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Abstract. Rules over a Knowledge Graph (KG) capture interpretable patterns
in data and various methods for rule learning have been proposed. Since KGs
are inherently incomplete, rules can be used to deduce missing facts. Statistical
measures for learned rules such as confidence reflect rule quality well when the KG
is reasonably complete; however, these measures might be misleading otherwise.
So it is difficult to learn high-quality rules from the KG alone, and scalability
dictates that only a small set of candidate rules is generated. Therefore, the ranking
and pruning of candidate rules is a major problem. To address this issue, we propose
a rule learning method that utilizes probabilistic representations of missing facts.
In particular, we iteratively extend rules induced from a KG by relying on feedback
from a precomputed embedding model over the KG and external information
sources including text corpora. Experiments on real-world KGs demonstrate the
effectiveness of our novel approach both with respect to the quality of the learned
rules and fact predictions that they produce.

Motivation. Rules are widely used to represent relationships and dependencies among
data items in datasets and to capture the underlying patterns in data [1,16]. Applications
of rules include health-care [24], telecommunications [9], manufacturing [2,10,11,12,7],
and commerce [17,6]. In order to facilitate rule construction, a variety of rule learning
methods have been developed, see e.g. [8] for an overview. Moreover, various statistical
measures such as confidence, actionability, and unexpectedness to evaluate the quality of
the learned rules have been proposed.

Rule learning has recently been adapted for the setting of Knowledge Graphs
(KGs) [4,22] where data is represented as a graph of entities interconnected via relations
and labeled with classes, or more formally as a set of grounded binary and unary atoms
typically referred to as facts. Examples of large-scale KGs include Wikidata [20],
Yago [19], and Google’s KG. Since many KGs are constructed from semi-structured
knowledge, such as Wikipedia, or harvested from the Web with a combination of statistical
and linguistic methods, they are inherently incomplete [15,4].

Rules over KGs are of the form head ← body , where head is a binary atom and body
is a conjunction of, possibly negated, binary or unary atoms. When rules are automatically
learned, statistical measures like support and confidence are used to assess the quality of
rules. Most notably, the confidence of a rule is the fraction of facts predicted by the rule
that are indeed true in the KG. However, this is a meaningful measure for rule quality only
when the KG is reasonably complete. For rules learned from largely incomplete KGs,
confidence and other measures may be misleading, as they do not reflect the patterns in the
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missing facts. For example, a KG that knows only (or mostly) male CEOs would yield a
heavily biased rule gender(X ,male)← isCEO(X ,Y ), isCompany(Y ), which does
not extend to the entirety of valid facts beyond the KG. Therefore, it is crucial that rules
can be ranked by a meaningful quality measure, which accounts for KG incompleteness.

Example. Consider a KG about people’s jobs, residence and spouses as well as office
locations and headquarters of companies. Suppose a rule learning method has computed
the following two rules:

r1 : livesIn(X ,Y )← worksFor(X ,Z ), hasOfficeIn(Z ,Y ) (1)
r2 : livesIn(Y ,Z )← marriedTo(X ,Y ), livesIn(X ,Z ) (2)

The rule r1 is quite noisy, as companies have offices in many cities, but employees live
and work in only one of them, while the rule r2 clearly is of higher quality. However,
depending on how the KG is populated with instances, the rule r1 could nevertheless score
higher than r2 in terms of confidence measures. For example, the KG may contain only a
specific subset of company offices and only people who work for specific companies. If
we knew the complete KG, then the rule r2 should presumably be ranked higher than r1 .

Suppose we had a perfect oracle for the true and complete KG. Then we could learn
even more sophisticated rules such as

r3 : livesIn(X ,Y )← worksFor(X ,Z ), hasHeadquarterIn(Z ,Y ),not locatedIn(Y ,USA).

This rule would capture that most people work in the same city as their employers’
headquarters, with the USA being an exception (assuming that people there are used to
long commutes). This is an example of a rule that contains a negated atom in the rule
body (so it is no longer a Horn rule) and has a partially grounded atom with a variable
and a constant as its arguments.

