
Scalable Reasoning Infrastructure for Large Scale
Knowledge Bases

Hima Karanam, Sumit Neelam, Udit Sharma, Sumit Bhatia, Srikanta Bedathur, L.
Venkata Subramaniam, Maria Chang, Achille Fokoue-Nkoutche, Spyros Kotoulas,

Bassem Makni, Mariano Rodriguez Muro, Ryan Musa, Michael Witbrock

IBM Research AI
hkaranam@in.ibm.com

1 Introduction

Knowledge Bases, supported by domain and common-sense ontologies, are critical
in various AI-centric applications, and are beginning to be integrated as knowledge
sources in primarily neural AI research. As information extraction technologies mature,
we are seeing the growth of automatically extracted KGs, reaching millions of entities
and billions of relations between them. Such KGs are often linked to various upper
level ontologies and additional resources that makes it possible to infer sophisticated
new, hitherto unknown knowledge from them. Although full-scale First-Order Logic
(FOL) reasoning is not widely supported by reasoners, standards such as OWL2 are
being increasingly employed to design enterprise systems that can compute limited but
useful entailments over sophisticated, large ontologies. Moreover, in AI applications,
and particularly applications along a path to general intelligence, hard guarantees such as
decidability are of little importance, compared with practical effectiveness in producing
correct, useful, explainable inferences; in these cases, expressivity, including the ability
to express background knowledge that is not readily and practically expressible in FOL,
becomes increasingly important. In this context, the commonly used state-of-the-art
reasoners that can operate over knowledge graphs can be viewed as having been restricted
in three main directions:
Scalability of these reasoners is quite limited; they support relatively small ontologies
and KGs. For instance, there are no available open source reasoners that can exploit big
data frameworks such as Spark in order to scale expensive computations common during
reasoning tasks, or use flexible graph data management systems built on horizontally
scalable platforms such as JanusGraph.
Expressivity of the languages for which effective inference can be performed is low;
the majority of reasoners do not support general rules, let alone spatial and temporal
reasoning, contextual reasoning, modal and second-order reasoning. These features are
implicitly ubiquitous in text encoding human knowledge, and necessary for symbolic
and semi-symbolic AI research.
Modelling of complex multi-modal data including by representing uncertainty and
imprecision (common during automatic extractions of KGs), and supporting reasoning
over them is difficult. Further, in applications where KBs are used to aid natural language
generation or understanding, we need ways to link entities/relationships and rules with



their cross-modal counterparts (e.g., natural language support sentences, images, or
neural network embeddings), or perhaps use text and images directly in inference with
bounded error and suitably expressed, learned, inference “rule” functions.

We discuss our ongoing efforts towards building a software toolkit to support scalable
reasoning over large knowledge bases targeted towards industrial applications. We de-
scribe our initial ongoing efforts and some preliminary results and discuss the directions
for future work.

2 System Architecture

The high level architecture of the proposed system is describe in Figure 1 and we describe
the different components in detail below.

Fig. 1: System Architecture

Ingestion Pipeline and Storage Layer: We chose JanusGraph (a property graph) as our
default storage technology to store knowledge base along with additional metadata such
as context, evidence etc. Since property graphs can easily capture the context/confidence
etc in the form of node or edge properties, it becomes easier to map these information
coming from the data curation pipelines easily at one place. During ingestion, user data
in various commonly used formats is converted and stored in the back-end storage. In
order to ingest OWL/RDF, data we have extended RDF4J framework to add JanusGraph
as additional store implementing data store interfaces. This takes RDF/OWL data in
various forms and maps it to appropriate property graph model and creates required
indices as well.
Query Processing Unit processes the user queries and interprets them to decide the
appropriate modules required to answer the query and interacts with various reasoners
and backend store to retrieve the final answers. For example in case of symbolic reasoner,
this unit will talk to symbolic reasoner using OWL APIs to get the TBox inference to do
the query expansion or query rewrite. In cases where complex reasoning is needed, it
sends the required ABox summary information to the reasoner to generate the answer. We
are planning to implement the ABox summary builder described in the SHER system [2]
to work with JanusGraph backend. We have extended RDF4J query interfaces for basic
RDF querying.



Reasoners: This component is responsible for standing up different reasoners with
appropriate APIs to talk to the query and storage layers. In the current implementation,
we are integrating Racer [3] using OWL APIs to support various OWL profiles. We will
be extending this to include neural reasoner and default IR/Text reasoner to get a search
answer in scenarios where we don’t get confident answers from other reasoners.

3 Graph Database for Reasoning

The choice of storage technology is crucial for efficient implementation of underlying
reasoning engines. While the in-memory reasoners maintain complete ABox data in
memory leading to quick query times, systems designed for dealing large ABoxes store
data in persistent storage backends such as relational database or triple stores. At query
time, the required data is fetched and passed on to the reasoner for inference.

