values 

We have so far ignored the question of uncertain attribute values - for example, 
suppose we know that (i) Mary’s age is 28 or 29, or (ii) Mary is in her late twenties. 
The first case is representable (but awkward) in logic, the second is essentially fuzzy 
as different values satisfy “late twenties” to a greater or lesser degree. This can be 
represented by a fuzzy set, interpreted as a fuzzy constraint on values of the attribute - 
i.e. there should be a single value, but it is not precisely known.  

Fuzzy sets can also be used to represent uncertain values in rule bodies e.g.  
company X performed well in year Y  IF  
 turnover-of X in Y is high-turnover  AND 
 profit-of X in Y is about10% 
where the italicised terms are fuzzy sets. 
This requires us to generalise the unification process since the presence of fuzzy 

attributes allows partial matching. For example, assume that the height of Bob is 
above_average and we have a query to identify tall people. Fril uses semantic 
unification, to determine a conditional probability for the matching of two terms and 
hence calculates a support pair for the goal. Essentially, a virtual rule is assumed  
ht of Bob is tall IF ht of Bob is above_average  : S 

where S is calculated from the probability of matching the fuzzy sets. Note that this 
process is asymmetric - the probability of tall given above_average is not necessarily 
the same as the probability of above_average given tall. This is obvious if one 
considers a crisp case - for example, define a small dice value as {1, 2} and even as 
{2, 4, 6}. Clearly Pr(small | even ) ≠  Pr(even | small ) 

This process of matching fuzzy sets is known as semantic unification to distinguish 
it from the normal logic unification method, which is purely syntactic. Semantic 
unification is a fundamental part of Fril. A support pair is automatically calculated for 
the match, and incorporated into the overall calculation of support for the query, using 
probabilistic semantic unification. Further details are given in [5] and details of fast 
algorithms suitable for implementing semantic unification in a Warren Abstract 
Machine architecture are given in [19, 20] 

4 Summary 

The aim of the semantic web is to make content both human and machine 
understandable. We claim that this means avoiding artificially precise definitions and 
modelling human-understandable terms by adopting a representation that handles 
uncertainty naturally and efficiently. Considerable existing work has been devoted to 
incorporating uncertainty into logic programming - uncertain facts and rules can be 
executed efficiently within a standard framework but uncertain attribute values 
require more fundamental modification. 
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