Problem. The problem of KG incompleteness has been tackled by methods that (learn
to) predict missing facts for KGs (or actually missing relational edges between existing
entities). A prominent class of approaches is statistics-based and includes tensor fac-
torization, e.g., [14] and neural-embedding-based models, e.g. [3,13]. Intuitively, these
approaches turn a KG, possibly augmented with external sources such as text [23,25,18],
into a probabilistic representation of its entities and relations, known as embeddings, and
then predict the likelihood of missing facts by reasoning over the embeddings [21].

These kinds of embeddings can complement the given KG and are a potential asset
in overcoming the limitations that arise from incomplete KGs. Consider the following
gedankenexperiment: we compute embeddings from the KG and external text sources,
that can then be used to predict the complete KG that comprises all valid facts. This
would seemingly be the perfect starting point for learning rules, without the bias and
quality problems of the incomplete KG. However, this scenario is way oversimplified.
The embeddings-based fact predictions would themselves be very noisy, yielding also
many spurious facts. Moreover, the computation of all fact predictions and the induction
of all possible rules would come with a big scalability challenge: in practice, we need
to restrict ourselves to computing merely small subsets of likely fact predictions and
promising rule candidates.



Our Approach. In this work we propose an approach for rule learning guided by external
sources that allows to learn high-quality rules from incomplete KGs. In particular, our
method extends rule learning by exploiting probabilistic representations of missing facts
computed by embedding models of KGs and possibly other external information sources.

More formally, let G be a KG, then a probabilistic KG P is a pair P = (G, f) where
f is a probability function over the facts (or KGs edges), where we assume f(a) = 1 for
each fact a ∈ G, which is already known to be true. Our proposal is to learn rules that not
only describe the available graph G well, but also predict highly probable facts based
on the function f . The key questions here are how to define the quality of a given rule
r based on P and how to exploit it during rule learning for pruning out not promising
rules. We define a quality measure µ for rules over probabilistic KGs as a function
µ : (r,P) 7→ α, where α ∈ [0, 1]. To measure the quality µ of r over P we propose:

– to measure the quality µ1 of r over G, where µ1 : (r,G) 7→ α ∈ [0, 1],
– to measure the quality µ2 of Gr (i.e., G extended with edges derived using r) by

relying on Pr = (Gr, f), where µ2: (G′, (G, f)) 7→ α∈ [0, 1] for G′ ⊇ G is the
quality of extensions G′ of G over the signature of G given f , and

– to combine the result as the weighted sum.
That is, we define our hybrid rule quality function µ(r,P) as follows:

µ(r,P) = (1− λ)× µ1(r,G) + λ× µ2(Gr,P) (3)

In this formula µ1 can be any classical quality measure of rules over complete graphs.
Intuitively, µ2(Gr,P) is the quality of Gr wrt f that allows us to capture the information
about facts missing in G that are relevant for r. The weighting factor λ, we call it
embedding weight, allows one to choose whether to rely more on the classical measure
µ1 or on the measure µ2 of the quality of the extension Gr.

We propose to realize this approach by iteratively constructing rules over a KG and
by collecting feedback from a precomputed embedding model, through specific queries
issued to the model for assessing the quality of (partially constructed) rule candidates.
This way, the rule induction loop is interleaved with the guidance from the embeddings,
and we avoid scalability problems. Our machinery is also more expressive than many
prior works on rule learning from KGs, by allowing non-monotonic rules with negated
atoms as well as partially grounded atoms. Within this framework, we devise confidence
measures that capture rule quality better than previous techniques and thus improve the
ranking of rules.

Contribution. We propose a rule learning approach guided by external sources, and
show how to learn high-quality rules by utilizing feedback from embedding models.
We implement our approach and present extensive experiments on real-world KGs,
demonstrating the effectiveness of our approach with respect to both the quality of the
mined rules and predictions that they produce. Our code and data are made available to
the research community at https://github.com/hovinhthinh/RuLES.
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