We adopt a property graph database as our persistent ABox store. Graph databases
have become quite popular for data storage due to their flexible schema and close relation
of the storage model with real-world data. Such graph databases store data in the form
of nodes and edges, provide index-free adjacency, and therefore, perform potentially
better on linked datasets. Compared to relational databases, graph databases are better
at join intensive queries [7]. Further, triple stores being strongly index based systems
are good when relationship exploration is not very deep whereas graph databases are
good at finding complex relations, and their compact representation helps in to speedup
reasoning tasks by storing inferred information.

4 Query Engine

In the current implementation of our system, the query engine is built using three basic
modules for handling symbolic reasoning. Here, we take SPARQL queries and convert
them to appropriate Gremlin or reasoning queries to get the final answer.
Query Expansion: This module is responsible for expanding the input query as a union
of multiple conjunctive queries in order to find some of the implicit solutions to the query.
Query expansion is guaranteed to find all the solutions, when the underlying knowledge
base follows DL-lite logic.
SPARQL to Gremlin Translation: Query generated by query expansion module is
transformed to the gremlin traversal so that it can be executed directly over the Janus-
Graph. Gremlin supports both declarative and imperative queries whereas SPARQL
only supports declarative queries. Transforming SPARQL queries into declarative style
gremlin queries offer two advantages: (i) declarative gremlin queries are formulated
using the Match step which consists of one or more traversal patterns similar to triples in
a SPARQL query. So, SPARQL triples can be directly transformed to Gremlin patterns
using the rule-based mapping [6]; and (ii) declarative gremlin queries use a Match
Algorithm that sorts different patterns present in the query according to their filtering
capabilities, so as to optimize the query execution. Graph meta-data generated during
data ingestion phase can be used to differentiate between edge traversals or property
traversals at the time of query translation.
Consistency Checker: Any reasoning query over the expressive logic can be reduced to



that of determining consistency of underlying knowledge base [5]. Negated assertion of
a query is added to the knowledge base before performing the consistency test. Different
versions of tableau algorithms [1] can be used for performing consistency detection
depending upon the expressiveness of the underlying knowledge base.

5 Results and Discussions

We report initial results achieved for RDF to Property graph conversion using JanusGraph
for LUBM dataset1 for 100 universities. We compare query execution times for Virtuoso
system, manually and automatically generated gremlin queries against JanusGraph for
LUBM SPARQL benchmark queries. As note from Table 1, our proposed architecture
achieves better performance for most of the queries, except in cases where large number
of node scans are required for producing the output because vertices are spread on disk
physically. For these experiments, we have used basic schema transformation described
in [4] without much focusing on locality of reference. We are currently studying efficient
schema transformation also which takes care of this issues. In addition, we are exploring
how to integrate the standard logical reasoners with other approximate reasoners based
on neural models that could act as a fall-back mechanism in cases where the required
information is not present in the knowledge bases.

Table 1: Query execution time for 100U-LUBM dataset (in milliseconds)
Query Virtuoso JanusGraph Manual JanusGraph Auto Output Size Query Virtuoso JanusGraph Manual JanusGraph Auto Output Size
Q1 68 3.6 9 4 Q8 262 822 898 7790
Q2 1006 220495 434692 264 Q9 1958 856103 867483 27247
Q3 55 1.5 2 6 Q10 61 1.3 0.9 4
Q4 79 5.3 26 34 Q11 55 17.8 15 224
Q5 63 58.9 66 719 Q12 51 2.5 27 15
Q6 25040 568078 522321 1048532 Q13 56 33.8 38 473
Q7 71 6.5 5 67 Q14 18585 443954 405736 795970

References
1. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica

69(1), 5–40 (2001)
2. Dolby, J., Fokoue, A., Kalyanpur, A., Schonberg, E., Srinivas, K.: Scalable highly expressive

reasoner (sher). Web Semantics: Science, Services and Agents on the World Wide Web 7(4),
357–361 (2009)

3. Haarslev, V., Möller, R.: Racer system description. In: International Joint Conference on
Automated Reasoning. pp. 701–705. Springer (2001)

4. Hartig, O.: Reconciliation of rdf* and property graphs. arXiv preprint arXiv:1409.3288 (2014)
5. Horrocks, I., Tessaris, S.: Querying the semantic web: a formal approach. In: International

Semantic Web Conference. pp. 177–191. Springer (2002)
6. Thakkar, H., Punjani, D., Keswani, Y., Lehmann, J., Auer, S.: A stitch in time saves nine–sparql

querying of property graphs using gremlin traversals. arXiv preprint arXiv:1801.02911 (2018)
7. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison of a graph

database and a relational database: a data provenance perspective. In: Proceedings of the 48th
annual Southeast regional conference. p. 42. ACM (2010)

1 http://swat.cse.lehigh.edu/projects/lubm/


	Scalable Reasoning Infrastructure for Large Scale Knowledge Bases

